
IB /- •" j / 7-0

oSf/BS yp C i>

GENERIC SELINUX RULES & POLICIES FOR

SECURE EXECUTION OF NETWORK SERVICES IN

LINUX

Mario Roshane Ishara Fernando

158214U

library SRitAWKA

Dissertation submitted in partial fulfillment of the requirement for the degree Master
of Science in Computer Science

Department of Computer Science & Engineering

University of Moratuwa!
\6oo*^

oo^Co4^
November 2018

University of Moratuwa

I

TH4243
,*> o a!-ft! *

is mi

-4M 4243<

DECLARATION

I declare that this is my own work and this dissertation does not incorporate without
acknowledgement any material previously submitted for degree or Diploma in any
other University or institute of higher learning and to the best of my knowledge and
belief it does not contain any material previously published or written by another
person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non - exclusive right to reproduce
and distribute my dissertation, in whole or in part in print, electronic or other medium.
I retain the right to use this content in whole or part in future works.

ve/^^ Date:Signature:

Name: M.R.I. Fernando

I certify that the declaration above by the candidate is true to the best of my knowledge
and that this report is acceptable for evaluation for the Masters of Dissertation.

y [«(Signature of the Supervisor:.

Name: Dr. Shantha Fernando

Date:

Signature of the Co-Supervisor:

Name: Dr. Chandana Gamage

Date:

i

ABSTRACT

Usage of Network services and network stack-based applications on Linux systems
are increasing rapidly, hackers around the world exploit security flaws there by
executing sophisticated attacks on these services and compromising the entire system.
Applying SELinux policies to a system which serves multiple network services has
been a challenge due to policy conflicts. These policy conflicts are overridden by the
security administrator there by applying SELinux rules to make the network services
operational, however this might result in loop holes thereby information leakage from
one or multiple services to another. This results in compromisal of not only the
network service being attacked but other running services in the system which might
lead to the entire trusted computing base being compromised. Deployment of SELinux
Multi Level Security mandatory access control is an appropriate model to be applied
over a system where we can segregate information flow from various security levels
into the level of even categorized compartments. However, when running multiple
network services over a single SELinux MLS enabled system, it is required to
determine the security levels to be labelled over the subjects and the objects of the
respective network services to overcome the ambiguity of the security levels in the
information flow of a security lattice. Preserving both confidentiality and integrity of
a system is a challenge and it is required to find the most secure way of information
flow in a security lattice while achieving it using the existing SELinux MLS
framework. This research focuses on a number of access control models, security
models, lattice-based access control models and a wide range of SELinux security
policy implementations. The goal of this research is to determine the security labels
and security levels of the network services intended to run on a SELinux MLS enabled
system while allowing information flow through the security lattice only if required.

Keywords: Security Enhanced Linux, Multi-Level Security, Bell Lapadula Model,
Mandatory Access Control, Security Lattice, Type Enforcement, Sensitivities,
Categories, Security Contexts

ii

ACKNOWLEDGEMENT

I would like to express my special thanks of gratitude to my project supervisors, Dr.
Shantha Fernando and Dr. Chandana Gamage for their patient guidance, enthusiastic
encouragement and useful critique of my research work. Their willingness to give their
time so generously have been very much appreciated. Especially mentioning the moral
support and the continuous guidance by providing important feedback enabled me to
complete my work successfully.

Also, I would like to thank Dr. Stephen Smalley from National Security Agency, USA
and Mr. Dan Walsh from RedHat Incoperation, USA who supported me to carry out
this research by providing valuable resources regarding the SELinux Multilevel
Security domain. Finally, I would like to thank my spouse who supported and
encouraged me throughout this project.

iii

i

TABLE OF CONTENTS

DECLARATION 1

ABSTRACT 11

ACKNOWLEDGEMENT in

ivTABLE OF CONTENTS

LIST OF TABLES vm

LIST OF FIGURES IX

LIST OF ABBREVIATIONS x
11. INTRODUCTION

1.1. Background... 1
1Securing Network Services..

1.1.2. Security Model of SELinux...

1.1.3. Mandatory Access Control Model...................................

1.1.4. Security Enhanced Linux and the Linux kernel...............

1.2. Problems with SELinux & running multiple network services

1.3. Research Problem..

1.4. Research Objectives...

1.5. Proposed Solution..

1.6. Research Methodology..

1.7. Organization of the Thesis..

2. LITERATURE REVffiW...

2.1. Overview..

2.2. Access Control mechanisms and Security Models..................

2.2.1. DACandMAC...

2.2.2. Multi Level Security..

2.2.3. Security Models..

2.2.4. Bell Lapadula Model...

2.2.5. Problems with Security Models.......................................

2.3. Security Objectives (Confidentiality and Integrity)................

2.4. Lattice Based Access Control...

2.4.1. Orders and Lattice..

2.4.2. Lattice for Classifications..

1.1.1.
2

2
2

3
3
4
4

5
6

7
7
7
7

9
9

10

12

13

13

13

14

iv

142.4.3. Finite Lattice...

2.5. A Security Lattice for MLS..

2.5.1. Information flow in a lattice with Multi Level Security....

2.6. SELinux Overview...

2.6.1. Introduction...

2.6.2. Subjects and Objects..

2.6.3. Flask Architecture...

2.6.4. Type Enforcement Mechanism..

2.6.5. Security Context...

2.6.6. Types and Attributes...

2.6.7. Access Vector Rules..

2.6.8. Domain Transition..

2.6.9. Constraints..

2.6.10. SELinux Policies..

2.6.11. Policy Modules..

2.6.12. Summary of SELinux Overview..................................

2.7. SELinux Multi-Level Security.........

2.7.1. Security Levels..

2.7.2. Security Level Translation...

2.7.3. mlsconstrain Statements..

2.7.4. mlsvalidatetrans statements...

2.7.5. Privilege Management...

2.7.6. Complexitiy of SELinux policies.....................................

2.7.7. SELinux policy analysis tools..

2.7.8. Problems with SELinux analysis tools............................

2.7.9. SELinux Challenges and Proposed Solution...................

3. METHODOLOGY..

3.1. Lattice labels for SELinux...

3.2. Example of a dominance relationship....................................

3.3 Bell Lapadula Model review..

3.4 SELinux Policy alignment with Bell Lapadula model................

3.4.1 SELinux Policies facts in Customized Bell-Lapadula model

3.5 Overriding Bell Lapadula custom policy....................................

15
16
17
17
18
19
21
21
21
22
22
23
27
28
29
29
30
32
33
35
36
37
37
37
38
39
39
41
42
43
44
44

v

443.5.1 Bell Lapadula Simple property in SELinux mlsconstrain statements

3.5.2 Bell Lapadula custom *-property in SELinux mlsconstrain statements.... 46

3.6 SELinux policy Type enforcement and MLSConstrain evaluation order

3.7 Security Lattice for SELinux Type Enforcement & SELinux MLS.......

An environment with only Type Enforcement (No Multi Level Security)

An environment with SELinux Type Enforcement + Multi Level Security where:

48

49

49

50

An environment with special type mapped to an attribute in MLSConstrain
statements..

3.8 Type Enforcement vs MLSConstrain vs Bypassing MLSConstrains....

3.9 Program to determine the Security levels for secure execution.............

3.9.1 Decision making on determining security labels.............................

3.9.2 Program Workflow..

3.10. Assigning the Security labels for secure execution......................

3.11 Generic SElinux policies for secure execution...................................

4. SYSTEM/SOLUTION ARCHITECTURE AND IMPLEMENTATION

4.1. Interactive program to determine the security levels.......................

4.1.1. Pseudocode for the program...

4.2. Setting up SELinux MLS testbeds...

4.3. Running the Program..

Scenario 1...

Scenario 2...

4.4. Choosing the network services...

4.4.1. SELinux module creation for Scenario.....................................

4.4.2. SELinux module creation for Scenario 2..................................

5. System Evaluation and Analysis...

5.1 Analysis of testbed 1 environment..

5.1.1 State Diagram for Testbed 1..

5.2 Analysis of testbed 2 environment..

5.2.1 State Diagram for Testbed2 environment.......................................

5.2.2 Problem Analysis in Testbed2 environmet.....................................

5.3 Verifying the generic SELinux Rules...

6. CONCLUSION..

51
52
53
54
57
63
64
66
66
67
68
70
70
71
72
72
78
82
82
84
84
85
85
89
91

vi

i

93REFERENCES
97APPENDICES...

Appendix A - Comparison of SELinux Analysis tools

Appendix B - State Diagram for testbed 1 environment how information flow occurs
for wordpess application to function

Appendix C - State Diagram for testbed2 environment how information flow occurs
for wordpess application malfunctions

97

98

99

vii
;
i

LIST OF TABLES

Table 2.1 Comparison of Access Control in Standard Linux and SELinux
Table 2.2 MLS Constraint Table...
Table 2.3 MLSConstraint Conditional Operators.......................................
Table 2.4 SELinux Attributes...
Table 3.1 Permutations of how the final decision is made upon the allowance and
denials of Type Enforcement Rules, MLSConstrain rules and bypassing
MLSConstrain Simple property / Custom *-Property rules.....................
Table 3.2 Inequality Table utilized by the Python script.........................
Table 3.3 SELinux Generic Rule Precedence..
Table 4.1 Filesystem file relabelling of a SELinux MLS enabled system

17
34
35
36

53
57
65
69

viii

LIST OF FIGURES

8Figure 2.1 Trojan horse Example...
Figure 2.2 Multi Level Security (MLS).....................................
Figure 2.3 Available data flows using an MLS system.............
Figure 2.4 Equivalance of BLP and BIBA................................
Figure 2.5 Lattice Information Flow..
Figure 2.6 MLS Security Lattice...
Figure 2.7 The security lattice in Virtualvault...........................
Figure 2.8 High Level SELinux Components............................
Figure 2.9 Flask Architecture...
Figure 2.10 Domain Transition...
Figure 2.11 Conceptual Diagram of RJBAC..............................
Figure 2.12 Bell Lapadula Model... .
Figure 2.13 App Program Security Policy Rules in SELinux ...
Figure 3.1 Bell-Lapadula Security Model.................................
Figure 3.2 Modified Bell-Lapadula Model...............................
Figure 3.3 Lattice information flow for type enforcement rules
Figure 3.4 Lattice Information flow for Services running in labels S0.C0.C3 and
S1.C0.C1
Figure 3.5 Unrestricted Information Flow by bypassing MLSConstrain rules for
Simple and custom *-Property..............
Figure 3.6 0000.....................................
Figure 3.7 0001
Figure 3.8 0010......................................
Figure 3.9 0011
Figure 3.10 0111...................................
Figure 3.11 1000...................................
Figure 3.12 1001....................................
Figure 3.13 1010...................................
Figure 3.14 1011...................................
Figure 3.15 1111...................................
Figure 5.1 Wordpress is up and running
Figure 5.2 Wordpress is not functional as apache process is unable to write to mysql
socket file
Figure 5.3 Wordpress is not functional as apache process is unable to write to mysql
socket file

9
11
12
14
15
16
18
20
22
23
30
38
42
43
50

51

52
58
58
58
59
59
59
60
60
61
62
84

84

85

ix

LIST OF ABBREVIATIONS

Bell-Lapadula ModelBLP

Discretionary Access ControlDAC

GNU’S NOT UNIX / General Public LicenseGNU/GPL

Linux Security ModuleLSM

Mandatory Access ControlMAC

Multi Level SecurityMLS

National Security AgencyNSA

Role Based Access ControlRBAC

Security Enhanced LinuxSELinux

Trusted Computing BaseTCB

Type EnforcementTE

x

:

1. INTRODUCTION

1.1. Background

SELinux is a Linux kernel security module which facilitates various mechanisms &
procedures to control security policies by modification of the Linux kernel and user-
space tools that is supported by any Linux distribution. The concepts were initially
developed by the National Security Agency (NSA), United States which is open source
under GNU/GPL License in year 2000 [1] [2]. It follows the MAC model where all
permissions are denied by default and any permission operation should be permitted
explicitly which provides an enhanced mechanism to vastly improve information
confidentiality and information integrity in a lattice-based access control model.
SELinux has several security policies developed which could be applied over a linux
system which is based on Type enforcement, role-based access control (RBAC) and
multilevel security (MLS) [3].

1.1.1. Securing Network Services

Majority of modem attack vectors occur due to systems that are exposed to the outside
world which could run insecure, buggy or vulnerable network services. Also, it should
be taken into the consideration that for a system to run multiple network services, the
system is at higher risk and at a higher probability of getting attacked than a system
which runs just a single service. The reason behind this is a single service running on
a system can be tightened with many security policies to minimize any security flaws
whereas for a system running multiple network services the probability of an attack
would be relatively high due to many reasons. One thing could be due to network
service specific vulnerabilities or unprotected information flowing in and out between
network services unless really required. Though the SELinux MAC policy rules
pertaining to a corresponding network service provides fine grained security still it
might weaken the security of the remaining services running on the system which has
the possiblitiy to change the trustworthiness or integrity of the rest of the services
running in the system due to inappropriate allowed information flows. Thus, it is quite
a tough and a hectic job to maintain security of all network sendees on such systems
[4] to make sure no unwanted information can flow through the security lattice.

1

1.1.2. Security Model of SELinux

Security models are often regarded as a formal presentation of the security policy
enforced by the system [NCSC 1988] and are used to test a policy for completeness
and consistency [5]. They describe what mechanisms are necessary to implement a
security policy [6]. Over the years, many security models have been developed
depending on the requirements of security objectives such as to preserve
confidentiality alone, integrity alone or to preserve both confidentiality and integrity.
For an example, Biba model was developed intending to preserve the integrity of
information [7], Bell and Lapadula developed a model to preserve the confidentiality
of the system. SELinux security policies is a modified version of the Bell Lapadula
model intending to achieve such security objectives [7].

1.1.3. Mandatory Access Control Model

Mandatory access control, which, according to the United States Department of
Defense Trusted Computer System Evaluation Criteria is “a means of restricting
access to objects based on the sensitivity (as represented by a label) of the information
contained in the objects and the formal authorization (e.g. clearance) of subjects to
access information of such sensitivity” [7]. Mandatory access control restricts the
access of subjects to objects on a system-wide policy and denies full access and control
to users even if they created the objects (Where as in DAC this is not the case).

1.1.4. Security Enhanced Linux and the Linux kernel

Security-Enhanced Linux (SELinux) is a Linux kernel security module that provides
a mechanism for supporting access control security policies, including United States
Department of Defense-style mandatory access controls (MAC). SELinux is a set of
kernel modifications and user-space tools that have been added to various Linux
distributions. Its architecture strives to separate enforcement of security decisions from
the security policy itself which is also refered to as the flask architecture and
streamlines the amount of software involved with security policy enforcement. The
key concepts underlying SELinux can be traced to several earlier projects by the
United States National Security Agency (NSA) [8].

1.2. Problems with SELinux & running multiple network services

Due to the complex nature of SELinux type enforcement rule sets and its policies [1],
many Linux based systems run with SELinux disabled mode. Even if SELinux is in
enabled or in permissive mode, the SELinux rule sets and the policies for a given set
of the network services running on a single Linux system might not be properly applied
for secure information flow in a lattice-based model. This might result in security flaws
and vulnerabilities hence the probability of modem attack vectors being executed on
such systems increases at higher rates resulting in compromising of many Applications
and Systems which runs on Linux based distributions [5] due to unwanted information
flow through the security lattice. Choosing and deciding the correct security labels,
sensitivity and category levels to run the network services in the most secure manner
is ambigious and this is based upon how information is shared and modified among
the services which needs to interact with each other.

1.3. Research Problem

SELinux already has type enforcement mandatory based access control approach
where the Security administrator has the option of enabling Multi Level security to
apply on all the subjects and objects of the linux system achieved through labelling
[9]. Decisions of information flow between subjects and objects are decided by the
SELinux security policy server enforced by the SELinux enforcement server, which is
the Linux kernel. However, when running multiple network services there should be a
mechanism for the Security Administrator to decide what exact labels, sensitivity
levels and optionally any categories which should be applied over the subjects and the
objects of the respective network services. That is, the Security administrator can run
the network services in different security levels or in the same security level depending
on the information flow paths of the network services running on the single system.
Therefore, there should be a mechanism to determine & thus overcome the ambiguity
of security levels to preserve both confidentiality and integrity using Lattice
information flow approach.

3

1.4. Research Objectives

In achieving objectives of security, it is vital to minimize privileges and hence to attain
least privileges while allowing the systems or applications to perform its normal
operations. Compromisal of one or more network services might result in
compromising the entire Linux System resulting in catastrophic conditions. So
therefore, even if a network service is compromised then still the remaining services
shouldn’t be compromised and then it’s a matter of recovering the hacked service to
bring up the linux system into a fully operational state if possible. A security
administrator should be able to decide the exact security levels to run the network
services intending to serve on a linux system. Hence a given network service will
always attain the least privileges and only the required amount of information will flow
for the service to be operational and serve its intented purposes. Thus, achieving the
minimal privileges approach for network services achieved through SELinux Multi
Level security can be the solution to overcome the entire system not being hacked due
to the compromisal of one or more network services but only the attacked
corresponding network service will be affected. Therefore, the approach is to
determine the different security levels to overcome the ambiguity of security levels in
a lattice information flow model to preserve both confidentiality and integrity for
running multiple network services in a SELinux MLS enabled system.

