References

B.Tiwari, B. G. K., 2010. Shear strength reduction at soil structure interface.

Orlando Florida, s.n.
C. LAM, S. A. J. C. M. M., 2013. Effects of polymer and bentonite support fluids on concrete-sand interface. Oxford, s.n.

Carlos Lama, S. A. J. T. P. S. V. M. T., 2015. Effects of polymer and bentonite support fluids on the performance of bored piles. Soils and foundations, 55(6), pp. 1487-1500.

Fearenside G.R, C. R., 1978. The skin friction of bored piles formed in clay under bentonite. London: Construction Industry Research and Information Association.

Gaurina \& Medimurec, 1998. horizontal well drill-in fluids. Rudarsko-geolosko naftni zbornik, Volume 10, pp. 73-76.

Gravador, A. G. N., 2008. Effect of bentonite slurry on the skin friction of bored piles, Diliman: s.n.

HARRY M. COYLE, I. H. S., 1968. Bearing Capacity of Foundation Piles:. Texas, s.n.

Pells P., R. J. W. J. K. K., 1975. The effect of bentonite on the skin friction in cast in place piles and diaphragm walls. Johannesburg, s.n.

Ressol, S. Z., 2010. An examination of the mechanical interaction of drilling slurries at the soil concrete contact. Applied Physics \& Engineering, 11(4), pp. 294-304.

Robert, C. \& Arvind, P., 1986. Water soluble polymers for aqueous drilling fluid additives. Water soluble polymers, Volume 213, pp. 197-207.

Ryan, C. \& George, C., 1996. Drilling fluid: State of the art. Journal of petrolium science and engineering, Volume 14, pp. 221-230.
S.C.R Lo, K. L., 2003. Influence of a permenent liner on the skin friction of large diameter bored piles in Hong Kong granitic saprolites. Hong Kong, s.n.

Thaemlitz, Patel, George, C. \& Lee, C., 1999. New environmentally safe high temperature water based drilling fluid system. Amsterdam, s.n.

Wada, A., 2014. Skin Friction and Pile Design. New York, s.n.
Zhu, S. R. Y. P., 2011. Comparison of behaviors of soil-concrete interface from ring-shear and simple shear tests. Volume 32, pp. 692-696.

