
A Rule-based Toolkit for Automated
Generation of Microservices

Architecture

K. J. P. G. Perera
178045U

Thesis submitted in partial fulfillment of the requirements for the Degree of Master of

Science by Research

Department of Computer Science & Engineering
University of Moratuwa

Sri Lanka

July 2019

 ii

Declaration

I declare that this is my own work and this dissertation does not incorporate without

acknowledgement any material previously submitted for a Degree or Diploma in any other

University or institute of higher learning and to the best of my knowledge and belief, it does

not contain any material previously published or written by another person except where the

acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and

distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the

right to use this content in whole or part in future works (such as articles or books).

Signature: Date:

Name: K. J. P. G. Perera

The above candidate has carried out research for the MSc Dissertation under my supervision.

Signature of the supervisor:………………………….. Date:
Name of the supervisor: Dr. G. I. U. S. Perera

 iii

Abstract

Software applications play a critical role in current business world; hence it is necessary to design a

quality and a sound architecture which facilitates it to become a scalable, extensible and highly available

solution. In terms of designing and developing software applications, software engineering community

has started shifting towards serverless-microservices instead of building large monolith applications.

It requires high experience and expertise to understand each business scenario along with considering

non-functional requirements too to design a high-level software architecture which would be the ground

point for a software application. The traditional manual process of doing the above is tedious as well as

can be error prone when architecture designing is done without proper experience and expertise, which

could eventually degrade the quality of the software application.

We introduce TheArchitect, a rule-based system providing a tool-based support in order to design the

best fitted high-level architecture containing serverless microservices, preserving the identified non-

functional requirements too, for any given application. Furthermore, TheArchitect provides the ability

to a software engineer also to generate a high-quality high-level architecture even without an

experienced software architect. Considering the increasing tendency within the software engineering

community to move away from monolith application development towards microservices-serverless

based application development, TheArchitect has also been developed focusing on generating high-

level application architecture designs based on serverless-microservices.

TheArchitect was used to generate architecture designs for restaurant management domain. System

generated architecture designs for two real world applications and how experienced architects’

modifications are incorporated as modified rules for future designs have been discussed. Further a

performance evaluation is conducted on TheArchitect to provide an analysis on the time it takes to

process the requirements and design the architecture for various real-world systems along with an

industry user study is presented evaluating the usability of TheArchitect.

Keywords: Software Architecture, Microservices Architecture, Serverless Architecture, Domain

Driven Design, Architecture Evaluation

 iv

Acknowledgments

I would like to express my sincere gratitude to my mentor Dr. Indika Perera and my supervisors

for the guidance, support provided throughout my research. I would not be able to achieve all

what I have achieved without your incredible mentorship and advices from the beginning.

I would like to thank all the staff members of the Department of Computer Science and

Engineering for their continuous and generous support provided for me.

I am also grateful for all the software architects and technical leads within the industry who

helped in evaluating the developed tool (TheArchitect), as well as spent their valuable time in

helping out in terms of fine tuning TheArchitect.

Special thanks to my family and my loved ones for your encouragement and understanding

throughout the past two years.