1.5. Proposed Solution

A security administrator should have the knowledge of information flow and any
interactions which occurs between the network services inorder to determine and
assign the most secure SELinux labels for the network services. The combination of
information flows between the respective services can be modelled into a security
lattice on how information flows between the services. The security labels of the
respective services are determined using an inequality form to overcome the ambiguity
of sensitivity levels of the respective services. Once these sensitivity levels are
determined, the corresponding sensitivity levels can be applied over the required
subjects and the objects of the network services intending to run on the SELinux MLS
enabled system. A generic rule procedure is presented to be followed by the Security
Administrator to securely execute the network services to align with the information
flow requirements to and from the services.

4

i

1.6. Research Methodology

Running multiple network services on a linux system in a Selinux enabled environment
can be problematic if proper security labels aren’t applied on the components of the
respective network services.

There is a high chance when one service is compromised this could affect and result
the compromisation of other running services and may be the entire system.

To understand the problem in a more detailed manner, the concept of mandatory access
control, security models, type enforcement, multi level security was reviewed and the
practical implementations such as SELinux type enforcement, SELinux Multi category
security and SELinux MLS was studied using various literature.

The security models and concepts utilized for the SELinux model were studied inorder
to refine the existing problems with properly applying SELinux multi level security on
a given linux system.

To narrow down the problems with current SELinux implementations, communication
happened with various researchers of SELinux in the National Security Agency and
Redhat using various mailing lists.

The practical implementation of running SELinux with various models such as running
only with Type enforcement, Multi Category Security and Multi Level security was
tested against various scenarios of test bed implementations on locally set upped
environments.

To understand how SELinux policy enforcement works, common network service
stacks such as running apache coupled together with mysql was chosen to run against
SELinux type enforcement environments and SELinux MLS enabled environments

Analysis of information flow between the subjects and the objects of apache and mysql
were studied using various SELinux policy analysis tools.

A labelling structure for the network services intending to be run on the linux system
was developed to determine the appropriate security levels for the respective services.

A generic rule procedure is presented so that the procedure can be followed depending
on the information flows required between the network services.

The determined security labels were then applied against two network services in an
SELinux MLS enabled environment two testbeds.

Functionality tests were done against the testbeds which runs the network services by
verifying information flows using an application installed in the respective testbed
environments.

5

1.7. Organization of the Thesis

Chapter 2 covers various access control models, comparison of security models, goals
of information security, how the mandatory access control model is ported into the
Linux kernel,fundamental concepts of SELinux policy and flask architecture, SELinux
MAC model, SELinux policy language using macros, SELinux type enforcement,
SELinux MLS approach,the challenges encountered due to the complexity of SELinux
with proposed solutions and a comparison of SELinux policy analysis tools.

Chapter 3 covers how the security lattice-based approach & the customized Bell-
Lapadula security model to study information flow could be utilized to run two
network services thereby to determine and overcome the ambiguity of security levels
of the lattice depending on how information should flow and modified between the 2
services. The SELinux security server precedence of logic on how type enforcement,
constraints ans how these constraints can be bypassed to override the bell lapadula
security model is discussed. A program needs to be designed such that it can determine
the security levels of the 2 services considering the information flows which needs to
occur using the Lattice based information flow approach. A table of various
combinations of access rights required for the 2 services are put up to build up the
logic of the script.Finally a table has been included which is a generic rule procedure
to be chosen by the the Security Administrator inorder to assign the appropriate labels
to secure the information flow in the security lattice considering the combination of
type enforcement, constraint rules and to restrict bypassing the bell lapadula security
policy using the output of the script.

Chapter 4 Two identical testbed environments SELinux MLS enabled environment is
set upped so that the 2 selected services will run on the security levels determined by
the python script.The script is interactive and prompts the Security Administrator on
various information flows which could occur between the two services and finally the
script will produce an inequality of the sensitivity levels which should be assigned on
the two services intended to run on the SELinux MLS enabled system. Apache and
mysql was chosen for the two network services which is installed in the respective
testbeds. The two testbeds are to be utilized for two chosen scenarios as indicated in
the generic rule procedure discussed in Chapter 3.

Chapter 5 An analysis is done on the respective testbeds using a state diagram & to
demonstrate on how information flow is allowed and denied between the two sendees
based on the generic rule procedure discussed in Chapter 3 for the two scenarios.
Wordpress application is installed in the respective testbeds to demonstrate how
information flow restrictions affects the operationability of the wordpress application.

Chapter 6 Concludes the thesis by discussing on how the generic rule procedure can
be followed and used to restrict any unrequired information flow in addition to the
mandatory access controls already enforced by the existing SELinux policies.

6

2. LITERATURE REVIEW

2.1. Overview

To understand the notion of security for information systems, access control
mechanisms and real-world application of security models was reviewed along with
their intentions and weaknesses with comparison. Goals of information security
include mainly preserving confidentiality and integrity of data & information. For a
Linux system this is achieved using Linux Security Module (LSM) ported into the
Linux kernel to name it as Security Enhanced Linux (SELinux) thus forming a Trusted
Computing Base (TCB) [3]. SELinux supports mainly two kinds of Policies (Targeted
and MLS) [10], the complex model of SELinux policies [1] make it difficult to
understand the information flow within a Linux system. Thus analyzing &
understanding the information flow within a Linux system starting from the booting
phase & how the system interacts with network services is the main goal to achieve a
custom secure robust set of SELinux policies to minimize modem attack vectors and
to prevent information leak through vulnerable or any compromised network service(s)
[11].

2.2. Access Control mechanisms and Security Models

2.2.1. DACandMAC

Access control is typically defined in one of two ways, either discretionary or
mandatory access control. First, discretionary access control (DAC) is user-based.
DAC gives ownership to the objects in the system. The owners of objects can in turn
give access to others to use these objects. This model allows the most flexibility but is
the most hectic to maintain [7]. In the second hand, in mandatory access control
(MAC), objects are given a classification level and each user in the system is mapped
with a clearance level. The users are then allowed to view objects based on their
mapped clearance level [7].

7

MAC vs DAC

There is a fundamental difference between DAC and MAC which are:

1. Unrestricted DAC allows information from an object which can be read to any
other object which can be written by a subject.

2. The need for additional low-level security (Kernel Level) such as the Role of
the User, trustworthiness of a program, and the function of the program or the
sensitivity and Integrity of the data [9] is not addressed by DAC.

3. User identity & ownership of files is the basis of Discretionary Access Control
(DAC) & whereas Mandatory Access Control (MAC) is a necessary control
which facilitates strong separation of applications that permits the safe
execution of untrustworthy applications [9].

4. Denies full access and control to users even if they created the objects (Where
as in DAC this is not the case).

5. The system security policy set by the Security Administrator determines the
access writes granted.

6. MAC requires all those who create, access and maintain information to follow
rules set by administrator [12].

7. Protection against malicious code is impossible using DAC since the DAC
mechanism is such that every program executed by that user inherits all of the
privileges associated with that user [9] as shown in Figure 2.1.

ACL
Principle A

A: rexecutes File FFile F A: w

Program Goodies
B: rB: r FileGFile G A: wA: w Trojan Horse

Principle B can read contents of file F copied to file GPrinciple B cannot read file F

Figure 2.1 Trojan horse Example

8

*

2.2.2. Multi Level Security

Security goal of MLS is confidentiality where it intends to protect secrets from leaking
between different subjects.

MLS facilitates the capability of a computer system to carry information with different
levels of sensitivities, permit simultaneous access by users with different levels of
security clearances as described in Figure 2.2. Thus, to prevent any user from obtaining
access to information for which they lack authorization or has no permissions.

Figure 2.2 Multi Level Security (MLS)

2.2.3. Security Models

Security models define the basis for creating a security policy where each policy is
intending to fulfill goals as per requirements. Many different security models have
been created to address different security concerns as the security requirement of
organizations could differ according to the nature of the data and the users interacting
with the information. The goal of all security models is to define the authorized and
unauthorized states of a system and to restrict the system to moving into an
unauthorized state. The models can be either based on mandatory or discretionary
access control where security could be enforced through a software independent
conceptual model. Security models have been developed based on the type of system
that they will be used on such as to provide security for operating systems [13].

9

l

2.2.4. Bell Lapadula Model

A military style model which does not allow leakage of information to those who are
not allowed to access this information unless explicitly specified [7]. This model
addresses on information confidentiality and ensures that a computer can securely
process classified information which has the following characteristics:

1. Basically, information should NOT flow downwards.
2. The model however deals with confidentiality and not Integrity of information.
3. A computer system is modeled as a state transition system, in each state, each

subject is given a level (clearance), and each object is given a level (security
class).
Eg: Security Levels/ classifications: Top secret, secret, confidential,
unclassified.

4. Top secret > secret > confidential > unclassified [7].
5. The model is based on the simple security property and the star property [7].

Simple Security Property

A subject can read an object if the object’s classification is: subject’s clearance level -
NO READ UP [7].

Star Property

A subject can write to an object if the subject’s clearance level is: object’s
classification level - NO WRITE DOWN [7]. As shown in Figure 2.3, a low-level
subject can write to an object with a higher classified level, therefore BLP strictly
focuses on confidentiality and not on Integrity of data [7].

10

Write OnlyFile A
Label: Top secret

Read/WriteFile B
Label: Secret

Process
Label: Secret

Read OnlyFileC
Label: Confidential

Read OnlyFile D
Label: Unclassified

Process can read the same or lower security levels but
can only write to their own or higher levels.

Figure 2.3 Available data flows using an MLS system

BLP and BIBA comparison

BLP and Biba are fundamentally equivalent and interchangeable [14] but however
there is a significant amount of differences between these 2 models which are:

1. Lattice-based access control is a mechanism for enforcing one-way
information flow, which can be applied to confidentiality or integrity goals
[24].
BLP formulation with high confidentiality is at the top of the lattice, and high
integrity at the bottom [24].
Information flow in the Biba model is from top to bottom & whereas in BLP
model it’s from bottom to top.
Since top and bottom are relative terms, the two models are fundamentally
equivalent as indicated in Figure 2.4.

2.

3.

4.

A

11

(LS) Low Secrecy(HS) High Secrecy

(HS) High Secrecy(LS) Low Secrecy

EQUIVALENT BLP LATTICEBIBA LATTICE

Figure 2.4 Equivalance of BLP and BIBA

2.2.5. Problems with Security Models

Even when a security model proves that a system is secure, the system may be
vulnerable. The human element and social engineering have allowed even the most
secure systems to be compromised. Also, security mechanisms that are at one time
thought to be secure in the future can be found to be insecure.

1. Security models have theoretical limits and it is impossible to always prove
that a model satisfies certain security conditions.

2. Security models based on strict mathematical properties can lead to systems
that are totally unusable.

3. Building systems from rigorous mathematical security models is extremely
time consuming and costly and majority of commercial systems will not be
based on formal models.

4. Security models and formal methods do not establish security.
5. In other words, systems are hacked outside the model’s assumptions.
6. Provable security, even if it were achievable, is not a panacea [13].

12

2.3. Security Objectives (Confidentiality and Integrity)

Information security has three separate but interrelated objectives [14].

1. Confidentiality (or secrecy). Related to disclosure of information.
2. Integrity, related to modification of information.
3. Availability, related to denial of access to information.

For example, confidentiality is concerned with preventing an employee from finding
out the boss’s salary; integrity, with preventing an employee from changing his or her
own salary; and availability, with ensuring that paychecks are printed on time [14].

Bell and LaPadula developed lattice-based access control models to deal with
information flow in computer systems.

Information flow is clearly central to confidentiality and also applies to integrity to
some extent. But its relationship to availability is tenuous at best. Hence, these models
are primarily concerned with confidentiality and can deal with some aspects of
integrity.

2.4. Lattice Based Access Control

Lattice-based access control models were developed in the early 1970s to deal with
the confidentiality of military information. In the late 1970s and early 1980s,
researchers applied these models to certain integrity concerns [14]. Later, application
of the models to the Chinese wall policy, a confidentiality policy unique to the
commercial sector, was demonstrated. A balanced perspective on lattice-based access
control models is provided. Information flow policies, the military lattice, access
control models, the Bell-LaPadula model, the Biba model and duality, and the Chinese
wall lattice are reviewed.

2.4.1. Orders and Lattice

A lattice can be mathematically defined as a:

1. partial order of a set: binary relation that is,
a. transitive: a > b and b > c then a > c
b. reflexive: a > a
c. anti-symmetric/acyclic: a > b and b > a then a = b

2. Total order: like a chain (either a > b or b > a).
3. Lattice: every subset has a least upper bound (LUB), and a greatest lower

bound (GLB).

13

2.5. A Security Lattice for MLS

A Security Lattice can represent Multi Level Security represented in the form of MLS
labels as shown in Figure 2.5.

1. The security lattice is a graphical representation of the dominance relationship
between all labels in the system.

2. For this example, the system has four sensitivity/clearance labels in this order
of sensitivity TS > S > C > U and 2 compartments (A and B).

3. If a path exists from one node to a second node then the label associated with
the first node strictly dominates the label associated with the second node.

4. Information is permitted to flow from the first node to the second node.
5. Labels towards the top of the diagram have a higher sensitivity/clearance.
6. Labels towards the right side of the diagram have more categories (need to

know).
7. The special label TS: AB is referred to as System High because it dominates all

other labels in the system and information may flow to it from any label in the
system.

8. The label U is referred to as System Low because it is dominated by all labels
in the system and information may flow from it to any other label on the
system.

Figure 2.6 MLS Security' Lattice

15

2.5.1. Information flow in a lattice with Multi Level Security

As shown in Figure 2.6 below, there are 4 running processes in a system:

The lowest one (1st process) is labelled as 's'.
It is at the bottom of the lattice, so it can be read, but not written by processes
in other parts of the lattice.
The 2nd process is assigned the label SO.
The 3rd process is assigned the label SI.
The 4th process is labelled as 'SIO' which is used to store data that cannot be
read by any other processes in other parts of the lattice (although they can wiite

1.
2.

3.
4.
5.

it).
6. Since there is no relationship between SI and SO, no information can flow

between them.

This is a problem, because if we need the 2nd process to communicate with 3rd process
in both ways, then we need to get data from 2nd process to 3rd process and back again
in a controlled, secure fashion. The information flows permitted by the lattice are too
restrictive to build a useful system.

To address this problem several privileges are introduced that a process can possess to
allow it to override the information flows permitted by the lattice security model. To
relay information across the lattice, privileged processes are used. These privileged
processes are called Trusted Processes.

Information

Figure 2.7 The security lattice in Virtualvault

16

2.6. SELinux Overview

2.6.1. Introduction

SELinux policy has several MAC mechanisms such as Type Enforcement which can
together couple with MLS Policy. SELinux is based on the new security architecture
Flask, based on flexible type of enforcement mechanism [15].

The primary advantage of this mechanism in comparison to traditional Linux security
is the advantages over the DAC model. Let’s consider a Linux process and a file where
each process has a real and effective user and group IDs. Access to these attributes is
controlled by the kernel and set by login process and setuid program [16]. Files are
associated with inodes, containing information about access mode bits and file user
and group IDs. This information includes three bits, defining read, write and execute
operations for file owner, group and all others. These bits are then used to decide what
users and groups may or may not access this file. Access controls enforced by SELinux
present conceptual difference. Access control attributes are determined by special
construction, called security contexts. For example, when a process attempts to access
the file, traditional Linux DAC controls user/group of the process, the file’s access
mode and user/group IDs and, finally, makes decision, based on these data. Access
control in SELinux doesn’t exclude all these checks, but only continues this procedure
by checking security contexts that can be defined for both the process and the file. So
therefore, SELinux access control decisions are based upon types which is called Type
Enforcement. The following Table 2.1 is a summary of access controls in traditional
Linux and SELinux.

Adds from SELinuxStandard Linux

Real and effective user and
group IDs

Process security
attributes

Security context

Object security
attributes

Access modes and file’s user
and group IDs Security context

Process user/group ID and
file’s access modes, based on
file’s user/group ID

Permission allowed between
process type and file type

Basis for access
control

Table 2.1 Comparison of Access Control in Standard Linux and SELinux

Therefore, we can make a conclusion that SELinux only presents additional means to
build flexible access controls, but doesn’t cancel standard controls, enforced by DAC.
For example, if SELinux allows a process to read a file, but in DAC this access mode
is denied, then a process would not be able to read that file and vice versa. Using

17

SELinux, we have ability to define various objects, permissions, and rules that result
in one complex system, called security policy.

2.6.2. Subjects and Objects

SELinux has two distinct two frequently used words: Subjects and Objects. Subject is
an entity, initializing an action. As an action, we consider some kind of performed
operation. Typically, subjects perform some operations on objects, or even on other
subjects. Subjects are the actors in computer systems. Initial think is that users would
be the subjects, however, processes are the true actors [17].

