DESIGN OF BATTERY SUPPLEMENTED MICRO-STATCOM AND DEVELOPMENT OF ASSOCIATED CONTROL ALGORITHMS TO MITIGATE POWER QUALITY ISSUES IN LOW VOLTAGE NETWORKS

Hennayaka Mudiyanselage Sisira Kumara Hennayaka

(168514A)

Thesis/Dissertation submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering

Department of Electrical Engineering

University of Moratuwa Sri Lanka

JANUARY 2021

DECLARATION

I declare that this is my own work and this thesis/dissertation does not incorporate without acknowledgment any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief, it does not contain any material previously published or written by another person except where the acknowledgment is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature of the Author: H. M. S. K. Hennayaka

Jos

Date: 2021.01.09

The above candidate has carried out research for the Masters Dissertation under my supervision.

Signature of the supervisor:

Dr. J. V. U. P. Jayatunga Department of Electrical Engineering, University of Moratuwa. Date: 2021.01.10

ABSTRACT

Power Distribution Networks are evolving with the rapid penetration of distributed generators and introduction of concepts such as *micro grid based Smart Girds*. Distribution automation devices and solar PV generators in the present-day power systems makes power distribution networks more and more active. Assurance of a power supply with better power quality for a distribution customer is becoming a challenging task with the penetration of various loads inspired by power electronic concepts. And also, with the enormous penetration of solar PV generators to power distribution networks, bi-directional power flow makes it more challenging. As most of the planning studies carried out to improve Medium Voltage (MV) Networks to address these challenges, less attention has paid for the monitoring of power qualities at Low Voltage (LV) Distribution Networks.

This research identifies a vital requirement to improve power quality at the leaf level of LV distribution network and presents a combined solution for most predominant power quality issues exist in LV distribution network. This thesis presents a Micro-STATCOM based solution to address power quality issues by under voltage regulation, over voltage regulation, harmonic mitigation and improving system power factor in LV distribution system. Development of Micro-STATCOM based model with DC power source is presented in order to mitigate major power quality issues exists in the modern LV distribution systems. Performance of the Micro-STATCOM model has evaluated with response time for voltage regulation, resolution of voltage regulation and level of reduction in Total Harmonic Distortion (THD%).

Developed Micro-STATCOM was then integrated into modified IEEE 13 Distribution Bus System in order to observe the mitigation of power quality issues. Results obtained by mitigation of each power quality issues in the distribution network are discussed in this thesis. Potential applicability of developed Micro-STATCOM in the practical low voltage distribution networks and other areas are discussed and recommendations are made for the selection criteria to integrate Micro-STATCOMs in LV distribution Systems.

ACKNOWLEDGEMENT

First and foremost, I would like to humbly express my sincere gratitude to my supervisor Dr. J.V.U.P. Jayatunga, Senior Lecturer of Electrical Engineering Department at Unitversity of Moratuwa for her continuous guidance, constructive feedback and support extended throughout this research. Despite her busy schedule, she always remained available with her advices, expertise and insights to successful completion of the research. The support and the encouragement that she has extended to me as a supervisor were by all means truly invaluable.

I would like to humbly acknowledge the special attention paid by Prof. H.Y. Ranjith Perera and Prof. W.D. Anura S. Wijayapala on this research and the comments made by them has explored important view point in my research and opened my eyes to different exposures of the study. It's a great pleasure to thank Eng. Priyan Gamachchige, Area Electrical Engineer-Monaragala, CEB, who has extended his utmost support to successfully carryout the field studies related to my research.

Finally, I would like to grant my heartfelt thanks to my beloved spouse, my research mates and all the others who provided their support and dedication in numerous ways towards the successful completion of my M.Sc.

H.M.S.K. Hennayaka January, 2021

TABLE OF CONTENTS

DE	CLAR	ATION OF THE CANDIDATE & SUPERVISOR	I
AB	STRA	СТ	II
AC	KNOV	VLEDGMENT	III
TA	BLEO	F CONTENT	IV
LIS	ST OF F	FIGURES	VII
LIS	ST OF T	TABLES	IX
LIS	ST OF A	ABBREVIATIONS	XI
1.	INT	RODUCTION	1
1	1.1	Introduction	1
	1.1.1	Evolution of Low Voltage Distribution Systems	2
	1.1.2	Penetration of Solar PV Generators and other DGs	5
1	1.2	Power Quality Issues in Active Low Voltage Networks	6
	1.2.1	Types of Power Quality Issues Exist in LV Network	6
1.2.2		Statutory Power Quality Requirements	8
	1.2.3	Utility Practices on Monitoring Distribution Networks	8
]	1.3	Research Motivation	10
	1.3.1	Objectives	12
	1.3.2	Methodology	12
1	1.4	Outline of the Thesis	13
2.	LITI	ERATURE REVIEW	15
2	2.1	Introduction	15
	2.2	Available Mitigation Options for Power Quality Issues in LV Network	15
	2.2.1	Flexible AC transmission system (FACTS) devices	15
2	2.3	Evolution of Mitigation Solutions for PQ Issues in LV Network	17
	2.3.1	Traditional LV Voltage Regulation Methods	17
	2.3.2	Present LV Voltage Regulation Methods	18
	2.3.3	Evaluation of the Existing Conventional Solutions	18
2	2.4	Studies Carried out for Mitigation of PQ Issues in Active LV Network	19
	2.5	SVC and STATCOM	21
	2.5.1	Operational Characteristics of SVC and STATCOM	21

