LB/DON/66/2020

DCH 05/69 THE EFFECT OF PRE-VULCANIZATION TIME AND VULCANIZATION TEMPERATURE ON INTER-LAYER ADHESION AND PHYSICAL PROPERTIES OF MIDDLE AND TREAD LAYERS OF SOLID TIRE

UNIVERSITY OF MORATUWA, SRI LANKA

Kodikara S.K.N.N. (158505 M)

This thesis submitted in partial fulfilment of the requirements for the degree Master of Science in Polymer Technology

Department of Chemical and Process Engineering

University of Moratuwa Sri Lanka

66 2020



тн 4277

í.

TH 4277 + CD- ROM

# **DECLARATION OF THE CANDIDATE & SUPERVISOR**

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant University of Moratuwa the non-exclusive right to reproduce and distribute my thesis dissertation, in whole or in part in print, electronic or any other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

1 Juil

Date:

10/02/2020

The above candidate has carried out research for the master's thesis dissertation under my supervision

Name of the supervisor: Prof. B. A. J. K. Premachandra

Signature of the supervisor:

lea

Date: 10/02/2010



#### ACKNOWLEDGEMENT

First, I would like to extend my profound appreciation to my supervisor Prof. B. A. J. K. Premachandra for all the support and encouragement that he provides me during the master's degree program. I would also like to extend my gratitude to him for continuous support as the course coordinator; you have been an ever-present beacon of support, encouragement, and advice.

Besides my advisor, I would like to thank the rest of my thesis committee: Dr. (Mrs). Shantha Egodage, Dr. (Mrs.) D. G. Edirisingha for their encouragement and insightful comments.

Further, I would like to express my sincere gratitude to the management of Camso Loadstar (Pvt) Ltd for offering tests and laboratory facilities. My special thanks go to Mr. Anurasiri Gunasekara who provides me the support and guidance during the research. I wish to show my appreciation to all the staff who helped to conduct the testings at Camso Research & Development Center.

I would like to acknowledge professors, lecturers, and staff of chemical and process engineering, University of Moratuwa, for coaching and support during the master's degree program.

Finally, I would like to thank my wife, mother, sister, and friends for the support, devotion, and understanding throughout the research period.

#### Abstract

Resilient solid tires are used for industrial vehicles. Three-layer resilient tire composed of heel, middle and tread layers; the integrity of layers is empirical throughout the service life. This thesis investigated inter-layer adhesion capacity between middle and tread layer. The two compounds were pre vulcanized into 6 levels (0%,20%,40%,60%,80%, and 100%) at 100 °C, by changing the Pre-vulcanization time. Primary vulcanized sample was vulcanized secondarily at 150 °C and 170 °C; inter-facial bonding strengths were compared.

Increased secondary vulcanization temperature decreased the inter-layer adhesions. Based on adhesion strength, manufacturing limitations and physical properties, the optimum primary vulcanization level selected. To develop acceptable bonding at 0% pre vulcanization of middle layer, the tread layer could pre vulcanized up to 80% at 150 °C secondary vulcanizing temperature and up to 20% at 170 °C. At 20% pre vulcanized middle layer, tread layer could pre vulcanized with the secondary vulcanization temperature of 150 °C and

170 °C respectively. At 40% pre vulcanized middle layer, tread layer could pre vulcanized up to 40% at 150 °C secondary temperature; but at secondary temperature of 170 °C, tread layer bonded well only at 0% degree pre vulcanization.

In conclusion, 40% of middle and tread layer pre vulcanization levels are suggested as optimum pre vulcanization level at secondary vulcanization temperature of 150 °C, 20% of middle and tread layer pre vulcanization levels was the optimum for secondary vulcanization temperature of 170 °C. Out of two secondary vulcanization temperatures, 170 °C and 20% of middle and tread layer pre vulcanization levels suggested as the optimum pre vulcanization level.

Keywords: Interfacial bonding, pre cure, vulcanization temperature, rubber to rubber bonding

# TABLE OF CONTENT

| Declaration of the candidate & supervisor i              |  |  |
|----------------------------------------------------------|--|--|
| Acknowledgementii                                        |  |  |
| Abstractiii                                              |  |  |
| Table of Contentiv                                       |  |  |
| List of Figures                                          |  |  |
| List of Tablesviii                                       |  |  |
| List of Abbreviationsix                                  |  |  |
| 1. Introduction 1                                        |  |  |
| 1.1 History of the tire 1                                |  |  |
| 1.2 Global tire market 1                                 |  |  |
| 1.3 Types of tires                                       |  |  |
| 1.4 Solid tire                                           |  |  |
| 1.4.1 Resilient tire components and their functions      |  |  |
| 1.5 The resilient tire manufacturing process             |  |  |
| 1.6 Research objectives                                  |  |  |
| 2. Literature review                                     |  |  |
| 2.1 Compounding of rubber                                |  |  |
| 2.1.1 Rubbers                                            |  |  |
| 2.1.2 Fillers                                            |  |  |
| 2.1.3 Anti-degradants                                    |  |  |
| 2.1.4 Curatives                                          |  |  |
| 2.2 Compound mixing                                      |  |  |
| 2.3 Rubber to rubber interface bonding strength          |  |  |
| 2.4 Vulcanization of rubber 1                            |  |  |
| 2.4.1 Effects of vulcanization on vulcanizate properties |  |  |