Subjects
Request Access

Security ServerObject Manager Access Vector
Cache

If answer not
in cache, ask

security
server

Makes decisions
based on the security

policy.

Query
permissions

Knows what objects it
manages, so queries
if the action is allowed
and then enforces the

security policy
decision.

Stores decisions
made by the Security

Server.
Add answer

to Cache
Security PolicyAnswer

from Cache

Figure 2.8 High Level SELinux Components

Objects are system resources such as files, sockets, links, database objects, devices etc.
Similar objects are grouped to an object class. In some cases, processes could appear
as objects when other processes perform some operations on them. Main SElinux
components as shown in Figure 2.8 above can be defined as follows [18]:

1. An action is performed on an object and is initiated by a subject (e.g. a process
reads a file).

2. An Object Manager is aware of the required actions (e.g. read) and the objects
involved (E.g. file) and is able to enforce those actions.

3. A Security Server makes decisions, based on subject rights and security policy
rules.

4. A Security Policy is enforced with the rules, using the SELinux policy
language.

5. An Access Vector Cache (AVC) improves system performance by caching
security server decisions.

18

UBRARY
uwiVERS'TY OF MORATUWA, SRtUW*

WO&ATUWA

In short, each action in SELinux is identified by subject, object and the performed
operation. Security server checks whether a given request/response is in access vector
cache, and if not, then consults access rules, defined in security policy logic [15].
Finally, it makes decision and stores a new entry to A VC.

2.6.3. Flask Architecture

Flask was developed to overcome problems with the MAC architecture as traditional
MAC is closely integrated with the multi-level security (MLS) model. Access
decisions in MLS are based on clearances for subjects and classifications for objects,
with the objective of no read-up, no write-down as this provides a very static lattice
that allows the system to decide by a subject's security clearance level which objects
can be read and written to as MLS architecture totally focuses only on confidentiality
[19]. Flask is flexible in labeling for transition and access decisions instead of being
tied to a rigidly defined lattice of relationships [9], Flask can define other labels such
as user identity (UID), roles, type attributes, MLS levels, and so forth [19].

Access decision computations can be made using multiple methods in the same
decision. These methods could be lattice models, static matrix lookups, historical
decisions, environmental decisions, or policy logic obtained in real time. These
computations are all handled by the policy engine and cached, leaving the policy
enforcement code available to handle requests [19].

The flexibility of flask architecture as shown in Figure 2.9 provides where any of
these subsystems can be swapped out for a new or different system without the other
systems being aware of the changes done on the other components [19].

TH 4243
■

Subject
AWciKfl

Proc*« Object
Devne

conl«««a) contnUb)

conlext(a. b)

Subject Policy
enforcement

server

in

security ServerAVC
J

v«, MO

© Binary Policy
matrixavc: denied

Figure 2.9 Flask Architecture

In Figure 2.8 based on operation occuring in the flask architecture, standard DAC
permission already has passed [19]. The operation can be reading from or writing to a
file/device, transitioning a process from one type to another type, opening a socket for
an operation, delivering a signal call, and so forth.

1. A subject, which is a process, attempts to perform an operation on an object,
such as a file, device, process, or socket.

2. The policy enforcement server gathers the security context from the subject
and object and sends the pair of labels to the security server, which is
responsible for policy decision making.

3. The policy server first checks the AVC and returns a decision to the
enforcement server.

4. If the AVC does not have a policy decision cached, it turns to the security
server, which uses the binary policy that is loaded into the kernel during
initialization. The AVC caches the decision, and returns the decision to the
enforcement server, that is, the kernel.

5. If the policy permits the subject to perform the desired operation on the object,
the operation is allowed to proceed.

6. If the policy does not permit the subject to perform the desired operation, the
action is denied and written to /var/log/audit/audit.log file [19].

7. With the security server handling the policy decision making, the enforcement
server handles the rest of the tasks. In this role, you can think of the
enforcement code as being an object manager. Object management includes
labeling objects with a security context, managing object labels in memory,
and managing client and server labeling [9].

20

1

2.6.4. Type Enforcement Mechanism

Type Enforcement is a core mechanism of SELinux, based on types and domains.
Every object is associated with a type and every process with a corresponding domain
(i.e. type of a process). Access to an object is then mapped to the problem whether a
subject with a given domain may access an object with a type. Types and domains are
basic building blocks of SELinux policy language rules. Having defined these rules,
every subject may only perform operations, explicitly specified in the scope of
associated domain. In Type Enforcement, as in all SELinux MAC mechanisms, the
key concept is the principle of least privileges. Only actions, allowed by the policy can
be performed, all others denied.

2.6.5. Security Context

SELinux uses security contexts that can be assigned for all subjects and objects in a
system. It is defined as SELinux user, role, type and an optional security level as:

user:role:type[:level]
Roles are used to have access to one or more types. User represents SELinux user
identity and can be associated to one or more roles. An optional field is a level and can
be only present if the policy supports MLS or Multi-Category Security (MCS).

2.6.6. Types and Attributes

SELinux already has defined types but we may declare own types and assign them
some set of permissions. An attribute is an efficient way to group types with similar
features [16]. Every type may have one or more attributes and each attribute can be
associated with one or more types. By assigning some attribute to the type, we grant it
with all privileges that an attribute has. Before using an attribute, it should be declared
first. The following rules declare the attribute file_type and assign it to the type etc_t
taken from the SELinux reference policy [20].

[root@ishara-msc-research refpolicy]# cat
../refpolicy/policy/modules/kernel/files.te
Attribute declaration:
attribute httpd_server_domains;
Type declaration:
type httpd_t;
Association with typeattribute statement:
typeattribute httpd_t httpd_server_domainj

21

■

2.6.7. Access Vector Rules

The AV rules determine what is allowed for processes to perform. The common syntax
of these rules is the following [16]:

rule_name source_type target_type : class perm_set;

In the following example process with the domain httpdjt is allowed to read and create
files with the type httpd sys content t:

#Taken from SELinux refpolicy
[root@ishara-msc-research refpolicy]# cat
../refpolicy/policy/modules/contrib/apache.te
allow httpd_t httpd_sys_content_t: file { read create };

2.6.8. Domain Transition

Every process inherits the domain of its parent process which implies if a process
running in staff J domain spawns a child process it will operate in the same domain
[1]. For example, as shown in Figure 2.10, it would not secure if some untrusted
program has access to the file /etc/shadow. Therefore, trusted program should be
executed in the corresponding domain (e.g. passwdt) and the only ability to access
shadow file would result in getting access to this domain.

execve(7bin/passwd') ■

C J/bin/passwd
passwd_exec_t

3—®®~C/etc/shadow
shadow _t

Figure 2.10 Domain Transition

22

1:

The following rule allows process with staff_t domain to run in passwd_t domain after
executing passwd program, having passwd_exec_t domain:

type_transition staff_t passwd_exec_t : process passwd_t ;

After loading this rule, the process will no be able to access file /etc/shadow directly,
however domain transition makes it possible (see Figure 2.2).

2.6.9. Constraints

The purpose of Constraints is to provide additional restrictions for AV rules. Let us
assume, the following rule:

allow staff_t passwd_t: process transition;

This simple rule gives a permission to the domain staff_t to transition to the domain
passwd_t without checking any conditions. But below statement shows transition is
only allowed if the source (i.e. process) role (rl) is equal to the target (i.e object) role
(r2). If this condition is not satisfied, then transition is denied for all processes [33].

constrain process transition (rl == r2)

Role Based Access Control

A number of domains can be associated with a single role [1]. A process may only
transition to the domains, defined in the scope of a given role [1]. The Figure 2.11
shown indicates that a domain transition is possible from domain4 to domain5, but if
the process has the role user r the transition cannot be done. In opposite, processes,
having the role sysadm_r may transition from domain 1 to any other domain.

Figure 2.11 Conceptual Diagram of RBAC

23

ii

Role Statements

Roles can be associated with corresponding types. Such association allows roles and
types to coexist in the same security context [16]:

role user_r types { user_t staff_t };

This rule associates role user_r with two types; user_t and staff_t.

Below shows an allow rule for role transition [16]:

allow sysadm_r secadm_r;

The above rule allows a process with the role sysadm_r to "switch" to the role
secadm_r. This rule specifies a default role change after executing some program. Let
us consider the following rule:

role_transition sysadm_r passwd_exec_t secadm_rj

It changes the role sysadm r of the process to the role secadm_r after executing a file
with the type passwd_exec_t. This kind of rules are also often used to change the role
of system daemons, where interaction with user is not required.

Users and Roles

SELinux users and Linux users are considered as two different identities. The idea of
such approach was to make SELinux user, independent from its Linux representation
[16]. Therefore, changes for Linux user do not affect SELinux user

For example, to check all available associations between SELinux users and roles one
can use the following command:

oolt'islicir >1 -r*»(■ itrsf.n i h rt'fi'tl U/]£ ; l

I Ji-i I in<|
Pfl I v

Ml v'
MC • U v \

ML S '
MC ‘j I'.ulKl f:

M) -.0 < (i (l(
S y «* I •' f * < i .

iF l i mi/ li
■ I I

y -.1 . t
• iI'•V

. tl.,ll M

til.i
i‘'V

Figure 2. 2.1 List of SELinux Users

24

In MLS policy we may also specify MLS level or range. The previous rule then can
have transformed to the following:

user admin_u roles { sysadm_r secadm_r } level s0 range s0-
sl5:c0.C1023;

The same can be done using semanage:

semanage user -a -R sysadm_r secadm_r -r s0-sl5:c0.cl023 -s admin_u

Mapping between Linux and SELinux Users

A Linux user can be mapped to exactly one SELinux user. The easiest way to do it is
to use semanage. The following command defines a mapping between SELinux user
4admin_u* and Linux user ‘ishara’:

semanage login -a -s admin_u ishara

Audit Logs

Writing and configuration of SELinux policy would be quite difficult without logs.
They help system administrator to fix different problems and analyze access denials.
Two main types of audit events can be classified as follows [18]:

1. SELimix-aware application events - System errors, change of boolean states,
setting of enforcing/permissive mode, relabeling [9] etc. All these events are
logged by the SELinux kernel services and SELinuxaware applications.

2. A VC (Access Vector Cache) audit events - Access denials, generated by A VC
system.

Both types of event messages can be stored in two places: /var/log/niessages and
/var/log/audit/audit.log.

ausearch -m avc -ts 13:20
type=AVC msg=audit(1343992881.544:1053): avc: denied {read}
for pid=1640 comm=,,httpd" name="index.html" dev=dm-l
ino=264900 scontext=systemjj:system_r:httpd_t:s0
tcontext=system_u:object_r:httpd_sys_content:si tclass-file

The above appeared as a violation of MLS policy when process httpd. having security
context system u:system_r:httpdj:sO was attempting to read a file index.html labeled
as system ji:object r:httpd_syscontent J:sl.

Using program audit2allow, it is possible to transform AVC messages to allow rule,
as follows:

ausearch -m avc -ts 13:20 | audit2allow
httpd_t =============

#!!!! This avc is a constraint violation. You will need to add an
attribute to
either the source or target type to make it work.
#Constrain rule:
allow httpd_t httpd_sys_content_t:file read;

Adding generated rule to the policy, sometimes, solves the problem. But in the case of
global costraint violation this would not help. As it is shown on our example, the actual
reason of access denial was the violation of MLS constraint ("no-read-up" property).
In such cases we can use special attributes, that should be assigned to either the process
or object type.

#:

SELinux Booleans

SELinux can be configured without knowledge of policy writing without reloading the policy
using SELinux booleans feature which takes the values on or off as shown below:

semanage boolean -1
SELinux boolean Description
ftp_home_dir ->off Allow ftp to read and write files in the user
home directories ...

The command above lists booleans, their current value and shows a brief description of each
boolean. The purpose of booleans is to simplify work of users and system administrators in
policy configuration.

Object Labelling

For SELinux policies to correctly work, all its objects must be associated with security
contexts. Every policy installation requires labeling/relabeling of the file system to
assign initial security contexts to objects [9]. After an installation, security contexts
can be changed.

It should be noted that there is a difference in the time of validity of the label, assigned
by the programs. For example, chcon program provides only temporary changes
(rebooting will revert back the labels) and semanage fcontext saves and writes into the
SELinux policy server. For the most object classes SELinux implements the concept
that created object inherits security context of the creating process, containing object
or combination [16]. For example, newly created file obtains a type from the directory

26

containing it, hard-coded role (object_r) and the SELinux user of the creating process.
Processes obtain their contexts in two basic ways: inherit from parent process or
change it using domain/role transition [18].

2.6.10. SELinux Policies

SELinux is configured via policies. Policy is a set of rules that control an access to
objects of the system. All policies can be classified using the following classification
[21]:

1. Based on the source code: Example, Reference or Custom policy
2. Further descriptions of the source code can also lead to sub-classification:

Monolithic, Base Module or Loadable Module
3. Based on functionality: targeted, mis, strict or minimum
4. Based on language statements: Modular, Optional or Conditional

Reference policy is currently the standard SELinux policy source and using the source
of Reference policy, we may install policies with different security goals such as
minimum policy, targeted policy, Strict policy and MLS policy [22].

MLS policy is further development of strict policy, but it enforces Bell-LaPudula
model, using security levels [22].

Every policy works in two modes: permissive and enforcing (or can be fully disabled).
In permissive mode every operation is allowed. Denied operations are immediately
notified in logs. This mode is often used in the policy development process (so called
“debugging” mode). Enforcing mode enables SELinux policy, denying access and
logging actions.

For studing MLS policy, we may install it together with the Reference policy and do a
relabel of the file system as follows.

yum install selinux-policy-mls

After an installation has been completed, it is necessary to turn the policy on in the
configuration file /etc/selinux/config, using an option SELlNUXTYPE=mls. After
that, relabeling of the system must be done [9]. The following command will relabel
the system with new labels after reboot:

touch /.autorelabel && init 6

27

2.6.11. Policy Modules

Policy modules are currently basic components of the Reference policy. Most of type
enforcement rules are implemented within modules. They control behavior of different
applications, services, devices and many other system elements [23].

To create a module, we must define three files: .te, .fc and. if. The common structure
of the .te file may look as the following [23].

policy_module(<module_name>, <module_version>)
gen_require('
crequired types, attributes, object classes ...>

<declarat.ions>

<policy rules>

Using gen_require macro we can specify the necessary selinux components, defined
in other modules. In the file contexts file (.fc) we can specify objects and the default
labels they should have. For example, the following line defines the security context
system_u:object_r:myapp_exec_t:sO for the binary file myapp:

[root(a)ishara-msc-research doc]# cat
/root/refpolicy.wiki/files/refpolicy/doc/example.fc
/usr/sbin/myapp

gen_context(system_u:object_r:myapp_exec_t, s0)

The interface file (if) defines macros that can be used by other modules. For this
purpose, SELinux uses m4 macro language. It simplifies future reusage of the defined
rules. Let us assume the policy module for an application, running in myapp t domain,
having entrypoint domain myapp exec t. The following demonstrates how an
interface that allows other domains to do a domain transition to myapp_/. by executing
a program labeled as myapp execJ [23].

#Taken from SELinux reference policy []
[root@ishara-msc-research doc]# cat
refpolicy.wiki/files/refpolicy/doc/example.if
interface('myapp_domtrans',*

gen_require('
type myapp_t, myapp_exec_t;

*)
domtrans_pattern ($1, my app._exec__t, myapp _t)

')
This interface defines new macro myapp jlorntrarts where $1 represents the parameter
passed to this macro. It calls domtranspattern macro that takes $1 as the first

28

1

parameter and allows it to transition to the specified domain [23] (in our case myapp_t
with the entrypoint myapp_exec_t).

Finally compile and make the module while it checks the syntaxes as well [23].

make -f /usr/share/selinux/devel/Makefile

To load the module into the kernel:

semodule -i <module_name>.pp

To ensure that the policy module is in the kernel we may check the list of loaded
modules.

semodule -1 | grep -i <module-name>

2.6.12. Summary of SELinux Overview

In this chapter we studied how SELinux implements access control by explicit
specifying of rules which creates policies. Most of each policy rules are created from
type enforcement rules. Every object is associated with a security context, represented
with user, role, type and optionally security level. To work with MLS, we may install
base MLS policy, but for deeper analysis we need the Reference policy. Every policy
works in permissive and enforcing mode or can be completely disabled. For debugging
purposes permissive mode is more suitable, while enforcing enables denying access
and can be viewed through selinux audit logs. Custom policies can be loaded into the
security server using existing macros by creating & loading SELinux modules into the
security server.

2.7. SELinux Multi-Level Security

Multilevel Security in SELinux represents a new form of Mandatory Access Control.
It is built upon Type Enforcement but extends it with new features. The Bell-LaPadula
model (BLP) was chosen as the base. This model focuses on data confidentiality [24],
in contrast to Biba model which is oriented on the integrity protection [25]. In terms
of the BLP model all processes have their security level, allowing them to access
objects with the same security level (read and write). Moreover, as shown in Figure
2.13 a process may read objects with lower security level and write to objects with
higher security level, but not the reverse [26]. These concepts are also known as "no
read-up" and "no-write-down" rules.