2.5.2	2 Comparison Between SVC and STATCOM	22
2.6	Application of STATCOMs in MV Distribution Network	23
2.6.	Studies Carried out on D-STATCOMs in Voltage Regulation	23
2.7	Conclusion	24
3. MO	DELING OF MICRO-STATCOM	25
3.1	Introduction	25
3.2	Conceptual Design on Operation of Proposed Micro-STATCOM	25
3.3	Mathematical Modeling of Micro-STATCOM Controller	26
3.3.	I Integration of Micro-STATCOM to Distribution System	26
3.3.2	2 Phasor Equation for Micro-STATCOM	26
3.3.3	3 Derivation of Mathematical Model for Micro-STATCOM Controller	27
3.3.4	Active Filtering of Harmonic Currents by the Mathematical Model	29
3.4	Operation of PI-Controller	32
3.5	Operation of the Micro-STATCOM Controller	33
4. DE	VELOPMENT OF SIMULATION MODEL	34
4.1	Introduction	34
4.2	Main Components of the Micro-STATCOM Model	34
4.2.	Micro-STATCOM Controller Module	34
4.2.2	2 Sinusoidal Pulse Width Modulator (SPWM) Module	35
4.2.3	3 Micro-STATCOM Voltage Source Inverter Module	36
4.3	Validation of Micro-STATCOM Model on Its Operation	36
4.3.	2-Bus System Test Setup to Validate the Functionality of the Model	37
4.3.2	2 Test Results Obtained from Micro-STATCOM Model Validation	38
5. API	PLICATION OF MICRO-STATCOM IN LV DISTRIBUTION NETWORK.	39
5.1	Introduction	39
5.2	Integration of Micro-STATCOM on IEEE 13 Distribution Bus System.	39
5.2.	Standard IEEE 13 Distribution Bus System	39
5.2.2	2 Modified IEEE 13 Distribution Bus System	40
5.2.3	3 Load Flow Analysis and Identification of LV Power Quality Issues in Modified I	EEE
13 E	Distribution Bus System	43
5.3	Integration of Micro-STATCOM in LV Distribution Network	45

5.4	CASE STUDY 1 - Micro-STATCOM Operation in Under Voltage Regulat	ion 45
5.4.1	Scenarios of Micro-STATCOM Operation in Under Voltage Regulation	47
5.4.2	Under Voltage Regulation - Scenario 01	48
5.4.3	Simulation Results of Scenario 01 – Under Voltage Regulation	50
5.4.4	Under Voltage Regulation - Scenario 02	55
5.4.5	Simulation Results of Scenario 02 – Under Voltage Regulation	55
5.5	CASE STUDY 2 – Micro-STATCOM Operation in Over Voltage Regulation	on57
5.5.1	Over Voltage Regulation - Scenario 01	57
5.5.2	Simulation Results of Scenario 01 – Over Voltage Regulation	59
5.5.3	Over Voltage Regulation - Scenario 02	63
5.5.4	Simulation Results of Scenario 02 – Over Voltage Regulation	63
5.6	System Power Losses due to the Integration of Micro-STATCOMs	65
5.6.1	Behavior of Active and Reactive Power delivery form Distribution Transformer.	65
5.6.2	Active Power Consumption by Coupling Reactors of Micro-STATCOM	67
5.6.3	Total Active Power Loss in the System	68
DIS	CUSSION	69
6.1	Introduction	69
6.2	Performance of Micro-STATCOM in Contrast with the Results Obtain	ed. 69
6.3	Selection Criteria to Integrate Micro-STATCOMs in LV System	70
6.3.1	Factors to be Considered in LV Network	70
6.3.2	Voltage Sensitivity Index Based Evaluation Method	71
6.3.3	Inter-Operation of Micro-STATCOMs with Other Network Compensators	71
6.3.4	Introduction of Dead-Band	71
6.4	Potential Areas of Application of Micro-STATCOM	72
Con	clusion and recommendations	73
7.1	Conclusion	73
7.2	Recommendations for Future Works	74
		····· / ·
REFERI	ENCES	75