|    | 2.4.2 Characterization of the vulcanization process    | 13   |
|----|--------------------------------------------------------|------|
|    | 2.4.3 Effect of vulcanization temperature              | 16   |
|    | 2.5 Problem statement                                  | 17   |
| 3. | . Materials & experimental techniques                  | 18   |
|    | 3.1 Materials and compounding                          | 19   |
|    | 3.1.1 Compound batch variation.                        | 21   |
|    | 3.1.2 Vulcanization system                             | 22   |
|    | 3.2 Vulcanization                                      | .22  |
|    | 3.2.1 Evaluation of vulcanization time                 | . 22 |
|    | 3.2.2 Compression moulding                             | .23  |
|    | 3.3 Sample preparation                                 | . 23 |
|    | 3.3.1 Compound preparation for primary vulcanization   | . 23 |
|    | 3.3.2 Primary vulcanization of samples                 | . 24 |
|    | 3.3.3 Vulcanization of adhesion samples                | . 27 |
|    | 3.4 Determination of properties                        | . 29 |
|    | 3.4.1 Rheological analysis                             | . 29 |
|    | 3.4.2 Adhesion test                                    | . 30 |
|    | 3.4.3 Microscopic investigations                       | . 31 |
|    | 3.4.4 Tensile properties                               | . 31 |
|    | 3.4.5 Tear strength                                    | . 32 |
|    | 3.4.6 Hardness test                                    | . 32 |
| 4  | . Results and discussion                               | . 33 |
|    | 4.1 Microscopic investigations of the bonded surface   | . 33 |
|    | 4.1.1 Binocular microscopic images of failure surfaces | . 34 |
|    | 4.2 Rheometer results of primary vulcanizates          | . 36 |



| References List                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 5. Conclusion and recommendation 60                                                                                                                |
| 4.4.3 Influence of optimum primary vulcanizates on solid tire performance 56                                                                       |
| 4.4.2 Physical properties of optimum primary vulcanizate samples                                                                                   |
| 4.4.1 Selecting an optimum vulcanizate sample                                                                                                      |
| 4.4 Physical property evaluation of optimum vulcanizate samples                                                                                    |
| 4.3.8 Effect of secondary vulcanization temperature on who with different<br>primary vulcanization level of tread layer                            |
| 4.2.9. Effect of accordery vulcanization temperature on M100 with different                                                                        |
| 4.3.7 Effect of secondary vulcanization temperature on M80 with different                                                                          |
| primary vulcanization level of tread layer                                                                                                         |
| 4.3.6 Effect of secondary vulcanization temperature on M60 with different                                                                          |
| 4.3.5 Effect of secondary vulcanization temperature on M40 with different primary vulcanization level of tread layer                               |
| 4.3.5 Effect of accorder, vulcarization temperature on M40 with different                                                                          |
| 4.3.4 Effect of secondary vulcanization temperature on M20 with different                                                                          |
| 4.3.3 Effect of secondary vulcanization temperature on M0 with different primary vulcanization level of tread layer                                |
| 4.3.2 The influence of middle and tread layer primary vulcanization level on their interlayer adhesion at high secondary vulcanization temperature |
| 4.3.1 Influence of middle and tread layer primary vulcanization level on their interlayer adhesion at low secondary vulcanization temperature      |
| 4.3 Influence of middle and tread layer primary vulcanization level on their interlayer adhesion                                                   |
| 4.2.2 Rheometer results at 150 °C and 170 °C for different primary vulcanization levels of the tread compound                                      |
| 4.2.1 Rheometer results at 150 °C and 170 °C for different primary vulcanization levels of the middle compound                                     |

