ENERGY CONSERVATION ON A CENTRAL CHILLER PLANT

31

Master of Science Thesis

SANJAYA RAMANAYAKE

Department Of Electrical Engineering University of Moratuwa, Sri Lanka

December 2007

LB/DON/53/08 DEE 06/01

ENERGY CONSERVATION ON A CENTRAL CHILLER PLANT

This thesis was submitted to the

Department of Electrical Engineering of the University of Moratuwa in partial fulfillment of the requirement for the Degree of Master of Science in Industrial Automation.

VIRAJ SANJAYA RAMANAYAKE

Supervised by:

621.3 07

Dr. Lanka Udawatta & Mr. Sanjeeva Witharana

Department Of Electrical Engineering University of Moratuwa, Sri Lanka

91209

ii

December 2007

University of Moratuwa 91209

91209

DECLARATION

The work submitted in this thesis is the result of my own investigations, except where it is otherwise stated.

It has not already been accepted for any degree, and also is not being concurrently submitted for any other degree.

UOM Verified Signature

Sanjaya Ramanayake	
(Candidate)	

Date: 19,

We endorse the declaration by the candidate

.....

Dr. Lanka Udawatta (Supervisor) Date:

•••••••••••••••••••••••

Mr. Sanjeewa Witharana (Co-Supervisor)

Date:

Dedicated to my loving kids Sahasya, Aindi & Virane

CONTENTS

ABSTRACT	viii
ACKNOWLEDGEMENT	ix
TERMS AND ABBREVIATIONS	x
LIST OF FIGURES AND TABLES	xi
1. INTRODUCTION	1
1.1 Motivation	2
1.2 Significance of the research	3
1.3 Objectives and Scope	4
1.4 Achievements	5
 1.5 Site Selection 1.5.1 Site Selection Criteria 1.5.2 Site Parameters 1.5.3 Design of the selected chiller plant 	5 5 7 8
1.6 Outline of the thesis	9
2. LITERATURE REVIEW	11
2.1 2007 ASHRAE Handbook - HVAC Applications	11
2.2 Refrigeration and Air-conditioning (Environmental Engineering)	15
2.3 McQuay Application Guide for Chiller Plant Design	16
2.4 Consolidated Review	18
3. THEORITICAL BACKGROUND	20
3.1 Principals of thermodynamics and psychrometry 3.1.1 Fundamentals of thermodynamics 3.1.2 Laws of thermodynamics 3.1.3 Psychrometrics	20 20 23 25
 3.2 Air-conditioning Systems & Energy Efficiency 3.2.1 Classification of Air-Conditioning Systems 3.2.2 Central Chill Water Air-conditioning System 3.2.3 Energy Efficiency in Chillers 3.2.4 Energy Efficiency in Piping 3.2.5 Energy Efficiency in CHW / COW Pumps 3.2.6 Variable Frequency Drives 3.2.7 Energy Efficiency in Cooling Towers 	27 27 28 29 31 32 34 35

3.3 Supervisory Control Strategies and Energy Optimizations	36
3.3.1 Control Sub Systems	37
3.3.2 Control Variables	40
3.3.3 Sampling Intervals for Reset Controls	4]
4. RESEARCH DESIGN	43
4.1 Steps of the research	43
4.1.1 Identification of the topic and scope	43
4.1.2 Site Selection	44
4.1.3 Literature Review and Interviews	44
4.1.4 Selecting Energy Optimizations	44
4.1.5 Implementation of Energy Optimizations	45
4.1.6 Evaluation	45
5. ENERGY OPTIMIZATIONS	47
5.1 Basis of selection of optimizations	48
5.2 Optimizations not selected to implement	-48
5.2.1 Conversion of motorized valves in the CHW system from 3-way to 2 way.	48
5.2.2 Regulate CHW pumps to maintain a constant pressure at the header	- 50
5.2.3 Hydronic balancing of the CHW distribution system	51
5.2.4 Regulate motors of larger AHUs to match the cooling demand	53
5.2.5 Automatically cut off room air-conditioners depending on the occupancy	54
5.3 Implemented Optimizations	55
5.3.1 Controlling the Cooling Tower fan	56
5.3.2 Chilled Water Reset (CWR)	58
5.3.3 Automatic sequencing and loading of multiple chillers to match cooling demand	61
5.3.4 Controlling the maximum demand at night	63
5.3.5 Monitoring the COP of chillers	64
5.3.6 Automatically detect CT performance degrades	65
6. RESULTS	67
6.1 Energy Saved in Condenser Water Pumps	69
6.2 Energy Saved in Chilled Water Pumps	70
6.3 Energy Saved in Cooling Towers	71
6.4 Energy Saved in Chillers	73
6.5 Total Quantified Savings	75

vi

7. RECOMMENDATIONS & CONCLUSIONS	76
7.1 Recommendations	76
7.2 Limitations of the study	77
7.3 Suggestions for future work	78
7.4 Practical problems faced during the implementation	79
REFERENCE	80
APPENDIX	А

ABSTRACT

Air-conditioning is no more treated as a luxury but a day to day requirement essential for the human comfort and productivity. When compared among different sub systems of a building, air-conditioning subsystem is responsible for the largest proportion of the energy consumption especially in a tropical climate like Sri Lanka. Central air-conditioning that comprise of a chiller plant is the most common means of air-conditioning in large commercial buildings. Hence successful energy optimizations that are implemented on a central chiller plant will definitely result with large financial savings.