LIST OF FIGURES

Figure 1: Uni-directional flow of electricity in a Traditional Power System2
Figure 2: Bi-directional communication in a Smart grid4
Figure 3 Typical X/R ratios of Over Head Power Lines9
Figure 4: Power Quality Measurement Setup for 3-phase, 400V Supply10
Figure 5: Voltage Variation and Presence of Harmonic11
Figure 6: Total Harmonic Distortion (%) in Phase C of 3-Phase Supply11
Figure 7: Droop Curve used by PV Inverter to Regulate Voltage
Figure 8 : Profile of voltage along LV feeder with and without SVC & Solar PV $\dots 21$
Figure 9: Operating Characteristics of STATCOM and SVC
Figure 10: Regulation of system voltage with and without coordinated operation 24
Figure 11: Conceptual Control Block of Micro-STATCOM Connecting to PCC25
Figure 12: Parallel Connection of Micro-STATCOM to PCC
Figure 13: α , β stationary plane and (d, q) rotating plane
Figure 14: Control Strategy for Active Harmonic Filtering and Mitigation
Figure 15: Operation of the PI-Controller
Figure 16: Micro-STATCOM Controller Operation Sequence
Figure 17: Matlab Simulink Model for Micro-STATCOM Controller35
Figure 18: Matlab Simulink Model for SPWM
Figure 19: Matlab Simulink Model for Micro-STATCOM
Figure 20: 2-Bus System to test the Functionality of Micro-STATCOM37
Figure 21: Results on Micro-STATCOM Model Validation
Figure 22: Single Line Diagram of IEEE 13 Distribution Bus System
Figure 23: Single Line Diagram of Under Voltage LV System
Figure 24:Single-Line Diagram of Over Voltage LV System
Figure 25: Matlab Simulink Model of LV Distribution System
Figure 26: Load Flow Report on LV System Experiencing Under Voltage Issue43
Figure 27: FFT Analysis on Phase R at LV Bus LV_34844
Figure 28: Phase voltages at LV_351 low voltage bus
Figure 29: Case Study 1 - LV System with Integrated Micro-STATCOMs46
Figure 30: Power Quality Measurement of LV System with Micro-STATCOMs 49
Figure 31: Under Voltage Regulation at LV_351 Bus50

Figure 32: Under Voltage Regulation at LV_348 Bus50	0
Figure 33: Load Flow Report on Under Voltage Regulation by Micro-STATCOM 52	1
Figure 34: Case Study 1, V-I Graphs of Phase R at LV_348 Bus	2
Figure 35: Case Study 1, FFT analysis on Phase R at LV bus LV_348	3
Figure 36: Power Output of Micro-STATCOMs in Under Voltage Regulation53	3
Figure 37: Resolution of Voltage Regulation by Micro-STATCOM	4
Figure 38: Case Study 1, Setup for Dynamic Load Change	5
Figure 39: Dynamic Under Voltage Regulation of Micro-STATCOM55	5
Figure 40: Power Output in Dynamic Under Voltage Regulation	б
Figure 41: Case Study 2 - LV System with Integrated Micro-STATCOMs	8
Figure 42: Over Voltage Regulation at LV_351 Bus	9
Figure 43: Over Voltage Regulation at LV_348 Bus	9
Figure 44: Load Flow Report on Over Voltage Regulation by Micro-STATCOMs.60	0
Figure 45: Case Study 2, V-I Graphs of Phase R at LV_348	1
Figure 46: Case Study 2, FFT analysis on Phase R at LV bus LV_348	1
Figure 47: Power Output of Micro-STATCOMs in Over Voltage Regulation62	2
Figure 48: Case Study 2, Setup for Dynamic Load Change	3
Figure 49: Dynamic Over Voltage Regulation of Micro-STATCOM	3
Figure 50: Power Output in Dynamic Over Voltage Regulation	4
Figure 51: T/F Power Output to LV Network without Micro-STATCOMs	5
Figure 52: T/F Power Output to LV Network with Micro-STATCOMs	б
Figure 53: Power Output of Micro-STATCOMs after Optimization	7

LIST OF TABLES

Table 1: Advantages and disadvantages of conventional PQ mitigation solutions	19
Table 2: Advantages of STATCOM over SVC	22
Table 3: Load Distribution in Feeders of LV System	48
Table 4: Loads, DGs and STATCOMs Distribution in Feeders of LV System	57

LIST OF ABBREVIATIONS

BESS	:	Battery Energy Storage System
DG	:	Distributed Generators
PV	:	Photovoltaic
SCADA	:	Supervisory Control and Data Acquisition
GPS	:	Geographical Positioning Systems
PMU	:	Phasor Measurement Unit
WAMS	:	Wide Area Measurement System
DAS	:	Distribution Automation System
DRMS	:	Demand Response Management Systems
LV	:	Low Voltage
MV	:	Medium Voltage
THD	:	Total Harmonic Distortion
PCC	:	Point of Common Coupling
STATCOM	:	Static Synchronous Compensator
SPWM	:	Sinusoidal Pulse Width Modulator
CEB	:	Ceylon Electricity Board
AC	:	Alternating Current
DC	:	Direct Current
RMS	:	Root Mean Square
PQ	:	Power Quality
FACTS	:	Flexible AC transmission system
OLTC	:	On Load Tap Changer
TCSR	:	Thyristor Controlled Series Reactor
SVC	:	Static VAR Compensator
VOC	:	Voltage Oriented Control
MPPT	:	Maximum Power Point Tracking
IGBT	:	Insulated Gate Bipolar Transistor
IEEE	:	Institute of Electrical and Electronics Engineers
FFT	:	Fast Fourier Transform