29

1

Write OnlyFile A
Label: Top secret

Read/ WriteFile B
Label: Secret

Process
Label: Secret

FileC
Label: Confidential

Read Only

Read OnlyFile D
Label: Unclassified

Figure 2.12 Bell Lapadula Model

2.7.1. Security Levels

Security level consists of 16 sensitivities from 50 to 515 and 1024 categories from CO
to 1023. Sensitivities can be also understood as classifications (e.g. Confidential,
Secret, Top Secret, etc.) and categories as compartments (e.g. Finance, Marketing,
Personnel, etc.

In the MLS system, extended security context is represented in the following format:

user:role:type:LowSensitivity[Categories] -
HighSensitivity[Categories]
Security level consists of sensitivity and zero or more categories, but it can be also
represented as a range. Low security level consists of low sensitivity and, optionaly, a
set of categories. It is applied for subjects and objects and is also known as the Current
or Effective security level. The lowest security level in the system is defined as
System Low and doesn’t contain any categories (that is sO). Category set can be defined
in two ways. Using comma, we may list each category as: cO, cl,c2,c3. The same
could be done, using inclusive operator "dot": c0.c3. High security level consists of
high sensitivity and optional set of categories. It is also known as the Clearance. The
highest level SystemHigh consists of the highest sensitivity (e.g. si 5) and all available
categories (e.g.cO. cl023). Security levels are defined using special level statements, as
follows:

level s2:c0.c5

Sensitivities

Sensitivities are hierarchically ordered components of a security level [16]. To define
sensitivities, we may use special sensitivity statements as in the example below where
Confidential is an alias mapped on 'si'.

sensitivity s0;
sensitivity si alias Confidential;
To create hierarchical relations between sensitivities the dominance statements are
used.

The MLS Reference Policy dominance statement defines s0 as the
lowest and sl5 as the highest sensitivity level:
dominance { s0 si s2 s3 s4 s5 s6 s7 s8 s9 sl0 sll sl2 s!3 sl4 sl5 }

Categories

In contrast to sensitivities, we cannot compare categories as they are not hierarchically
related [16]. Their values are defined, using the category statements as follows:

category c0;
category cl alias Finance;

Categories can be used not only in the MLS policy. For example, in the targeted policy
security level is represented with one sensitivity sO and zero or more categories which
is refered to as Multi-Category Security (MCS) which can be used to further constrain
DAC and TE SELinux policies.

Let us look at simple examples of access control, based on MCS. At first, let us define
user with the permission to access three categories cO, cl and c2:

[root@localhost]# cheat -1 - +c0,+cl,+c2 admin
The command above defines this permission for Linux user admin. To check the
categories accessible for this user the following command can be used:

[rootglocalhost]# cheat -L -1 admin
admin: c0,cl,c2

a

31

■

Then, let us create an arbitrary file and label it with the same set of categories:

[root@localhost]# echo 'File labeled with the categories' >
/tmp/file
[root@localhost]# cheat -- +c0,+cl,+c2 file
admin's shell:
[admin@localhost]$ cat /tmp/file
File labeled with the categories

Now user admin may successfully read the file. But removing at least one category
from the user’s security level or adding at least one new category to the file’s level will
deny an access. Let us add a new category to the file and test the results:

[root@localhost]# cheat -- +c3 /tmp/file
admin's shell:
[admin(a)localhost tmp]$ cat /tmp/file
cat: /tmp/file: Permission Denied

As we may see, at this moment permission is denied. It could be explained by the fact,
that a set of categories of an object (in our case it is a file) must be completely
subsumed by a set of categories that a user (user’s process) may access [1]. In our case
it doesn’t hold as the user admin cannot access the category c3.

2.7.2. Security Level Translation

Sensitivities and categories can be given human readable names. The first way is using
aliases in sensitivity and category statements. The other way is using mestrans service.
The configuration file used by this service is typically located in
/etc/selinux/mls/setrans.conf.

To set new translations it is enough to modify this file, as follows:

[root@ishara-fnsc-research refpolicy]# echo "s3=TopSecret" >>
/etc/selinux/mls/setrans.conf
[root@ishara-msc-research refpolicy]# service mestrans restart
[root@ishara-msc-research refpolicy]# cheat -L | grep -i top

TopSecrets3

32

2.7.3. mlsconstrain Statements

The basic logic of the MLS policy is defined by special mlsconstrain statements. They
allow to restrict permissions for object classes, based on security levels of a source
process and a target object. Security level is represented by its low (/I for the source
and 12 for the target) and high value (hi for the source and hi for the target). Formal
syntax of these statements is the following [18]:

mlsconstrain class_set perm_set expression;

Parameter class_set represents one or more object classes (e.g. {file dir lnk_file}).
perm_set defines permission set (e.g. {read gettattr execute}). The main part of the
statements is boolean expression, that can be determined as follows [18] as shown in
Table 2.2.

(expression : expression)
| not expression
| expression and expression
| expression or expression
| ul op u2
| rl role_op r2
j tl op t2
| ul op names
| u2 op names
| rl op names
| r2 op names
| tl op names
| t2 op names
| u3 op names
| r3 op names
| t3 op names

. %\

33

Where:

Symbol Symbolic representation

Source type, role, user, low level, high level11, hi

Target type, role, user, low level, high levelt2,r2,ul, 12, h2

op

oprl == | ! = | eq | dom | domby | incomp

Set member of or equivalent

Set not member of or not equivalent! =

equivalenteq

dom dominates

domby dominated by

incomparableincomp

name | { namejist}names

name list { namejist } | name
Table 2.2 MLS Constraint Table

In general, formal syntax is like SELinux constrain statements [27]. Operators, defined
by oprl can be also used to compare roles. The following mlsconstrain statement
implements a simple "no-read-up" rule:

mlsconstrain file {read getattr execute}
((11 dom 12) or
(tl == mlsfilereadup));

It is applied for the file object class. Permission set is represented by read (file reading),
getattr(getting file’s attributes) and execute(file execution). The first part of the
boolean expression states that low level of the source process must dominate low level
of the target object. In other words, processes may read files only on its Current or
lower security levels. In the second part of expression we defined an exception from
the rule (that is processes, having access to the attribute mlsfilereadup may violate "no-
read-up" rule, whatever security level they have). In similar way, we may define "no-
write-down" rules, but instead of dom operator we should use domby (that is the source
low level must be dominated by the target low level) and list the corresponding
permissions and objects.

34

2.7.4. mlsvalidatetrans statements

This type of statements is only applied for file-related object classes to control the
ability to upgrade/downgrade security level. The formal syntax is like mlsconstrain
statements, but there is a bit difference [27] as shown in Table 2.3.

mlsvalidatetrans class_set expression;

Symbol Symbolic Representation

class set One or more file type object classes

A boolean expression of the constraintexpression

ul,rl,tl,ll,hl Old user, role, type, low level, high level

New user, role, type, low level, high levelu2,r2,t2,12,h2

Process user, role, type, low level, high levelu3,r3,t3,13,h3
Table 2.3 MLSConstraint Conditional Operators

Let us look at the following example to understand how these statements work:

mlsvalidatetrans file

((11 eq 12) or

((t3 == mlsfileupgrade) and (11 domby 12)))

The first part of the boolean expression (11 eq 12) states that file’s security level can be
changed if its current(old) low level is equal to the new file’s low security level. The
second part or ((3 = mlsfileupgrade) and (11 domby 12)) claims: or the process type
must be privileged with the mlsfileupgrade attribute and file’s current low security
level must be dominated by new file’s low security level. It was an example of file’s
upgrading. In similar way we can also define an expression for file downgrading. In
this case it is enough to change only the second part of the expression: or ((3 =
mlsfiledowngrade) and (11 dom 12))

35

2.7.5. Privilege Management

MLS policy provides a flexible mechanism of privilege management, based on special
type attributes. These attributes can be used to obtain access privileges for different
objects. For example, the attribute mlsfileread can read files at all levels. To obtain
privileges of this attribute it is enough to define the following rule:

typeattribute mytype_t mlsfileread;

The same could be done by using the macro:

mls_file_read_all_levels(mytype_t)

All attribute names and interface calls start with "mis" [20]. Table 2.4 presents some
important MLS attributes with their descriptions:

Attribute Description

mlsfileread Grant MLS read access to files not dominated by the
process Effective SL

mlsfilereadtoclr Grant MLS read access to files dominated by the process
Clearance SL

Grant MLS write access to files not equal to the Effectivemisfile write
SL

Grant MLS read access to packets not dominated by the
process Effective SL

mlsnetread

Grant MLS write access to IPC objects not equal to the
process Effective SL

mlsipcwrite

Grant MLS read access to processes not dominated by
the process Effective SL

mlsprocread

Grant MLS read/write access to objects which internally
arbitrate MLS

mlstrustedobject

Table 2.4 SELlnux Attributes

The mechanism of using attibutes is an ellegant approach because it allows us to
implement different MLS information flows without global policy overrides [28]. All
limitations, defined by mlsconstrain and mlsvalidatetrans statements specify these
attributes and the way, they can be used, to bypass those limits.

2.7.6. Complexity of SELinux policies

SELinux policies are developed and maintained by security administrators, they often
become quite complex, and it is important to carefully analyze them in order to have
high assurance of their correctness. There are many existing analysis tools for
modeling and analyzing SELinux policies with the goal of answering specific safety
and functionality questions. The policies typically are comprised of thousands of
policy statements; this makes policy development and analysis very difficult. Even
when a policy is considered both safe and functional, each addition, deletion or
modification of the policy has the potential to break the baseline the complexity of the
SELinux policy language makes analyzing SELinux policies and even implementing
policies very difficult

Information flow is about the reachability of a resource from another resource where
some information is transferred by performing an operation. For example, there is an
information flow between a subject 51 to a subject 52 if 51 can perform a write
operation on some objects on which 52 can perform a read operation.

2.7.7. SELinux policy analysis tools

There are number of tools written in different higher-level languages intending to
analyze SELinux policies of various SELinux security models. These tools have
various capabilities to perform information flow analysis based on type enforcement,
some tools have the capability to deduce whether a TCB is integrity protected. Some
common tools are APOL [29], GOKYO [30] and SEEDIT [31].

Refer to Appendix A for a comprehensive list of comparison of SELinux policy
analysis tools.

2.7.8. Problems with SELinux analysis tools

SELinux policy language itself complicates both the implementation of policies as
well as the ability to analyze them. As a result, many tools are complex, and it is
difficult to establish the correctness of the analyses they perform. One problem with
these tools is that they do not use the same criteria in support of each other; moreover,
as mentioned, analysis tools try to provide some other intermediate language for
SELinux security administrators. Although these extra facilities can help with writing
various queries, they require equally complex semantics. Furthermore, existing
SELinux analysis tools barely scratch the surface and only offer the possibility of
doing simple queries.

37

2.7.9. SELinux Challenges and Proposed Solution

The SELinux policy language doesn’t have formal semantics. Its semantics is given in
terms of a natural language description. Expressing the semantics of an access control
policy language in a natural language (e.g. English) results in ambiguity in the
specification of behavior of policy statements. Consider the last three lines of Figure
2.14 which protects the entrypoint access [24] of the app_t domain. Removing any one
of these rules will break the intended protection because for a domain transition to
occur, all three rules are required. The first rule provides execution permission for the
domain sysadm_t on the file with the type app exec t; the second rule provides an
entrypoint for the domain app_t; the third rule provides a type transition to the new
type app t from the current type sysadm_t. The fact that SELinux rules are so fine
grained adds to the complexity of SELinux. Both writing and analyzing policies are
difficult tasks. It is hard for administrators to express the desired protection using such
a low-level language.

require {
attribute domain;
attribute filejtype;
attribute exec_type;
type sysadm_t;
attribute sysadm_r;
class process transition;
role sysadm_r;

Adding types and attributes
that are required by the rules

}

type app_t; >>
typeattribute app_t domain;
type app_exec_t;
typeattribute app_exec_t file_type;
typeattribute app_exec_t exec_type;

Declaring new types and
classify them by attribute

Assigning roles to types}role sysadm_r types app_t;
type_transition sysadm_t
app_exec_t : process app_t;
allow sysadm_t app_exec_t : file (getatr execute);
allow app_t app_exec_t : file entrypoint;
allow sysadm_t app_t : process transition;

Defining default
transition and its
required access

Figure 2.13 App Program Security Policy Rules in SELinux

38

3. METHODOLOGY

The research methodology will utilize the concepts of lattice-based access control as
indicated in Sections 2.4 and 2.5 on information flow policies for an MLS based
environment. The security policies in SELinux MLS is based on a customized version
of the Bell Lapadula model as explained in Section 2.6.10 which is already made
available in the SELinux security server, i.e: SELinux security server enforces a
customized version of the Bell-Lapadula model (No read up, no write down and writes
can the same sensitivity level).

Two widely used common network services which runs on linux environments is to
be chosen to run on an SELinux MLS environment. The security labels such as the
types for the subjects are chosen upon based on the SELinux policy mlsconstraints
statements to satisfy the no-readup and no-writedown (and write-equal property) on
the corresponding subjects as explained in Section 2.7.3.

The security levels for the two services are determined in the form of an inequality
using a python script. The python script deduces the security levels depending on the
need of information flow in the security lattice for the subjects in order to satisfy the
simple property and the customized *-property.

Once these security levels are determined, the security administrator has the option to
assign these security levels for the subjects and the objects associated with the two
services in the form of SELinux modules as shown in Section 2.6.11 which could be
loaded into the current SELinux policy server.

3.1.Lattice labels for SELinux

The SELinux security server has a set of sensitivities and categories loaded into the
security server which can be applied over any subject and object in a SELinux MLS
environment, the possible security labels which could be labelled on any subject or
object can be deduced using the following methodology:

Let SVC 1 and SVC2 be the two services which are intending to run on the SELinux
MLS enabled environment

Let’s assume that SVC 1 and SVC2 are run with labels which are composed of both
sensitivity levels and category levels which denotes the following:

LI and L2 be the sensitivity levels and, Cl and C2 be the categories for Services 5YC1
and SVC2 respectively which is composed of the following categories:

Cl =X,Y and C2 = P,Q

39

From Section 2.4.2, the partial order on security classes is called dominates:

(LI, Cl) > (L2,C2)

iff LI > L2

&{P,Q} ^ [X,Y)-------> C2 c Cl

1. The set of Security levels available in a SELinux MLS environment is 16 which
is finite as per the Section 2.7.1.

2. There exist a greatest lower bound and a least upper bound as the categories
available in a SELinux as per Section 2.7.1 is 1024.

Therefore, as per Section 2.4.3, the lattice formed for the information flow between
SVC 1 and SVC2 in the SELinux MLS environment will form a finite lattice.

In a SELinux MLS environment as per Section 2.7.1, ‘5’ denotes for the sensitivity
level and ‘C’ denotes for the category where:

5 = {50,51,52,53,54,55,56,57,58,59,510,511,512,513,514,515}

50 <51 <....... 515

and

C = {CO, Cl, C2, — ,61023)

Elements of 'C is incomparable and are not hierarchically related

Therefore the Least Upper Bound(LUB) and the Greatest Lower Bound (GLB)
for the finite lattice formed for information flow in an SELinux MLS enabled
environment can be deduced as:

LUB ((515, {CO}), (50, {CO. C1023})) = (515, {CO. C1023})

GLB ((515, {CO}), (50, {CO. C1023})) = (50, {CO})

where C0.C1023 = {CO, Cl, C2,...., C1023}

From Section 2.5 we can deduce the dominance relationship between LUB and GLB
as:

515. C1023 > 50. C1023

Where 515. C1023 is referred to as SystemHigh as it dominates all other labels in the
system and information may flow to it from any label in the system. It is on the top
most of the lattice and information flow is allowed from bottom to the top of the lattice.

40

SO is referred to as SystemLow because it is dominated by all labels in the system and
information may flow from it to any other label on the system. It is on the bottom of
the lattice and information flow is allowed from bottom to the top of the lattice

Total number of label combination in a SELinux MLS system would be then:

SO. CO, SO, Cl, SO, C1023

S15.C0.C1023

= 16 * 2A1024

3.2. Example of a dominance relationship

Using the partial order of SELinux labels using Section 2.4.2

i.e : (LI, Cl) > [12, C2)iff LI > L2 and C2 c Cl

(S15, Cl. C5) > (S3, Cl, C3) as the partial order formed on the security lattice
formed on these SELinux labels, as;

S15 > S3 according to ‘dominance’ statement in the SELinux policy

and Cl, C3 C Cl. C5

where Cl. C5 = (Cl, C2, C3, C4, C5)

41

3.3 Bell Lapadula Model review

As per the Section 2.2.4, the model focuses on confidentiality alone, following is an
example of how information flows in the lattice with different sensitivities.

Assuming if we consider the following sensitivities labels.

5 = {SI, 52, S3,54,55}

The simple property (No-Readup) implies that for a given set of subjects running in a
system subjects on “sensitivity Level” 53 can NOT read objects on “Sensitivity level”
54 and 55.