 v

Table of Contents

Declaration ... viii

Abstract ... viiiviii

Acknowledgement .. iv

Table of Contents ... v

List of Tables .. vi

List of Figures .. viii

List of Abbreviations ... x

1. Introduction .. 1

1.1 Background .. 1

1.2 Motivation for the Research ... 2

1.3 Research Statement .. 2

1.4 Objectives of the Research ... 4

1.5 Research Methodology .. 4

1.6 Contributions ... 5

1.7 Organization of the Thesis ... 5

2. Literature Review ... 7

2.1 Microservices Architecture .. 7

2.2 Serverless Architecture .. 13

2.3 Rule-Based Systems ... 15

2.4 Domain Specific Software Architecture (DSSA) .. 16

2.5 Backend for Frontend (BFF) .. 16

2.6 Service Oriented Architecture (SOA) and Micro-services .. 17

2.7 Architecture Description Languages (ADLs) – Model Software Architecture Based

Development .. 17

2.8 Formal Process for Software Architecture Improvement .. 22

2.9 Scenario-Based Software Architecture Evaluation .. 24

3. Methodology .. 26

3.1 Input Wizard .. 26

3.2 Data Processor ... 28

 vi

3.3 Architecture Generator ... 28

3.4 Visual Representation .. 29

4. Implementation .. 31

4.1 Knowledge Base .. 31

4.2 Architecture Generation Algorithm ... 32

4.3 Visual Representation .. 40

5. Experiments ... 41

5.1 Experiment Design ... 41

5.2 Experiment Type A .. 42

5.3 Experiment Type B .. 45

5.4 Experiment Type C .. 45

6. Results and Discussion .. 46

6.1 Order Receive Application .. 46

6.2 Inventory Management Application .. 50

6.3 Performance Evaluation ... 54

6.4 User Study Statistics .. 55

7. Conclusion ... 57

7.1 Study Limitations ... 58

7.2 Future Directions ... 59

8. References .. 60

 vii

List of Tables

Table 1: ADL Facilitation for Modeling Components [14] ... 18

Table 2: ADL Facilitation for Modeling Connectors [14] ... 19

Table 3: ADL Facilitation for Modeling Architectural Configurations [14] 20

Table 4: ADL Tool-Based Support [14] .. 21

Table 5: Weights of evaluation metrics – Restaurant management domain 44

Table 6: Order Receive Application - Services based metrics evaluation on system generated

architecture ... 50

Table 7: Order Receive Application - Services based metrics evaluation on user

modifications accepted architecture ... 50

Table 8: Inventory Management Application - Services based metrics evaluation on system

generated architecture .. 54

Table 9: Inventory Management Application - Services based metrics evaluation on user

modifications accepted architecture ... 54

Table 10: Number of high-level system epics vs processing times ... 54

 viii

List of Figures

Figure 1: Monolith System vs Microservice architecture-based systems [5] 8

Figure 2: Work Organization for Monolith vs Microservices architecture systems [5] 9

Figure 3: Basic Build Pipeline [5] ... 12

Figure 4: One BFF per user interface .. 16

Figure 5: Software Architecture Improvement Cycle [9] .. 22

Figure 6: High-level architecture of TheArchitect ... 26

Figure 7: TheArchitect - Base rule set for any application domain ... 27

Figure 8: Commission Calculator Application - High-level architecture design diagram 29

Figure 9: Commission Calculator - Serverless technology analysis .. 30

Figure 10: Commission Calculator - Updated rules set for finance domain 31

Figure 11: Algorithm 1 – High-level architecture generation algorithm 32

Figure 12: Algorithm 2 – Path builder algorithm .. 33

Figure 13: Algorithm 3 – Clear path algorithm ... 33

Figure 14: Flow chart – High-level architecture generation algorithm based on API

availability .. 36

Figure 15: Flow chart - High-level architecture generation algorithm based on database

availability .. 37

Figure 16: Flow chart - Incorporating domain specific rules set in generating high-level

architecture ... 38

Figure 17: Order Receive Application - System generated high-level architecture design

diagram .. 47

Figure 18: Order Receive Application - High-level architecture design diagram with accepted

user modifications .. 48

Figure 19: Order Receive Application - Component based metrics evaluation on system

generated architecture diagram .. 49

Figure 20: Order Receive Application - Component based metrics evaluation on user

modifications accepted architecture diagram ... 49

Figure 21: Inventory Management Application - System generated high-level architecture

design diagram ... 51

Figure 22: Inventory Management Application - High-level architecture design diagram with

accepted user modifications ... 52

 ix

Figure 23: Inventory Management Application - Component based metrics evaluation for

system generated architecture diagram .. 53

Figure 24: Inventory Management Application - Component based metrics evaluation on user

modifications accepted architecture diagram ... 53

Figure 25: Number of problem elements against the number of modifications for the rule set

.. 55

Figure 26: User preference statistics for TheArchitect .. 56

 x

List of Abbreviations

HTTP Hyper Text Transfer Protocol

API Application Programming Interface

AWS Amazon Web Services

ADL Architecture Description Language

DDD Domain Driven Design

DSSA Domain Specific Software Architecture

BAAS Backend-as-a-Service

MBAAS Mobile Backend-as-a-Service

FAAS Function-as-a-Service

BFF Backend-for-Frontend

SOA Service Oriented Architecture

 1

1. Introduction

1.1 Background

In the recent past in software engineering industry there had been a huge buzz going around

microservices and serverless architecture-based application development.

Microservices architecture encourages bringing up a one application consisting of tiny services,

which runs its own process independently and continue to communicate among each other

using lightweight communication mechanisms. Each service by nature should be

independently manageable, maintainable and deployable [1]. Further, this provides the ability

to use different technologies and different teams to develop and maintain different services.