Even though it is a known fact that all individual components that comprise a central chiller plant are now optimized in terms of energy efficiency, the overall behavior of the entire system once these pieces are put together is something that has to be separately worked out. This research proposes and implements energy optimizations on top of a central chiller plant. It evaluates the amount of saving from each optimization and presents a practical model to follow in a similar plant.

Energy optimizations proposed in this research were implemented in conjunction with the capabilities of the central chiller plant control system that is already available at the site for the purpose of real time monitoring and controlling of the central chiller plant. Results of energy saved was quantified using the run hour reading gathered prior and after the implementation of the optimizations. A saving of 15.8% from COW pumps, 23.8% from CHW pumps and 32.8% from CTs were achieved as a result of those optimizations.

Outcomes of this research can be made use by different parties including investors and decision makers of buildings to promote similar energy saving projects in their organizations.

ACKNOWLEDGEMENT

My sincere gratitude goes to Dr. Lanka Udawatte the internal supervisor of this research, for his guidance and support despite his busy schedules, which helped me carry out research activities effectively. It must be noted with thanks that he was always available for me to guide when ever it was necessary.

My thanks also go to the co-supervisor Mr. Sanjeeva Vitharana of Mechanical Engineering Department of University of Moratuwa for his kind assistance in various aspects to locate required resources and information.

Special thanks to the management and the engineering staff of Cinnamon Grand Hotel, especially to Mr. Panduka Wijewardena the chief engineer of the hotel for providing me the opportunity to implement and test various energy optimizing options on their live site, and bearing with me the unexpected outcomes that were experienced during early R&D stage of the research.

My heartiest thank goes to my wife Ruvini for her genuine encouragement and loving care and my three little kids for their sacrifices by allowing me find time to involve in my research work.

Last but not least, I sincerely thank my loving parents for bringing me up in a culture that helped me appreciate higher education.

Sanjaya Ramanayake

TERMS AND ABBREVIATIONS

AHU AI AO ARI ASHRAE	 Air Handling Unit Analog Input Analog Output Air-conditioning and Refrigeration Institute American Society of Heating Refrigeration & Air-conditioning
CHW	- Chilled Water
CMS	- Chiller Management System
COW	- Condenser Water
СТ	- Cooling Tower
CTI	- Cooling Tower Institute
DI	- Digital Input
DO	- Digital Output
ELF	- Electrical Load Factor
FCU	- Fan Coil Unit
HVAC	- Heating Ventilation and Air-conditioning
M&V	- Monitor and Verification
NPLV	- Non Standard Part Load Value
PLR	- Part Load Ratio
RH	- Relative Humidity
SCADA	- Supervisory Control and Data Acquisition
VFD	- variable Frequency Drive
VSD	- variable specu Drive

х

LIST OF FIGURES AND TABLES

LIST OF FIGURES:

- Fig 1.1: Chiller Management System of the site Fig 1.2: Breakdown of consumption Fig 1.3: Further breakdown of consumption Fig 1.4: Distribution of kWh consumption of HVAC system Fig 1.5: CHW Distribution at Site Fig 3.1: Psychrometric Chart Fig 3.2: Central Chilled Water Air-Conditioning System Fig 3.3: Basic pump curve Fig 3.4: Motor and VFD Efficiency at Part Load Fig 3.5: Pumping power Vs Flow Fig 3.6: Chiller Power Vs Tower Power Fig 3.7: Primary pumping system Fig 3.8: Primary/ Secondary pumping system Fig 5.1: Hydronic balancing of CHW distribution system Fig 5.2: Cooling tower fan control Fig 5.3: Cooling tower control at the site Fig 5.4: Fixed speed CHW distribution LIST OF TABLES:
- Table 1.1: Electricity Consumption
- Table 3.1: ASHRAE Std 90.1 Chiller Performance Table
- Table 5.1: Total set of proposed energy optimizations
- Table 6.1: Implemented Optimizations
- Table 6.2: Quantified savings from COW pumps
- Table 6.3: Quantified savings from CHW pumps
- Table 6.4: Quantified savings from CT fans