The Star Property implies that subjects on “sensitivity level” 53 can NOT write to 51
and 52 and could write to the same level (53).

However, the Star property also implies that the same subject 53 can write on 54 and
55, which means subjects with less sensitivity are allowed to write on subjects with
higher sensitivity.

This is an integrity preservation issue where information flow may occur from
untrusted information to trusted levels of information according to the Bell Lapadula
model.

Write ReadRead Write

tlizr* t V
| i Confidential
T | \ Restricted

fr Unclassified 1 I

Figure 3.1 Bell-Lapadula Security' Model

42

3.4 SELinux Policy alignment with Bell Lapadula model

Also, as we know using Sections 2.6.10 and 2.7, the SELinux security server
implements and enforces a customized version of Bell-Lapadula model where it does
the following.

1. No Read up.
2. No write down and no write up and allows only ‘equal’ writes which preserves

integrity as well, this is demonstrated as follows.
3. No Write up, hence Integrity as well be preserved.

Read Write Write Read

it
Top Secret
Secret
Confidential
Restricted
Unclassified

Figure 3.2 Modified Bell-Lapadula Model

4. Therefore, subjects would be able to write only to objects on the “SAME
sensitivity level” thus preserving both Confidentiality and Integrity.

5. Therefore, the two services can be in two Sensitivity levels OR the two serv ices
be in the same sensitivity level, but the category levels of the

objects/subjects should be such that they can’t read/write each other.
6. A service can have numerous number of objects and subjects loaded and

running when a service up and running so it is not an easy task to figure out
which objects need to access which object for the above two services because
there are so many possible combinations.

can

3.4.1 SELinux Policies facts in Customized Bell-Lapadula model

E.g.: If 'svcV is assigned on “Sensitivity Level”: 510 and 'svc2' is assigned with
“Sensitivity Level” : 511, then according to the Bell-Lapadula model :

4. Then 511 has a higher sensitivity than 510
5. 511 can read 510 to 511 content
6. 510 can not read 511 content
7. 510 will write exactly the 510 content
8. 511 will write exactly the 511 content (not higher Sensitivities such as 512,

S13, etc)

So as observed and as per the Bell-Lapadula model confidentiality & integrity between
the two services will be preserved as it will not allow untrusted data to flow upwards
in the lattice structure.

3.5 Overriding Bell Lapadula custom policy

The Bell lapadula security model is enforced in the SELinux policy language interms
of‘mlsconstrain'* statements as per Section 2.7.3. There are various mlsconstrain
statements loaded into the SELinux security server which are discussed in Section
3.5.1 amd 3.5.2.

3.5.1 Bell Lapadula Simple property in SELinux mlsconstrain statements

Following lines of mlsconstrain statements implements the Simple property, which is
the no-readup rule in the Bell Lapadula model.

the file "read" ops (note the check is dominance of the low
level)
mlsconstrain { file } { read getattr execute }

((11 dom 12) or
((tl == mlsfilereadtoclr) and (hi dom 12)) or

mlsfileread) or
mlstrustedobject));

(tl
(t2 = =

44

The above multi level security constrain states that:

File read/getattr/execute permission are only allowed if:
1. The process low-level (11) dominates the file low-level (12).

°r
2. The process type (tl) has the mlsfilereadtoclr (read-up-to-clearance)

atttribute and the process high-level (hi) dominates the file low-level (12).
Or

3. The process type (tl) has the mlsfileread (read-up) attribute
Or

4. The file type (t2) has the mlstrustedobject (e.g. /dev/null) attribute.

We can observe the boolean expression is coupled with 'and' & 'or' conditions.

Boolean Rule number 1 indicates the Bell lapadula simple property which is the no-
readup property.

However since this is an ‘or’ condition, we can override and bypass the Bell lapadula
simple property enforced by the SELinux security server and satisfy the conditions
indicated by Boolean Rule number 2,3 or 4.

From Section 2.6.6, an attribute is nothing but a collection of similar types, for
example the attribute ‘mlsfileread’ has the following ‘types’ mapped.

seinfo -amlsfilenead -t | less
Types: 3158

bluetooth_conf_t
cmirrord_exec_t
foghorn_exec_t
jacorb_port_t
sosreport_t
etc runtime_t

Therefore, using Boolean Rule number 3, we can imply that if the process has any of
the above types of all the 3158 types which is mapped to attribute ‘mlsfileread’, then

bypass the simple property (No readup rule) enforced by the SELinux securitywe can
server.

It is in the hands of the Security Administrator to do label the process with this type so
that (Hence we regard this as a trusted object) as this process labelled with ‘tl* will be
able to read all files at all levels on the SELinux MLS enabled system.

45

According to Section 2.7.5, if the Security Administrator wants to bypass simple
property and wants to allow process to read any file level, then it can be done as follows

typeattribute myreadtype_t mlsfileread;

Where fmyreadtype_t'’ is the type of the process and hence once above is assigned,
files of type fmytype_t 9 will be able to read files of all sensitivity levels (As per
Section 3.1,50515. CO. c!023)

3.5.2 Bell Lapadula custom ^-property in SELinux mlsconstrain statements

Similarly, as in Section 3.5.1, the following lines of mlsconstrain statements
implements the custom *-property, which is the no-write down and write-equal rule
(i.e: Hence a customized *-property) to overcome the integrity issues as discussed in
Section 3.3 and 3.4.

the "single Level" file "write" ops
mlsconstrain { file } { write create setattr relabelfrom append
unlink link rename }

((11 eq 12) or
((tl

domby 12)) or
((t2

domby h2)) or
(tl == mlsfilewrite) or
(t2 == mlstrustedobject));

mlsfilewritetoclr) and (hi dom 12) and (11==

mlsfilewriteinrange) and (11 dom 12) and (hi

The above multi level security constrain states that:
File read/getattr/execute permission are only allowed if:

1. The process low-level (11) is equal to the file low-level (12).
Or

2. The process type (tl) has the mlsfilewritetoclr (write-up-to-clearance)
Attribute and the process high-level (hi) dominates the file low-level (12) and
the process low-level (11) is dominated by the file low-level (12).

Or
3. The process type (t2) has the mlsfilewriteinrange attribute and process low-

level (11) dominates file low-level (12) and process high-level (hi) is
dominated by file high-level (h2).

Or
4. The process type (tl) has the miswrite attribute.

Or
5. The file type (t2) has the mlstrustedobject (e.g. /dev/null) attribute.

46

We can observe the boolean expression is coupled with ‘and' and ‘or' conditions.

Boolean Rule number 1 indicates the Bell lapadula customized *-property which is the
no-writedown and write equal property

However, since this is an ‘or’ condition, we can override and bypass the Bell lapadula
custom *-property enforced by the SELinux security server and satisfy the conditions
indicated by Boolean Rule number 2, 3, 4 or 5.

From Section 2.6.6, an attribute is nothing but a collection of similar types, for
example the attribute ‘mlsfilewrite* has the following ‘types* mapped.

seinfo -amlsfilewrite -t | less
Types: 3158

snort_exec_t
audisp_var_run_t
auditd_var_run_t
comsat_var_run_t
dbskkd var run t

So therefore, using Boolean Rule number 4, we can imply that if the process has any
of the above types of all the 3158 types which is mapped to attribute
‘mlsfilewrite*, then we can bypass the custom *-property (No write down and
write equal rule) enforced by the SELinux security server.

It is in the hands of the Security Administrator to do label the process with this type so
that (Hence we regard this as a trusted object) as this process labelled with ‘ tV will be
able to write to all files at all levels on the SELinux MLS enabled system.

According to Section 2.7.5, if the Security Administrator wants to bypass custom *-
property and wants to allow process to write to any file level, then it can be done as
follows.

typeattribute mywritetype_t mlsfilewrite;

Where fmywritetype__t* is the type of the process and hence once above is
assigned, files of type ‘mywritetype_t* will be able to write to files of all sensitivity
levels (As per Section3.1,50 515. CO. cl023)

47

3.6 SELinux policy Type enforcement and MLSConstrain evaluation order

The permission has to first be allowed by a TE allow rule, and then any constraints on
the permission are evaluated and the permission is only allowed if all such constraints
evaluate to true

Eg: Below shows all the ‘allow* rules for the ‘httpd_t* type

sesearch --allow --all -t httpd_log_t
/etc/selinux/mls/policy/policy.24 | grep -i httpd | less

allow httpd_log_t httpd_log_t : filesystem associate ;

allow httpd_suexec_t httpd_log_t : file { ioctl read create
getattr lock append open } ;

allow httpd_php_t httpd_log_t : file { ioctl read getattr
lock append open } ;

allow logwatch_t httpd_log_t : file { ioctl read getattr
lock open } ;

So therefore, if we need to run two services, if there’s any information flow required
between the subjects and the objects of the two respective services, then there should
exist sufficient type enforcement rules inorder for the two services to operate as
intended. So, provided these proper type enforcement rules are in place and then
checks for constrains inorder to allow information flow against the subjects/objects
(process, file, device, filesystem, etc) being interacted in any operation involved
information flow (read/write/append/relabel, etc.)

However if there’s no interaction between the subjects/objects of the two services, then
if such Type enforcement rules allow and then the mlsconstrain statements willeven

allow or disallow the information flow (read/write/append/relabel, etc.)
depending on the MLS levels of the interacted subjects/objects (process, file, device,
filesystem, etc.)

3.7 Security Lattice for SELinux Type Enforcement & SELinux MLS

Flow of information through the lattice in an environment with only Type enforcement
and MLS works in different ways as discussed in Section 3.6.

Below are some examples on how information flows in a lattice for:

An environment with only Type Enforcement (No Multi Level Security)

Assume we’ve a service in a SELinux system where it has the following characteristics
and types:

service is started and executed using init program: init_t
type of executable for the service: service_exec_t
type for the service: service_t
type for logs directory for the service: service_log_t
type for configurations for the service to function:
service conf t

Following is a subset of generic dummy type enforcement rules allowed within the
SELinux security policy for the service to function assuming the following:

• Able to start service using ‘init’
• service is able to read its configuration file
• service is able to write logs to its corresponding directory

For simplicity to indicate the lattice information flow of type enforcement, as SELinux
rules has a massive amount of Type enforcement rules according to Section 2.7.9, all
allow rules are not included.

process execute;service_exec_t :allow init_t
allow service_exec_it service_t : process transition;
allow service_t service_log_t: file dir write append;
allow service_t service_conf_t: file read;

49

service_conf_t service log t

Information Flow allowed

service_exec_t

init_t

Figure 3.3 Lattice information flow for type enforcement rules

As discussed in Section 3.6, since this is not an MLS enabled environment and
therefore all services are labelled with the same sensitivity (sO), therefore only type
enforcement rules are evaluated by the SELinux security server and no mlsconstrains
are evaluated (Simple property and customized *-Property are not evaluated).

An environment with SELinux Type Enforcement + Multi Level Security where:

Information flow between the types for the two services are allowed,
i.e: Type Enforcement rules already are in place

If type enforcement denies, SELinux security server denies the information flow and
it doesn’t reach to the point where mlsconstrain rules are evaluated, (i.e: Customized
Bell Lapadula rules).

In a SELinux MLS enabled system, we know that the MLS dominance statements are
such that: 50 < 51

Below shows a security lattice of information flow where 50 has CO. C3 categories and
51 has CO. Cl categories

50

Figure 3.4 Lattice Information flow for Services running in labels S0.C0.C3 and S1.C0.C1

As per the deductions made in Section 3.1, we can deduce the following on Figure 3.4.

1. There’s no information flow towards 50 from 50. C2 and 50. C3
2. 50. C2 can read information only from 50
3. 50. C3 can read information only from 50
4. No information flow can occur from 51 and 50. C2,50. C3

An environment with special type mapped to an attribute in MLSConstrain
statements

As discussed in Section 3.5, provided if Type enforcement rules permits information
flow between the subjects and the objects and due to the nature of the mlsconstrain
statements boolean checks, it is possible to allow information flow (Read or write
depending on the mlsconstrain) provided the types for the subjects and the objects are
assigned with the attributes allowed in the respective mlsconstrain statements for the
simple property and custom *-property.

In this scenario, irrelevant of the security label assigned on the respective subjects and
the objects, information will be allowed to either read or write, i.e: Bypassing the Bell
lapadula security properties.

As computed in Section 3.1, there are 16 * 2A1024 possible labels as shown in Figure
3.5.

51

any^labels* whichect/°bject labelled '5' shown in Figure 3.5will be able to read or write

50 to 515. C1023
The lattice of information flow in such special case is shown in Figure 3.5.

Figure 3.5 Unrestricted Information Flow by bypassing MLSConstrain rules for Simple and custom *-Property’

3.8 Type Enforcement vs MLSConstrain vs Bypassing MLSConstrains

As discussed in Sections 3.5,3.6 and 3.7, If Type enforcement disallows or there exist
insufficient Type enforcement rules then the SELinux security server doesn't go to the

step of the permission check which is checking on the boolean expressions
specified in MLSConstrain statements.

If there exist sufficient Type enforcement rules, then the SELinux security server goes
to the next step which is checking the Boolean expressions specified in MLSConstrain

statements.
If Type enforcement and if any condition of MLSConstrain passes regardless of
whether it is the simple property verification, custom ^-property verification or the
special attribute verification, then information flow is allowed.

So as per observation, there is a significant difference on how information flow is
allowed or denied depending on how the below combination works as shown in Table

next

3.1.
0' and ‘1'.In the Table 3.1 below on the values

52

0 indicates that the Linux Kernel (Selinux Security Server) disallows it.

1 indicates that the Li Kernel (Selinux Security Server) allows it.nux

Type
Enforcement

Rules

MLSConstrain

(Simple or
Custom *-
Property)

Special attribute
to bypass Simple

or Custom *-
property

Final allow/deny
decision made by
the Linux Kernel

0 0 0 0

0 0 01

0 1 0 0

0 1 01

0 0 0

0 1 1

0 11

1 111

Table 3.1 Permutations of how the final decision is made upon the allowance and denials of Type Enforcement
Rules, MLSConstrain rules and bypassing MLSConstrain Simple property / Custom *-Property' rules

3.9 Program to determine the Security levels for secure execution

To run multiple network services for secure execution in a SELinux MLS enabled
system, the basis is, information flow shouldn’t be allowed between the subjects and
the objects of the respective services unless required. Inorder to make this happen,
proper security labels should be assigned across the objects so that only the required
information will flow through the security lattice for the services to be up & running.

Therefore as per Section 3.5.1 and 3.5.2, since already the SELinux security
enforces the custom Bell lapadula model using MLSConstrain statements on the
subjects and the objects other than few exceptional cases which are attribute based, it
is required to determine the security levels by value or at least in the form of an
inequality of the network services which are intending to run on the SELinux MLS

enabled system.
As discussed in Section 2.4 it is still required to overcome the ambiguity of the security
Cvels in the security lattice by evaluating conditions on how the subjects and the
objects of the services running in the system interacts with each other.

server

: 53 5

For simplicity and deduction purposes, consider the SELinux MLS enabled system
runs two network services. For example, there can be scenarios where the network
services need to allow and share information across its corresponding related subjects
and the objects and therefore the sensitivity levels or the labels in the lattice would
change depending on this.

Thus, there can be several such scenarios and therefore the position of subjects/objects
in the lattice would vary accordingly depending on how the information flow needs to
occur for the two network services to be operational, up and running.

3.9.1 Decision making on determining security labels

Let’s assume we’ve an SELinux MLS enabled System where the System has the
default SELinux security contexts and modification to the security labels are done on
the corresponding subjects and objects, i.e: Therefore, all security contexts obtained
on the services components (i.e: subjects and the objects) will be of default security
levels 'sO'.

Therefore the “Sensitivity Level” of the two services will attain default SELinux
sensitivities.

Eg.: The sensitivity level of ‘svcV will be: 50 and as well as for ‘svc2’ will be: 50

This SELinux MLS enabled system has the python program placed which has the
capability to determine the security levels of the subjects and the objects of the services
which needs to run depending on the requirement of the user (Determined and decided
through input of the user parsed to the program).

The security levels are determined by utilizing the logic of lattice-based information
flow as per the requirements entered by the user prompted by the program, this
program is a python script.

For the purpose of running multiple network services and for simplicity we’ll be
aiming to run the two services on the system.

Let 51 and 52 br two services which runs in the SELinux MLS enabled system.

According to the SELinux Security Model, ie. Customized Bela-Lapadula model,

1 Simple Property: No read up (Read down allowed)
Customized Star Property: No write down and write equal

There can be several combinations of service 51 interacts and operates with service

52 as follows:

• 51 writes 52

2.

54

• 52 writes 51

However, since the SELi MLSconstraint as per Section 3.5.1 allows write only to
equal security levels, then if 51 can write to 2, then 52 imlicity can write to 51.

nux

Let’s denote this operation as 51 w 52 where,

51 = Sensitivity of service 51

52 = Sensitivity of service 52

Similary using the simple property, service 51 and 52 can have the following
combinations:

1. Service 51 needs to read objects of service 52.
a. Let’s denote this as S1RS2.

2. Service 52 need to read the contents of 51.
a. Let’s denote this as S2RS1.

A sensitivity label consists of two components.