Serverless architecture primarily focuses on developing applications which does not worry on

managing server-side infrastructure rather it focuses on core business logic development and

relying on separate service providers to maintain backend infrastructure [2], [3], [4]. Generally,

these are rich client applications (web/mobile) that use the vast ecosystem of cloud access.

Traditional process of architecture generation requires the software architects to be updated on

the microservices and serverless technologies and its fundamentals and then design system

architecture based on those. In the world of software engineering, system requirements

specification provides the business requirements of the intended system to the software

architect and based on the obtained knowledge software architect will design a high-level

architecture diagram. This process requires high expertise in order to understand each business

scenario and design a high-level architecture diagram which would lead to develop a software

application, serving identified end user requirements, preserving all noted performance

measures. Most importantly this manual process is error prone as well as tedious.

 2

1.2 Motivation for the Research

Software architecture is one prominent field which keeps on changing with latest technologies

and frameworks. The current trend is to shift from architecting large monolith applications

towards architecting serverless microservices [2], [5], [6]. Amazon, The Guardian, Netflix and

SoundCloud are some of the popular companies which have taken up necessary directions to

shift their applications towards serverless microservices [7], [8]. Further, Microsoft, Amazon

Web Services (AWS), Google have heavily invested on being service providers to facilitate

serverless paradigm introducing Microsoft Azure functions, google cloud functions and

lambda functions.

Software architecture denotes the high-level skeleton of a software application. High-level

architecture contains components, their properties and interactions among each of them. As

explained, the conventional process of designing an architecture for a software application is

tedious and could be error prone. In addressing the issues highlighted with the conventional

process, a promising solution would be to assist software architects with tool-based support to

generate high-level architecture, simplifying and accelerating the conventional process.

1.3 Research Statement

Most of the literature found on high-level software architecture designs focus on architecture

improvements [7] and architecture evaluations [8], [9], [10], [11] upon the traditional process.

Architecture Description Languages (ADLs) have been another high focus area under the

above discipline providing literature on ways and means of visualizing high-level architecture

designs. Further, some researches on ADLs have focused on comparing and classifying

different ADLs and developing guidelines on visualizing designed architecture [12], [14].

Microservices related research mostly cover up the technical fundamentals, characteristics,

patterns etc [1], [13], [15]. Serverless architecture related literature covers both its

characteristics [2], [16] as well as its implementation aspect and performance aspect [3].

To date there is no significant literature published on development of a tool-based system to

automate generation of high-level architecture designs using serverless microservices due to

the difficulty of capturing the business/technical requirements and identifying the serverless

microservices which suites those.

 3

At the inception of a project producing an architecture design for a software application would

require expert skills. We address the problem of needing expertise and experience in the field

of software architecture to design a high-level architecture using serverless microservices,

through automation. Even though field of software architecture, microservices and serverless

technologies are areas in which extensive research work has been carried out, there is no major

research contribution in terms of addressing the problem of eliminating the necessity of

expertise and experience in the field of software architecture, to design architecture diagrams

with serverless-microservices. Difficulty in both, capturing the business and technical

requirements as well as identifying serverless-microservices from the provided system

requirements are two major issues which happens to be the reason behind lacking any standout

research contribution under this area of interest.

We propose a technique which can be used to generate a high-level architecture design for any

software application using serverless-microservices.

The main research problem is as follows:

How to automate the process of producing a microservices based high-level architecture

design for any given application?

 4

1.4 Objectives of the Research

The goal of the research is to provide a tool for the architect to improve the efficiency of

generating high-level architecture designs using microservices. The objectives of the research

are as follows:

1. Identify the fundamentals of microservices and serverless designs

2. Identify architecture evaluation metrics to compare system generated architecture vs

architects’ modifications

3. Identify, design and develop the mechanism to accept system business requirements

4. Design and develop rule-based processing engine to generate the architectural

components and interactions among them

5. Design and develop architecture visualization component to demonstrate the system

generated architecture

1.5 Research Methodology

The research methodology comprised of research and development effort in creating a tool to

auto generate high-level architecture designs using microservices.

• Initially the research starts with identifying fundamentals of both microservices and

serverless based architectural styles.

• Extensive research will be carried out in various Architecture Description Languages

(ADLs), architecture visualizations as well as architecture evaluation techniques.

• Research and develop a wizard to obtain system business requirements in order to

understand the system context and initiate Domain Driven Design (DDD).