#### LIST OF FIGURES

| Figure 1.1 Components of a three-layer resilient tire                                  |
|----------------------------------------------------------------------------------------|
| Figure 1.2 Basic steps of the resilient tire manufacturing process                     |
| Figure 2.1 Network formation during vulcanization                                      |
| Figure 2.2 Vulcanizate properties as a function of the crosslinking density            |
| Figure 2.3 Typical rheometer graph for rubber vulcanization                            |
| Figure 2.4 Primary, secondary and total vulcanization                                  |
| Figure 2.5 Resilient tire middle to tread premature failure                            |
| Figure 3.1 Basic steps of the experiment                                               |
| Figure 3.2 Primary vulcanizate                                                         |
| Figure 3.3 Adhesion sample with dimensions                                             |
| Figure 3.4 Adhesion test sample and forces                                             |
| Figure 4.1 Middle-tread interface failure                                              |
| Figure 4.2 Middle tearing failure                                                      |
| Figure 4.3 The surface finish of "middle teared" surface nature                        |
| Figure 4.4 The surface finish of "rough teared" surface nature                         |
| Figure 4.5 The Surface finish of "rough" surface nature                                |
| Figure 4.6 The Surface finish of "matt" surface nature                                 |
| Figure 4.7 The Surface finish of "glossy" surface nature                               |
| Figure 4.8 Adhesion results and acceptable level for samples that secondary vulcanized |
| at 150 °C                                                                              |
| Figure 4.9 Adhesion results and acceptable level for samples that secondary vulcanized |
| at 170 °C 46                                                                           |
| Figure 4.10 Adhesion results between M0 with different tread pre vulcanizates 49       |
| Figure 4.11 Adhesion results between M20 vs different tread pre vulcanizates 50        |
| Figure 4.12 Adhesion results between M40 vs different tread pre vulcanizates 51        |
| Figure 4.13 Adhesion results between M60 vs different tread pre vulcanizates 52        |
| Figure 4.14 Adhesion results between M80 vs different tread pre vulcanizates 52        |
| Figure 4.15 Adhesion results between M100 vs different tread pre vulcanizates 53       |

# LIST OF TABLES

| Table 3.1 Formulation of middle layer compound 19                                              |
|------------------------------------------------------------------------------------------------|
| Table 3.2 Formulation of tread layer compound 20                                               |
| Table 3.3 First stage middle compound mixing cycle  21                                         |
| Table 3.4 Second stage middle compound mixing cycle                                            |
| Table 3.5 First stage tread compound mixing cycle  21                                          |
| Table 3.6 Second stage tread compound mixing cycle                                             |
| Table 3.7 Primary vulcanization time of middle pre-vulcanizates  26                            |
| Table 3.8 Primary vulcanization time of tread pre-vulcanizates  26                             |
| Table 3.9 Low secondary vulcanization temperature sample names and primary                     |
| vulcanization percentages                                                                      |
| Table 3.10 High secondary vulcanization temperature sample names and primary                   |
| vulcanization percentages of composition layers                                                |
| Table 4.1 Cure characteristics of middle vulcanizates tested at 150 °C                         |
| Table 4.2 Cure characteristics of middle vulcanizates tested at 170 °C 36                      |
| Table 4.3 Cure characteristics of tread vulcanizates tested at 150 °C                          |
| Table 4.4 Cure characteristics of tread vulcanizates tested at 170 °C                          |
| Table 4.5 Adhesion results of samples that secondary vulcanized at 150 °C 40                   |
| Table 4.6 Middle vulcanizate self-adhesion results, secondary vulcanized at 150 $^{\circ}$ C   |
|                                                                                                |
| Table 4.7 Tread vulcanizate self-adhesion results, secondary vulcanized at 150 $^{\circ}$ C 42 |
| Table 4.8 Adhesion results of samples that secondary vulcanized at 150 °C 45                   |
| Table 4.9 Middle vulcanizate self-adhesion results, secondary vulcanized at 170 °C             |
|                                                                                                |
| Table 4.10 Tread vulcanizate self-adhesion results, secondary vulcanized at 170 °C             |
|                                                                                                |
| Table 4.11 Optimum vulcanization levels 54                                                     |
| Table 4.12 Physical properties of optimum primary vulcanizate configuration 1 55               |
| Table 4.13 Physical properties of optimum primary vulcanizate configuration 2 55               |
| Table 4.14 Physical properties of optimum primary vulcanizate configuration 3 55               |
| Table 4.15 Pre vulcanization time of optimum pre vulcanizates                                  |

# LIST OF ABBREVIATIONS

| 6PPD            | N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine |
|-----------------|----------------------------------------------------|
| ASTM            | American society for testing and materials         |
| B.C.            | Before Christ                                      |
| BR              | Polybutadiene rubber                               |
| CAGR            | Compound annual growth rate                        |
| FEA             | Finite element analysis                            |
| LCV             | Light commercial vehicle                           |
| M&HCV           | Medium and heavy commercial vehicle                |
| M <sub>H</sub>  | Maximum torque                                     |
| MI              | Initial torque                                     |
| ML              | Minimum torque                                     |
| MOR             | 2-(4-Morpholinothio) benzothiazole                 |
| NR              | Natural rubber                                     |
| ODR             | Oscillating disc rheometer                         |
| OTR             | Off the road                                       |
| pphr            | parts per hundred rubber                           |
| PVI             | Pre vulcanization inhibitor                        |
| RPA             | Rubber process analyzer                            |
| RSS             | Ribbed smoked rubber sheet                         |
| SBR             | Styrene butadiene rubber                           |
| t90             | Optimum cure time                                  |
| ts <sub>2</sub> | Scorch safety                                      |