L = {S,C}

Where L is the label, 5 is the sensitivity level and C is the category level which is on
optional part of the label "L".

Therefore, when a Security administrator installs, configures and labels the
subject/object of the services 51 and 52, the administrator has the option of assigning
categories to the subject/object.

Therefore, it is required to determine the most secure labels. Ie. Determine the
sensitivity levels and optionally choose categories for the respective service SI and S2
according to the security lattice information flow.

Below is a table of various combinations of such scenarios, the table indicates
mathematically how the sensitivities and categories should be choosen by the system
administrator.

55

Category SI writes to SI read S2 S2 read SI InEquality / Equation
S2

0 0 0 51 | 520

0 0 0 1 51 >52

0 0 1 0 51 <52

0 0 1 1 51 =52

If S1WS2 -> 1; then
51 = 52

(BLP write equal property)
S1RS2 -> 1&52K51 -> 1

••• skipping;

0 1 0 0

// S1WS2 -> 1; then
51 = 52

{BLP write equal property)
51A52 1&52K51 -► 1

••• skipping;

0 0 1

//51W52 1; then
51 =52

(BLP write equaZ property)
51/?52 -► 1&52K51 -> 1

skipping;

010

51 =521110
Cl <> C2
51 | 520001

52 >51
Cl c C21001

51 > 52
C2 c Cl010

51 =52
Cl Q C2 or C2 c Cl1101

IfSlWS2 -> 1; then
51 =52

{BLP write equal property)
S1RS2 -> 1&S2RS1 -> 1

skipping:

00

56

// S1WS2 -> 1; then
51 =52

(BLP write equal property)
S1RS2 -> 1&52A51 -* 1

skipping;

1 0 1

If S1WS2 -> 1; then
51 =52

(PLP write equal property)
51P52 -> 1&52K51 -> 1

skipping;

1 1 1 0

LI =L2
Cl c C2 or C2 Q Cl

1 1 1 1

Table 3.2 Inequality Table utilized by the Python script

3.9.2 Program Workflow

The program’s workflow and assumptions will be as follows:

Capability to determine the security levels (Assign sensitivities and categories)
of the subjects and the objects of the services which needs to run depending on
the requirement of the user (Determined and decided through input of the user
parsed to the program).
By default, all sensitivity levels of a SELinux MLS enabled system takes sO
which is the lowest secrecy level.
The user running this program (Shell script) should be aware and have the
knowledge of any subject and object interaction (Read/write operations) which
needs to occur for the two services to function and operate as per expectations.
The user has the ability to provide answers as ‘inputs’ to the program for the
following scenarios of the 2 services.

1.

2.

3.

4.

To understand the flow of information between services 51 and 52, the ambiguity of
the security levels of the respective services can be demonstrated by security lattice
structures.
The flow of information with the lattice can be aligned with the customized Bell
I anadula security model (No read up, No write down and write equality) for various
combinations shown in the Table 3.2{Category. SIWS2, SIRS2, S2RS1).

57

1. 0000 —> 51 | 52

Figure 3.6 0000

2. 0001 —> S2 > SI

Figure 3.7 0001

3. 0010-52 < SI

Figure 3.8 0010

58

4. 0011 —> S2 = 51

51,0 > • 52, {}•

Figure 3.9 0011

5. 0111 ->S2 = 51

si, {} • « 52,{}> •

Figure 3.10 011 1

6. 1000 —* Cl <> C2
-»S1 ^ 52

51, {C} 51, (C, D}

51, {D}
1,(45}

51,0

51, (4 f

51, {5}51,0
Figure 3.11 1000

59

7. 1001 —> S2 > SI
-»Cl c C2

52, {} 52, {B}

51, {B}
51; {}

S2,{A,B}52, {A}

1; {>1, 5}51, [A
Figure 3.12 1001

8. 1010 —S1>S2
— C2 C ci

51, {B, C}

51, {B}51, {C}

51~0
52, {B}

52,{}
52, {A, B}52, {/!}51, {A,

2, {21, B}52, {21

Figure 3.13 1010

60

9. 1011 -> SI = 52
C2 c ci and C2 Q Cl

As per Section 2.4.2,

LI = {51, Cl} and L2 = {52, C2}
LI > L2 iff 51 > 52 and C2 Q Cl or

LI < 12 iff 51 < 52 and Cl Q C2

However,

As 51 = 52 -> LI = L2 C2 = Cl

/. Lattice ->

52, {21, B]

51, {A, B}
52, {21}

51, {21}

51, {£}
52, {B}51,0

52,{}

Figure 3.14 1011

61

10. 1111 ->51 = 52
c2 C Cl and C2 c Cl

As per Section 2.4.2,

LI = {51, Cl) and L2 = (52, C2}
LI > L2 iff 51 > 52 and C2 c Cl or
LI < L2 £// 51 < 52 and Cl c C2

However,

As 51 = 52 -> LI = L2 -> C2 = Cl

Lattice ->

52, {21, 5}

51,{2l,B}
52, {21}

51, {21}

51, {B}
52, (5}51,0

52,{}

Figure 3.15 l111

62

3.10. Assigning the Security labels for secure execution

The program discussed in Section 3.9 will output the security levels which needs to
e assigned for the subjects and the objects in the form of an inequality, and if

applicable any categories.

Network services in linux are started using startup scripts placed in /etc/init.d/
directory. The fiirst process which starts in a linux system with Process ID ‘1’, which
is also referred to as ‘init’ is responsible for starting any services placed in /etc/init.d
directory provided they’re enabled to start at system bootup.

However, there is a default security context assigned by the ‘init’ program when
starting such services, the security context is hardcoded in the following file.

[root@msc-research-ishara-systeml /]# cat
/etc/selinux/mls/contexts/initrc_context

system__u: system_r: initrc_t: s0-s!5 :c0.c!023

Therefore, the init program will assign ‘S0-S15.C0.C1023’ to any program which
the entire range of security levels of the lattice formed in a SELinux MLScovers

system.

However, we can override this assignment of default security labels by the ‘init'
program,’this is done by creating a SELinux custom module as discussed in Section

2.6.11.
SELinux custom module, we can assign the

security levels determined by and outputted by the python program for the services

intending to run on the SELinux MLS enabled system. The Security administrator can
create these SELinux custom modules and then start the services to enforce the
Se^ces to be running in the determined security levels outputted by the python

program.

63

3.11 Generic SElinux policies for secure execution

nee t e Security administrator assigns the security labels by creating the SELinux
custom modules, but if there exist one or more boolean conditions which overrides the
MLS Constrain for the simple property and custom *-property, then the purpose of
assigning the security labels would be irrelevant as this will result in unrestricted
information flow in the lattice and services will then be vulnerable to attack and non-
secure. That is, information flow is allowed without the knowledge of the Security
administrator to any label within the security lattice as discussed in Section 3.7, figure
3.5.

As per the comprehensive differences discussed in Sections 3.7 and 3.8 on precedence
of Type enforcement, enforcement of Custom Bell Lapadula model and overriding
Custom Bell Lapadula by the SELinux security server, the following generic rules
shown in Table 3.3 can be deduced to securely run network services in an SELinux
MLS based system depending upon the security levels determined and outputted by
the python program which can be followed by the Security administrator.

Therefore, as a rule of thumb, whenever a new service needs to be introduced to the
SELinux MLS system, then the following generic checklist should be followed by the
Security administrator in order to securely execute the service and the rest of the
services on the system, thus restricting any unwanted information flow.

LI and L2 denotes security levels outputted by the python program
Table 3.3.

as indicated in

64

InEquality
produced by
the python
program

Type Enforcement
Rule

MLSConstrain

(Custom Bell-Lapadula
Model)

Overriding
MLSConstrain

(Overriding Custom
Bell-Lapadula Model)

Ll|L2 If TE allow rules exist Choose the Lower security of
the two services to be of
different levels
Eg: SO for service 1 and S2
for service2, then
information flow for writes
will be denied. To deny
information flow for ‘reads’,
introduce categories.

Should ensure that the
Boolean condition for
the Bell lapadula policy
is always satisfied, then
the rest of the boolean
expressions are ignored.

Ll |L2 If o allow TE rules
should exist
i.e: Should Deny
Information flow

Since TE denies information
flow, this is irrelevant

Since TE denies
information flow, this is
irrelevant

Should ensure that the
Boolean condition for the
Bell lapadula policy is
always satisfied, then the rest
of the boolean expressions in
the mlsconstrain statements
are ignored.

Should ensure that the
Boolean condition for
the Bell lapadula policy
is always satisfied, then
the rest of the boolean
expressions are ignored.

Ll = L2 TE rules exist to allow
Information flow

Should ensure that the
Boolean condition for
the Bell lapadula policy
is always satisfied, then
the rest of the boolean
expressions are ignored.

Should ensure that the
Boolean condition for the
Bell lapadula policy is
always satisfied, then the rest
of the boolean expressions in
the mlsconstrain statements
are ignored.

TE rules exist to allow
Information flow

Ll >L2

Should ensure that the
Boolean condition for
the Bell lapadula policy
is always satisfied, then
the rest of the boolean
expressions are ignored.

Should ensure that the
Boolean condition for the
Bell lapadula policy is
always satisfied, then the rest
of the boolean expressions in
the mlsconstrain statements
are ignored.

~Table 5.3 SELinux Generic Rule Precedence

TE rules exist to allow
Information flow

Ll <L2

65

4. SYSTEM/SOLUTION ARCHITECTURE AND
IMPLEMENTATION

It is required to design, setup and implement the program as in Section 3.9 to be run
on a SELinux MLS enabled environment.

The rest of the sections in this chapter focuses on the design aspects of the program,
then determining the security levels of the network services intending to run, setting
up testbed environments composed with two SELinux MLS labelled environment and
finally running the network services with the determined labels using the program

4.1. Interactive program to determine the security levels

Basically, the program’s workflow will be as follows:

1. Has the capability to determine the security contexts (Determine sensitivities)
of the subjects and the objects of the services which needs to run depending
the requirement of the user (Determined and decided through input of the

parsed to the program).
2. The user has the ability to provide answers as ‘inputs’ to the program for the

following scenarios of the 2 services:
a. The program promp
b. The program prompts whether tsvcV needs to write

versa.
C. The program prompts whether the ‘svcV needs to read content of ,svc2'

and vice-versa.
3. The program

output the secu
if applicable categories.

on
user

t whether the rsvcl' or 'svcT has any categories.
to ‘svc2’ and vice

will evaluate the simple property and custom *-property and
rity levels in the form of an inequality for sensitivity levels and

66

4.1.1. Pseudocode for the program

The pseudocode of the program shown below which is python based interactive
program decides the security labels of the network services 'SI' and '52 intending to
run on the SELinux MLS enabled system.

IF (SI read S2) AND (S2 read SI)
Print "SI equals to S2"

IF (has categories)
Print "Cl is a subset of C2"

EXIT 0
IF (SI and S2 write to each other)

Print "Skipping..."
ELSE

IF (NOT SI read S2) AND (NOT S2 read SI)
Print "SI and S2 are incomparable"
IF (has categories)

Print "Cl <> C2"

(SI read S2) AND (NOT S2 read SI)
Print "SI > S2"

IF (has categories)
Print "C2 is a subset of Cl"

EXIT 0
ELSE IF

EXIT 0
ELSE IF (NOT SI

Print "SI < S2"
IF (has categories)

Print "Cl is a

read S2) AND (S2 read SI)

subset of C2"

EXIT 0

is available in source code repository [32],
The python program

4.2. Setting up SELinux MLS testbeds

, ^U1^e<^ to setup two SELinux MLS enabled testbed environments which needs
to be configured with appropriate MLS labels.

CentOS 6.10 will be installed in the Systems as virtual machines with the default
SELinux MLS policies.

[root(a)msc-research-ishara-systeml ~]# yum install selinux-policy-mls
-y

Loaded plugins: fastestmirror

Setting up Install Process

Package selinux-policy-mls.noarch 0:3.7.19-312.el6 will be-->
installed

Note down that by default (By default SELinux mode will be in targeted mode),
without MLS enabled, the sensitivity level assigned will 'sO\

SELinux status: enabled

SELinux mount: /selinux

Current mode: enforcing
from config file: enforcing

Policy version: 24

Policy from

Mode

config file: targeted

MLS mode using SELinux config file,

/etc/sysconfig/selinux

SELINUXTYPE=mls

Enforce

vi

Relabel the Filesystem
/.autorelabel && init 6

touch

68

Snap of file system relabelling d by the SELinux security server.one

1[
11

Warning -- SELinux mis policy relabel is required.
*** Relabeling could take a very long time, depending on filel
I*-** system size and speed of hard drives.
^n»«*tt****K»*)^<****<*KH^__ ___ ___ ___ ___ ___ ___ ___ ___ ___

WM-tt

u - » gg’-igg sa

Table 4.1 Filesystem file relabelling of a SELimix MLS enabled system

Check the available sensitivity levels available in the SELinux MLS system, there 11
be 16 sensitivity levels in the following order of clearance.

sO < si < s2 < s3 < sl5

seinfo --sensitivity

Sensitivities: 16
S0

sl6

erify whether MLS is in enabled mode.Finally v

research-ishara-systeml /]# sestatus -»
[root@msc-
SELinux status: enabled

mount: /selinuxSELinuxfs
Current mode: enforcing

config file: enforcingMode from
Policy version: 24

from config file: mis
Policy

ted the same steps above to setup the second testbed environment (msc-research-
so that both environments will be identical.Repea

ishara-system2)

69

4.3. Running the Program

There can be several scenarios where information flow is required or not between the
two network services intending to run. Two such scenarios are considered which are:

1. Servicel needs to read/write content to & from service2.
2. No information flow should occur between service 1 and service2.

The above two scenarios are tested against the two testbed environments created in
Section 4.2.

Obtain the developed python program [32] which is available in github as follows:

git clone https://github.com/ifernando/SELinux-MLS.git

Scenario 1
Service 1 needs to read/write content to and from Service 2.

python3 sensitivity-inequality.py

SI and S2 have categories?(Y/N) : n
write to each other?(Y/N) : y

READ S2 content?(Y/N) : y

READ SI content?(Y/N) : y

Does
Can SI and S2
Can SI
Can S2

Your input is...
SI READ S2 content :

YES
S2 READ SI content :

YES
WRITE SI content :SI WRITE S2 and S2

YES
categories :

SI and S2 hasDoes

NO

70

https://github.com/ifernando/SELinux-MLS.git

Output is...

SI = S2

the sensidvky^ev ^ ° sens*^v^ty level of ‘servicel* needs to be equal to

Therefore, SELinux ;
'service2' should be the
security context.

security labels assigned on the processes 'serviceT and
and without any category component in the SELinuxsame

Scenario 2

Service 1 and Service 2 has no information flow.

python3 sensitivity-inequality.py

Does SI and S2 have categories?(Y/N) : Y

Can SI and S2 write to each other?(Y/N) : n

Can SI READ S2 content?(Y/N) : n

Can S2 READ SI content?(Y/N) : n

Your input is...
SI READ S2 content :

NO
S2 READ SI content :

NO
S2 WRITE SI content :SI WRITE S2 and

NO
has categories :Does SI and S2

YES

Output is..•

71

SI || S2

Cl <> C2

As observed in the
with'service2\

The categories of Service 1 (Cl) and are not

“erfsE!;7Lslu™ mbels “si?“,d on »■*
respective services! the lah ,^e"Ce n°. mformation flow will occur between the
the following form ’ 6 S W‘ C°nS'St °f b°th sensitivity leve|s and categories in

output above, sensitivity level of ‘servicel' can not be compared

equal to categories (C2) of Service 2.

service1 -> S1:C1.C3

service2 S2:C7.C9

4.4. Choosing the network services

To demonstrate on securely running the network services, two common widely used
network services are chosen which would be Apache and MySQL. Apache Webserver
[33] is the most widely used webservers in the world and same goes with MySQL [34]
which is a world’s most popular relational database, both of them are open source as
well.

4.4.1. SELinux module creation for Scenario 1

As per the observations in the scenario 1 and scenario 2, the sensitivity levels for
services are the same in Scenario 1, however the sensitivity levels for the 2 services m

scenario 2 is incomparable and no equal categories.
service 1 and service2 asFor scenario 1, information flow is required betw

indicated in Section 4.3.1.
The following is tested .g.ins. the first testbed « O*

ishara - system!).

Lets svcl be Apache web service

The inequality in Section

Sensitivity level of Apache Service

een

— research -

d svc2 be MySQL service.an

4.3.2 indicated that:
= Sensitivity level of MySQL Service.

72

Since we have no categorization to h hh
services, we’ve the ontirm ^ u 6 & ec* *nt0 secu*"ity levels of the respective
Section 2.7.1. Ch°°Slng Sensitivity ^els between 50 to 515 as per

Sensitivity level of Apache Service - Sensitivity level of MySQL Service.

Let sO. s4 be the sensitivity levels to be assigned to Apache and MySQL processes

SELinux module for Apache process

Since apache is started by init, we need to determine & allow init to transition the
processes for apache in which it is supposed to run which is determined as follows:

#Install the apache Webserver package
yum install httpd -y

#Inspect the types of the objects interacted while starting apache

Is -1Z /usr/sbin/run_init
root system_u:obj ect_r:run_init_exec_t:s0root-rwxr-xr-x.

/usr/sbin/run_init

Is -1Z /usr/sbin/httpd
-rwxr-xr-x.
/usr/sbin/httpd

systemjj:object_r:httpd_exec_t:s0rootroot

init always tries to runas runFrom following security context file for .nitre process
the init script in the initrc_t context.

(rootemsc-rese,rcl.-ishan.-syste.lco|>text
/etc/selinux/mls/context / 15;c0.cl023
system_u:system_r:initrc_t.

catmis]#

/usr/sbin/httpd file * \ s type: httpd.t
/usr/sbin/httpd process has typ

: httpd_exec_t

^ + ---> httpd_exec_t ---> httpd_t
. 'iniirej 'and target type : httpd_trequired

TreTorT^ type

73

Since the types for process transition
follows: are known now, the module can have created as

Module for Apache

cat > httpdtrans.te <<E0F
policy_module(httpdtrans, 1.0)

require {
type initrcjt;
type httpd_exec_t;
type httpdjt;

}

range_transition initrc_t httpd_exec_t:process s0 - s4j

mls_rangetrans_source(initrc_t)
mls_rangetrans_target(httpd_t)
EOF

transition rule and install it on the SELinux MLS Policy soCompile the above range
that it'll load it realtime.

/usr/share/selinux/devel/Makefile httpdtrans.pp

-i httpd
make -f
semodule -i httpdtrans.pp
semodule -1 grep

74

SELinux Module for MySQL process

Install mysql client and mysql-server packages

yum install mysql mysql-server

#Inspect the types of the objects interacted while starting MySQL

Is -1Z /usr/sbin/run_init
root root-rwxr-xr-x.

/usr/sbin/run_init
system_u:obj ect_r:run_init_exec_t:s0

Is -1Z /usr/libexec/mysqld
root root

/usr/libexec/mysqld
system_u:obj ect_r:mysqld_exec_t:s0-rwxr-xr-x.

Is -1Z /usr/bin/mysqld_safe
root root system_u:obj ect_r:mysqld_safe_exec_t:s0-rwxr-xr-x.

/usr/bin/mysqld_safe

run init always run the init script in the initrc_tinitrc process as
context

Therefore we can deduce the following:

/usr/sbin/run_init process has type: initrc_t

executable has type: mysqld_exec_t
has type: mysqld_tfile/usr/libexec/mysqld

/usr/libexec/mysqld process

SSSSSS2
: initrc_trequired for mysqld process

mysqld_t
: initrc__t

Type transition
-> mysqld^exec^t ■*
Therefore, source yp

: httpd_tand target type

75

Type transition required for
mysqld_safe_exec_t -> , mysqld_safe

mysqld__safe t process: initrc t

To enforce above transitions and to label
the apache process). mysql related processes to SO: 54 (Same as

Module for Mysqld process

cat > mysqldtrans.te <<E0F
policyjnoduleCmysqldtrans, 1.0)

require {
type initrc_t;
type mysqld_exec_t;
type mysqldjt;

}

range_transition initrc_t mysqld_exec_t:process s0 - s4;

mls_rangetrans_source(initrc_t)
mls_rangetrans_target(mysqld_t)
EOF

Module for Mysqld_safe process

cat > mysqld_safetrans.te <<EOF
policy_module(mysqld_safetranSj 1.0)

require {
type initrcjt;
type mysqld_safe_exec_t;
type mysqld_safe_t;

}

initrc_t mysqld_safe_exec_t:process s0 - s4;
range__transition mls_rangetrans_source(initrc_t)
mls_rangetrans_target(fnysqld_safe_t)

EOF

76

SELinux MLS Po«c“ftL“St1n”i,d'?tSfVi'i' '‘h'"™6 ‘"'i insM 11

semodule -i mysqldtrans.pp
semodule -i mysqld_safetrans.pp
[root@msc - resea rch-ishara-systeml /]#
mysqld
mysqld_safetrans
mysqldtrans

on theme.

make -f
make -f mysqldtrans.pp

e mysqld_safetrans.pp

semodule -1 grep -i
1.0

1.0

Running the network services

Finally install start the network services to be run on the SELinux MLS enabled
system.

[root@msc - research-ishara-systeml /]# run_init
/etc/init.d/httpd start
[root@msc-research-ishara-systeml /]# ps -eZ | grep -1 httpd

system_u: system__r: httpd_t. s4

system_u: system_r: httpd_t: s4

00:00:00 httpd

00:00:00 httpd
2096 ?
2098 ?

d is labelled & confined to run on ‘s4' sensitivity level.
As observed, apache processe

Similarly start mysql server process.
run initishara-systeml /]#[root@msc-research-

- - ■ - -
3120 pts/0 00:00-0®[root@msc-

system_u: system__
mysqld_safe

system_u:system__r.

r:mysqld_safe_t:s3

3222 pts/0 00:00:00 mysqld
r :mysqld_t'-s3

which are 'mysqld’ and
sensitivity 's3.

77

4.4.2. SELinux module creation for Scenario 2

As per the observations for scenario u,
scenario 2 is incomparable and no equal’ cattg™'pj 2 “““

istiara-system2)eS,ed a8ai"S! ^ flrSt testbed environmem (nsc-research-

Lets svc 1 be Apache web service and spc2 be MySQL service.

The inequality in Section 4.3.2 indicated that:

Sensitivity level of Apache Service is incomparable with the Sensitivity level of
MySQL Service.

The categories of Service 1 (Cl) and are not equal to categories of Service 2 (C2).

Therefore SELinux security labels assigned on the processes for 'serviceV and
‘service2' is not the same (Hence no information flow will occur between the
respective services), the labels will consist of both sensitivity levels and categories in
the following form
Since we have need to enabled categorization into the security levels of the respective

option of choosing sensitivity levels betweenservices, we’ve the
50. CO to 515. C1023.
Let 50 - 54: CO. C2 be the security label for Apache process.

— 52: C3. C5 be the security label for Mysql process.

The testbeds are identical, and the services
the same type ““‘“^“.“Lls will change ,s follows:
Scenario 2 as well, e

For Apache process

cat > httpdtrans_with
policy_module(httpdtrans_cat.te <<eof

_with_catj 1.0)

require {
type initrc_t;
type httpd_exec_tj
type httpd_t;

>

range_transition initrc_t httpd_exec_t:process s0 - s4:c0,clj c2;

mls_rangetrans_source(initrc_t)
mls_rangetrans_target(httpd_t)
EOF

Compile the above range transition rule and install it on the SELinux MLS Policy so
that it'll load it realtime.

make _-f /usr/share/selinux/devel/Makefile httpdtrans_with_cat .pp
semodule -i httpdtrans_with_cat.pp
semodule -1 grep -i httpd

For MySQL

cat > mysqldtrans_with_cat.te <<E0F
policy_module(mysqldtrans__wi _ca j

require {
type initrc_t;
type mysqld__exec_t;
type mysqld__t;

}
si - s2:c3,c4jc5j

t mysqlOxec-t: Process
range_transition initrc_

source(initret)
tCmysqld^^mls_rangetrans_

mls_rangetrans_targe

EOF

79

Module for Mysqld safc process

cat > my sqld_safetrans_i.I
policy_module(mysqld_safetrans «EOF

require {
type initrcjt;
type mysqld_safe_exec_t;
type mysqld_safe_t;

}

range_transition initrc_t mysqld_safe_exec t:process si -
s2:c3,c4,c5;

mls_rangetrans_source(initrc_t)
mls_rangetrans_target(mysqld_safe_t)
EOF

Compile the above range transition and sensitivity labelling rules and install it on the
SELinux MLS Policy so that it'll load it realtime.

/usr/share/selinux/devel/Makefile mysqldtrans_with_cat.pp
/usr/share/selinux/devel/Makefilemake -f

make
mysqld_safetrans_with_cat.pp

-f

semodule -i mysqldtrans_with_cat.pp
semodule -i mysqld_safetrans_with_cat.pp

grep -i-system2 /]# semodule -1
[root@msc-research-ishara
wysqld
mysqld_safetrans_with_cat
mysqldtrans_with_cat

1.0
1.0

80

Running the network services

Finally install start the network services to be
system. run on the SELinux MLS enabled

[root@msc-research-ishara
/etc/init.d/httpd start

[root(Smsc-research-ishara-system2 /]# pS -ez |

system_u:system_r:httpd_t:s0-s4:c0.c2 17968 ?

system_u: system_r:httpdjt:s0-s4:c0.c2 17970 ?

-system2 /]# nun init

grep -i http

00:00:00 httpd

00:00:00 httpd

As observed, apache processed is labelled & confined to run on 's0 - s4: cO. c2'
security level.

Similarly start mysql server process

[root@msc - re search - ishara-system2 /]# run_init
/etc/init.d/mysqld start

-eZ | grep -i mysql[root@msc-research-ishara-system2 /]# ps

system_u: system_r: mysqld_safe_t: sl-s2: c3. c5 19395 pts/0

00:00:00 mysqld_safe
s2:c3.c5 19497 pts/0 00:00:00sy stem_u: system_r: mysqld_t: sl-

mysqld

which are ‘mysqld’ and
on sensitivity 'si — s2: c3. c5

81

5. System Evaluation and Analysis

Apache process to Mysql process is not allowed.

To verify the Scenario 1 in Chapter 4, i.e: Allow information flow from apache process
to rea an write content to and from Mysql, a real-world application can be installed.

Wordpress [35] application running on the SELinux MLS enabled system would be a
good option to test Scenario 1 as wordpress heavily relies on Apache which is the
frontend and MySQL as the backend.

For wordpress to function, information flow between Apache and MySQL should be
allowed.

5.1 Analysis of testbed 1 environment

the 1st test bed environment (msc-Below steps show on setting up wordpress
research-ishara-systeml) where both Apache and MySQL is confined to

sensitivity levels 50 — 54.

on
run

on

#InstaLL php and php-mysqi related packages
install php php-mysql
install php-mysql php-pdo php-pear php-pecl php-xml php-gd php-yum

yum
zlib

^Download and install wordpress
wget http://wordpress.org/latest.tar.gz

tar -xzvf latest.tar.gz

for wordpressin MySQL server#Create database
mysql -u root -p

database wordpress;
affected (0.00 sec)mysql> create

Query OK, 1 row

mysql> create user ishara(a)localhostj
Query OK, 0 rows affected (0.00 sec)

=nassword("selinux");
. fnr ishara@localhost=p

ss“°r ifZti<*■* **>mysql> set pa
Query OK, 0 rows a

82

http://wordpress.org/latest.tar.gz

mysql> grant all privileges on wordpress.*
identified by 'selinux’;
Query OK, 0

to ishara@localhost
rows affected (0.00 sec)

mysql> flush privileges
-> ;

Query OK, 0 rows affected (0.00 sec)

exit ;

#Copy wordpress configuration and configure mysqL con figs for
wordpress
cp ~/wordpress/wp-config-sample.php ~/wordpress/wp-config.php

vi ~/wordpress/wp-config.php

// ** MySQL settings - You can get this info from your web host **

/** The name of the database for WordPress */
define('DB_NAME', 'wordpress');

//

/** MySQL database username */
define('DB_USER', 'ishara');

/** MySQL database password */
define('DB_PASSWORD', 'selinux');

/** MySQL hostname */
define('DB_HOST', 'localhost');

-r -/wordpress/* /var/www/htmlcp
pick wordpress php related files
restart#Finally restart apache to

/etc/init.d/httpdrun init

information flow is allowed betweenssible without any issue asWordpress is acce
Apache and MySQL-

83

‘ '«.'4«.SS!CI

Dashboard

t t

A new- modern publish!
^ experience

y^soon

O -
© ■»»*d;ior

1^3
“««UU

' -"—a . *r/eu+*=/.*«

== Q [Q

s 99 <r

Welcome to WordPress!
*" ' >*ita jit-,: 4U'ttr3

0Ct« suited
NatStcpi

S “iijiiiraifcjjM
° ■ ' i - J vlr

**»» Actio«s

0

** U«.'03frXmv>Ua«3irtri

^Mre 1 Wordpress is up and running

5.1.1 State Diagram forTestbedl environment

Refer to Appendix B

5.2 Analysis of testbed 2 environment

In the 2nd test bed environment (msc-research-ishara-system2) where Apache
is labelled with 50 - 54: 50.52 and MySQL is labelled with si - s2: c3. c5.

However unlike in testbed I, in testbed2, the following errors throw up when accessing
wordpress. The reason is the information between Apache and MySQL is full
restricted, thus no information is allowed at all.

. 192.168.S6.10Ie {it

Error establishing a database connection

Figure y2 Wordpress is not functionalas apache,process is unable to write to mysq, socket file

84

• 192.163. So. 10t

Error estabUshi n9 a databa
Se connection

This eithe,
P^^word information i

•'-locathostn* ccxi'Hm nyour'^'eo,,fi9Php «e«
could mean your host's (Uutr

ncwrect or we
• We you sure
• Are you sure that ■
• Are '/co sure that the dat

If you’re unsure what these terms mean you should probably contact
always visit the WordPress Support Forums.

Server is (W,have the corr
ect usem-ine and password?

hostname?
^hase server is running?

y°« have typed thee

your host if you oeft ^you can

Figure 5.3 Wordpress is not functional as apache process is
unable to write to mysql socket file

5.2.1 State Diagram for Testbed2 environment

Refer to Appendix C

5.2.2 Problem Analysis in Testbed2 environmet

To diagnose and dig into the details of this issue, as per Section 2.6.3, the SELinux
Audit logs can be viewed as follows:

[root(a)msc-research-ishara-system2 ~]# ausearch -i -m AVC -ts
recent

type=AVC msg=audit(1542126727.351:13074352): avc: denied {
write } for pid=19600 comm=,,httpd" name=,,mysql.sockn dev=dm-0
ino=787766 scontext=system_u:system_r:httpdjt:s0-s4:c0. c2
tcontext=system_u: objector: mysqld_var_run_t: si

type=SYSCALL msg=audit(1542126727.351:13074352): arch=c000003e
svscall=42success=no exit=-13 a0=b al=7fff957a2540 a2=6e a3=0
items-0 ppid=19594 pid=19600 auid=0 uid=48 gid=48 euid-48

fsuid=48 egid=48 sgid=48 fsgid=48 tty=(none) ses=3
/USnhttJd_t:s0-s4:c0.c2 key-(null)comm="httpd" exe=

subj=system_u:system_
denied {dit(1542126727.351:13074353): avc:

nid-19600 conwi="httpd" name="mysql.sock" dev=dm-0
s context=system_u: system.r: httpd.t: s0- s4: c0. c2
S r:mysqld_var_run_t:sl

type=AVC msg=au
write } for
ino=787766
tcontext=system_u:object_

85

type-SYSCALL msg=audit(i542i267?7
syscall=42 success=no exit=--n QIu51''13074353^: arch=c000003e
items=0 ppid=19594 pid-iqfina 3^=b al=7fff957a25c0 a2=6e a3=0
suid=48 fsuid=48 egSJ-« !5h “ f “Id-48 eid-48 «*>-«

com»="httpd" ;Sgld=4S

subj=system_u:system_r:httpd_t:s0-s4:c0.c2 key,(„„u)
ses=3

To verify whether the the above violation is due to a Type enforcement rule or due to
an mlsconstrain, try creating a custom SELinux type enforcement rule using
audit2allow command.

Paste the above denied contents of logs into a temporary file (eg: /tmp/mysqlsock)

cat /tmp/mysqlsock

denied {type=AVC msg=audit(1542126727.351:13074352): avc:
write } for pid=19600 comm=nhttpd" name=,,mysql.sock" dev=dm-0
ino=787766 scontext=system_u:system_r:httpdjt:s0-s4:c0.c2
tcontext=system_u: ob ject_r: mysqld_var_run_t: si
tclass=sock_file

tvoe-SYSCALL msg=audit(1542126727.351-.13074352): arch=c000003e
type-SYSCALL msg ^ a0=b al=7fff957a2540 a2=6e a3=0
sysCall=42 success-no ex uid=48 id=48 euid=48
lte„s=0 f5gid=48 tty=(none) sps=S

"/usr/sbin/httpd
:httpdjt :s0-

suid=48
comm=,,httpd" exe=
subj=system_u:systenjr

S4:c0.c2 key=(null)

86

Create SELinux type enforce
ment mle us’ng audit2allow.

cat /tmp/mysqlsock | audit2allow -M

.te file called

httpdtomysqlsock

'httpdtomysqlsock.te*,
#This will
inspect this file

cat httpdtomysqlsock.te

module mysqlsock 1.0;

require {

create a

type httpd_t;

type mysq 1 d_var_run_t;

class sock_file write;

}

= httpd_t ==#=

You will need to add
attribute to either the source or target type to make it

#!!!! This avc is a constraint violation.
an
work.

#Contraint rule:
t:sock_file write;allow httpd_t mysqld__var__run

Now install the module

semodule -i

Even after the above modu

logs
This indicates that the errors are
violations due to mlsconstrain

httpdtomysqlsock.pp
le is installed, the same error shows up in the SELinux audit

forcement violations butNOT due to any Type en

Also as per o
Lapadula custom
mlsconstrain statements.

87

From Section 3.5.2, below is the custom *-property corresponding to the Bell
Lapadula model enforced as an mlsconstrain.

the "single Level" fiie "write"
mlsconstrain { file } { write
unlink link

ops
create setattr relabelfrom appendrename }

((11 eq 12) or
((tl == mlsfilewritetoclr)

domby 12)) or
((t2

domby h2)) or
(tl == mlsfilewrite) or
(t2 == mlstrustedobject));

and (hi dom 12) and (11

mlsfilewriteinrange) and (11 dom 12) and (hi

The above multi level security constrain states that:
File read/getattr/execute permission are only allowed if:

1. The process low-level (11) is equal to the file low-level (12).
Or

2. The process type (tl) has the mlsfilewritetoclr (write-up-to-clearance)
Attribute and the process high-level (hi) dominates the file low-level (12) and
the process low-level (11) is dominated by the file low-level (12).

Or
3. The process type (t2) has the mlsfilewriteinrange attribute and process low-

level (11) dominates file low-level (12) and process high-level (hi) is
dominated by file high-level (h2).

Or
4. The process type (tl) has the miswrite attribute.

Or
5. The file type (t2) has the mlstrustedobject (e.g. /dev/null) attribute.

Audit logs and the state diagram shown in Appendix C:

httpd process which is labelled with iype: 'httpd..' which has a securiiy label ofSO -

54: CO. C2.
scontext=system_u:system^

Similarly, the secur

tcontext=system_
According to the first boolean condition

follows

10 : S0

11 : SI

As shown in the SELinux

r:httpd_t:s0-s4:c0.c2

ity labels assigned on the mysql socket file:

u: objector: mysqld_var_run_t: si
indicated above, the value ofll and 12 are as

88

Since 10 * 11, then the first boolean

If the rest of the conditions
httpd t and mysqld

condition itself fails
are looked, still the types of scontext and tcontext which

_var_run_t does not belong to any of the 4 attributes shown
are
below:

mlsfilewritetoclr

mlsfilewriteinrange

miswrite

mlstrustedobject

Therefore, hence we can conclude as per the Table 3.3 indicated in Section 3.11,
though type enforcement rules for information flow between Apache and MySQL is
in place, then if any of the boolean conditions in mlsconstrain fails, then information
flow isn’t allowed. Thus, in Scenario2 which interprets why Wordpress isn’t functional

5.3 Verifying the generic SELinux Rules

Therefore, as per Table 3.3 in Section 3.11, we’ve identified the following two
scenarios and following summarizes the generic rules which should be enforced by the
Security Administrator for secure information flow within the SELinux Multi level
security lattice.

Scenariol

information flow (read/write) isLI = L2 as outputs by the python script where
allowed between Apache and MySQL.

allow information flow between the objectType enforcement rules should exist to
types for Apache and MySQL.

Sensitivity level S0:S4
output of python script (51
For wordpress to function, as determined in Section 5.2.1 and 5.2.2, there'll be
read/writes between the corresponding subjects and objects for Apache and MySQL,
the above labels satisfied for proper functionality of wordpress web application.

assigned for both Apache and MySQL processes

= 52).

as per
were

89

Scenario2

LI ^ L2 as outputs by the python script where no information flow (read/write) was
to be allowed between Apache and MySQL

<

Type enforcement rules existed to allow information flow between the object types for
Apache and MySQL as testbed 1 and testbed2 environments were similar in nature

Since TE rules existed which allows information flow between Apache and MySQL,
categorization was introduced as per Table 3.3 in Section 3.11

Sensitivity levels S0-S4:C0.C2 & S1-S2:C3.C5 were assigned for both Apache and
MySQL processes respectively as per output of python script (SI ^ S2, Cl <>

C2)
For wordpress to function, as determined in Section 5.2.1 and 5.2.2, there’ll be
read/writes between the corresponding subjects and objects for Apache and MySQL,
the above labels did not satisfy for proper functionality of wordpress web application

as per the analysis done in Section 5.2.2

90

6- CONCLUSION

SELinux MLS security D0r ’
model which fully takes 'care'T/ 3 Version °fthe classic BeH-Upadula
confidentiality and integrity achievedvia™^0-leak (*'ProPerty) thus providing
will be able to write to objects of the ^ ' ltmg Write up”' is’the sut)jects

or deny flow are sold, based „pon on lhe security |eve| ^ of _ gjven
object. However SELinux MLS adds more fine grained miles where type enforcement
rules plays a key part of allowing information flow in the MLS lattice. It was also
found that the Bell-Lapadula model security policies could be easily bypassed to allow
unrestriced information flow in the security lattice irrelevant of the security state labels
assigned on a given subject or object. Therefore a Security Administrator should be
aware and choose the security labels and the types for the processes so that information
flows are allowed only if required.

By default, an SELinux MLS enabled system assigns the ‘sO’ sensitivity level to a
majority of the objects except kernel related objects. The subjects spawned by the init
program by default attains the S0-S15.C0.1023 composing of all the possible label
combinations in the security lattice. Therefore if one service is compromised, then the
other services will be at risk of getting compromised provided if SELinux type
enforcement rules & the multi level security constraints are applied incorrectly. There
are numerous amount of ways to bypass the bell lapadula information flow model due
to the nature of boolean conditional expressions present in the current implementation
of SELinux policies.
One maior possibility of a network service flaw would be information leak due to
^formation flow from one service to another or a transitive information flow across

leaked to the outsi e • addition to the mandatory access controls already
SSSX “x rity server in the form of a generic rule set to be

followed by the Security Administrator.

1 *

91

Use of Discretionary control is still the majority of the
vulnerable to attack, this is due to the factth t nlr h
code, Trojans and also the Owner of a sublet ^ TOt Pr°t6Ct agai"St malicious
freedom to do anything with it while .1 ^ & AC ^ SyStem h3S ^
privileges associated with that user. °Wner “ subJect/object inherits al1 the

concspt is used very little in SELinux where as TE is heavily used more than
, wor s sue that every element in the system has a security type and has an

access control matrix upon the type of subject (Which has a type too) which
object and for MLS, every element in the system has an “MLS Level” or “Security

Clearance which is based on the Bell-Lapadula Model. For every security operation
on the system, a set of MLS constraints are checked which is already embedded in the
SELinux security server with the MLS Level of the subject and the object.

systems use which are very

accesses
an

The default SELinux policy rules (without enabling MLS policy in SELinux) mostly
addresses on the TE policies. The SELinux policy version used for the analysis

: 24.0, this consisted of more than 400000 TE rules which includes 3158
was

version no
object types, 81 classes, 14 Roles and 27 initial SID’s causing it impractical for manual
analysis and inspection.
Due to flask architecture of SELinux, we can write our own policy and can be loaded

the current implementation of SEL M information flow approach to

St—d — fl.w enpllei,,, specie - „,»w«n * *e

Security Administrator.

92

references

[1] Loscocco, Pete,, and Stephen Smalley, "Meeting e,ideal secnm, objectives with

security-enhanced linux," Proceedings of,he 2001 0,1

pp. 115-134,2001.

[2] Ahn, Gail Joon, Wenjuan Xu, and Xinwen Zhang, "Systematic policy analysis

for high-assurance services in SELinux," InPolicies for Distributed Systems and

Networks, 2008. POLICY2008, pp. 3-10,2008.

[3] Hicks, Boniface, Sandra Rueda, Luke St Clair, Trent Jaeger, and Patrick

McDaniel, "A logical specification and analysis for SELinux MLS policy," ACM

Transactions on Information and System Security (TISSEC), vol. 13, no. 3, p. 26,
2010.

[4] B. a. S. D. S. Sama-Starosta, "Policy analysis for security-enhanced linux," in

Proceedings of the 2004 Workshop on Issues in the Theory of Security (WITS),

2004.

awa Linux symposium

[5] S. C. V. a. W. S. Smalley, "Implementing SELinux as a Linux security module,"

NAI Labs Report 1.43.
"The clark-wilson security model," Indiana University of[6] S. Q. Blake,

Pennsylvania, Library Resources, 2000. [Online]. Available: Retrieved from the
World Wide Web at http://www. lib. iup. edu/comscisec/SANSpapers/blake.

htm. [Accessed 10 January 2009].
. Balon, "The Biba Security Model," 2004.[7] N. a. I. T

[8] "Security-Enhanced
https://www.nsa.gov/what

Available:[Online].
-do/research/seIinux/faqs.shtmI#Il. [Accessed 10

NSA,Linux,"

-we

11 2018]. , and Patrick D. McDaniel,Sandra Julieta Rueda, Trent Jaeger
Building and Executing Applications That Enforce[9] Hicks, Boniface,

"From Trusted to Secure:
" USENIXAnnua

l Technical Conference, vol. 7, p. 34,2007.
System Security,

V 937

V'

http://www
https://www.nsa.gov/what

[10] A. Y. F. a- Y. E. Shabtai,
SELinux," /£££ Security & Priva

Securing Android-powered

Cy8’ vo1-8, no. 3, pp. 36-44, 2010.
Smalley, A security policy configuration for th

Linux," NAI Labs Technical Report, 2001.

mobile devices using

e Security-Enhanced

[12] S. J. M. Demurjian, "Implementation of mandatory

security system,1' CSE367 Final Project report

[13] N. I. T. Balon, "Biba security model

Comparison, 2004.

access control in role-based
,2001.

comparison," in Biba Security Model

[14] R. S. Sandhu, "Lattice-based access control models," Computer

pp. 9-19, 1993.

[15] S. S. P. L. H. D. A. J. L. Ray Spencer, "The flask security architecture: system

support for diverse security policies," in 8th USENIX Security Symposium,

Washington, 1999.

, vol. 26, no. 11,

[16] F. K. M. a. D. C. Mayer, "Open Source Software Development Series," in

SELinux by Example, Prentice Hall, 2007.

[17] B. McCarty, Selinux: Nsa's open source security enhanced linux, vol. 238,

O’Reilly, 2005.

[18] R. Haines, The SELinux Notebook, Volume 1, The Foundations, 2nd Edition,

2010.
: Red Hat SELinux Guide," RedHat, [Online].

https://access.redhat.com/documentation/en-

US/RedJHat_Enterprise_Linux/4/html/SELinux_Guide/selg-chapter-

0013.html. [Accessed 11 11 2018].

[19] "Red Hat Enterprise Linux 4

Available:

Available:[Online].[20] "SELinuxProject/refpolicy,"
thub.com/SELinuxProject/refpolicy. [Accessed 11 11 2011].

2010. [Online].
PolicyType. [Accessed 11 November 2011].

https ://gi
Available:13 SeptemberPolicyType,"

http://selinuxproject.org/page/NB_
[21] "NB

... . K,. Rloe" |9 February 2009 . [Online]. Available:
[22] D. Walsh, "Dan Walshs Blog,

lsh.livejournal.com/26759.html. [Accessed 11 11 2018],
https ://danwa

94

https://access.redhat.com/documentation/en-
http://selinuxproject.org/page/NB_

[23] "TresysTechnology/refpolicy," 23

https ://github .com/T

2018].

June 2018.
resysTechnology/refpolicy/wild

[Online]. Available:
• [Accessed 11 November

[24] D. E. L. J. L. Bell, Secure computer systems: Mathematical foundations, No.

MTR-2547-VOL-1, MITRE CORP BEDFORD MA, 1973.

[25] K. J. Biba, Integrity considerations fo

3153-REV-l, MITRE CORP BEDFORD MA
r secure computer systems. No. MTR-

, 1975.
[26] X. Xu, "A study on confidentiality and integrity protection of SELinux," in

Networking and Information Technology (ICNIT), 2010 International
Conference, 2010.

[27] "ConstraintStatements," 30 November 2009. [Online].

http://selinuxproject.org/page/ConstraintStatements. [Accessed 1111 2018].

[28] C. Hanson, "Selinux and mis: Putting the pieces together," in Proceedings of the

2nd Annual SELinux Symposium, 2006.

Available:

[29] C. PeBenito, "TresysTechnology/setools3," 4 May 2016. [Online]. Available:

http://oss.tresys.com/projects/setools. [Accessed 1111 2018].

[30] T. R. S. a. X. Z. Jaeger, "Analyzing integrity protection in the SELinux example

policy," in Proceedings of the 12th conference on

Volume 12. USENIXAssociation, 2003.

USENIX Security Symposium-

[31] Y. Y. S. a. T. T. Nakamura, "SEEdit: SELinux Security Policy Configuration

System with Higher Level," in Proceedings of LISA ’09: 23rd Large Installation

Available:
System Administration Conference, 2009.

[32] M. Fernando, Github, 11 11 [Online].

MLS/blob/master/sensitivity-
2018.

https://github.com/ifemando/SELinux-

essed 11 112018].

Server
inequality.py- [Acc

HTTP
Available:" Apache, [Online],

d 13 1120W].

. Available:

Project,
[33]"Apache

https://httpd.apache.org/. [Accesse

06 10
essed 11 11 2018].

https://github.com/mysql/mysql-
2018. [Online]

[34] MySQL

server. [Acc

95

http://selinuxproject.org/page/ConstraintStatements
http://oss.tresys.com/projects/setools
https://github.com/ifemando/SELinux-essed
https://github.com/ifemando/SELinux-essed
https://httpd.apache.org/
https://github.com/mysql/mysql-

[35] Wordpress, 06 10 2018. [Online].
https://github.com/WordPress/WordPress. [Accessed 12 11 2018].

[36] J. D. A. L. H. J. D. R. a. C. W. S. Guttman, "Verifying information flow goals in

Available:

security-enhanced Linux," Journal of Computer Security 13, no. 1, pp. 115-134,
2005.

96

https://github.com/WordPress/WordPress

G
.2

2 1
5 &
< W

x
x

<L>
bJD *P 8

2 £ O C
.-, C CH <U

OJ t ^ Ew < c

08 r*>h 3
s S’
oS

O

X

W>
■~ .2
0 £
1 £
W <

TJ .5
^ 8 S u 1 a< cc a<f o u& e < e a

o CD O
.2 ^ § II s 8 3:s £ I < o |
Q cl —• t:

4
S ■§
s <S s
w> ^G u

■■< •—,
-4-1 —<
•p o
*
fl) 0i

« S
X

&JD
fl

^ £
o £

fl5 o o u
04 CQ

X

'§ £
E -2
Vh (X

eg fl
£ °

.52 ifT3 00 D ■—" £P .-3r CJ w n eh > 3 □
- O COO,
i —' g C/D

O u g mja < in«a/ exooS “5 <
P

eo
08 _C0

s x00 X

o -g «*S -2 3
5 fe <

.5250
XX

Q 3
O 3
C/3 <

fri
O
o

£> .52.52
•r* 00J- >->DJD ^
<u w

5 I

C0
X>> X75a

<
x

00
00fla <y
fl►J o> Xo> .52

—- 00
CXc/3

OfH a 3o <53fl
o

.22
00 x03

£ «
C8 fl

C/3 C8

X
Xex

6
CO © W ^
a j. i 5
« g

Ho O
Qs.52 tfJ00

i? wo o c/3C8

I 23 aPh ex
a *

8#o oc

e
a
o
8

•2 (o
COXC3u

O
(0a

C3 7= crt/i
i/i c (0
a i >>\ €3- P V o

£ \ (0c.
§T3 O

5- ±2 Uo 1_

5£ V ^ \p
>o

i- _QCOa
> rv in■8 >£ y ECO

£ >o .oo
if) Ic

u*D I8 (0El#o
"•4-< >—j TJ

Ia H fos 0)/
ClI

.s
coasa
3—

g 8§ A > o
aau

Co Eo a
Q-

8u
£
8
O

■DU Io
2c 0-a
fi

5 oT3 5o Z«JO
55 oa 0 BH cr c Xcs~ O O,2£ a>re COI5e i£ T3Ea a££*— rJ£OX) c £.2

AAa
« i<02 JTJCfl Rc J1 0> o0a GOO) LU* V_l-a
c
CJ
C-
CL

14’

ce
B
.2

O'
O'c

5
03
E C\J 7IB#o

Q.
C-
cs
C/3
C/3
o
5-
c.

T3 ®u
Co
§£

a
s

jB
£
£ Oo

CO IB
T3G a#o £2

C5 L±E
<2 4
.E *
-4-1

s
C/3a
CLa•—
o

co
E
so ■C■fa cc
> £B so a cfN

C’O 2 Z«X> 5:t/3 5 gcj 2H ccu C9£ c i
C

E §& 0 £5-
D£ £.2 i 8Aa

\a X♦ \ 0>to«
Iv(A VcI a> cju 0) 8coa> >

-J E-a
B
CJ
CL
CL
<