• Develop the rule-based processor to identify architectural components and the

interactions among them

• Design and develop the visualization component, to display the system generated

architecture

 5

1.6 Contributions

TheArchitect, a rule-based toolkit was designed and developed to automate the process of

generating microservices based high-level architecture diagrams as an outcome of this

research. TheArchitect, supports an architect to accelerate and simplify the conventional

process of designing architecture diagrams for custom applications.

Further, the following articles have been published from the research conducted so far:

• “TheArchitect: A Serverless-Microservices Based High-level Architecture
Generation Tool”, K. J. P. G. Perera, I. Perera. Published in 2018, in 17th IEEE/ACIS
International Conference on Computer and Information Science (ICIS).

• “A Rule-based System for Automated Generation of Serverless-Microservices
Architecture”, K. J. P. G. Perera, I. Perera. Published in 2018, in 4th IEEE International
Symposium on Systems Engineering (ISSE).

1.7 Organization of the Thesis

The rest of the thesis is organized as follows. Chapter 2 explains related work in the areas of

microservices architecture and its principles, serverless technology and its fundamentals, rule-

based systems and processing, domain specific software architecture (DSSA), Backend for

Frontend (BFF) and Service Oriented Architecture (SOA) concepts, and different architecture

evaluation processes.

Chapter 3 explains the research methodology breaking down to component level of

TheArchitect. In depth explanations on the input wizard, data processor, architecture generator

and visual representation component are captured under this chapter.

Chapter 4 explains the implementation details of the knowledge base which contains the rule

set for each domain, architecture generation algorithms and flows as well as implementation

information on architecture visualization.

Chapter 5 discusses the evaluation scheme for generated architecture designs as well as the

experiments conducted to evaluate TheArchitect.

 6

Chapter 6 analyzes the results and data gathered from these experiments as well as presents the

major observations and findings of the research.

Accomplishments obtained out of the conducted research are listed under chapter 7. Chapter 8

contains conclusion notes and future directives on the focused research area.

 7

2. Literature Review

2.1 Microservices Architecture

Microservices architecture counts on architecting a single application which contains

collection of small services, developed independently, talking to each other using lightweight

communication mechanisms, running its own process [1]. Furthermore, it allows to write

different services in different appropriate languages and also managed by different teams [1],

[17].

As shown in Figure 1 microservices uses a separate service which is independently developed

in order to get each element of functionality whereas, monolith systems will combine all its

functionalities into one single process which becomes harder to manage and maintain among

different teams [17]. Furthermore, compared to monolith systems the flexibility for continuous

change embracement in microservices architecture has influenced world of commercial

software engineering to shift from monolith architectures to microservices based architectures.

Embracing change in monolith systems is way harder compared to microservices based

systems because even for a small change it needs the complete monolith to be deployed and

tested. Further, due to the complexity it incurs overtime, it is harder to maintain a proper

modular structure within the system [1], [5], [6].

 8

Figure 1: Monolith System vs Microservice architecture-based systems [5]

Microservices architecture defines itself based on the following characteristics [1], [7], [8],
[17].

• Componentization Services as Components

Microservices architecture is totally built on the concept of “component” which is a

unit of service that is independently developed and maintained. Microservices

componentization happens by breaking down into services. In today’s software

engineering terms external libraries tend to be considered as components but the issue

is if few libraries are included in one single process, once a change done to any

component requires redeployment of the entire process, whereas with services, each

service is independently deployable. In this manner microservices architecture itself

facilitates great support for change management process in commercialized software

development.

 9

• Work organization and segregation

Figure 2 denotes the work organization difference among the monolith architecture

systems vs microservices based systems. The traditional understanding to split a large

application into parts, is to different units or teams to focus on different layers of the

application, leading to database teams, server-side teams and user interface design

teams. The negative side of this is that even completion of a simple change might

require cross team involvement.

The microservice approach being different to above is to, split up the application into

services organized around business capability. Where one business capability covers

user interface, server side and database implementation. Always the considered service

has a business value addition.

Figure 2: Work Organization for Monolith vs Microservices architecture systems [5]

 10

• Single Responsibility

Fundamentally, correctly identified microservices should be modeled based on the

single responsibility principle. In a nutshell single responsibility principle means

separate out thing that does not change for the same cause and combine any which

changes for the same reason. Adhering to this principle when modeling microservices

provides to have proper cohesion but at the same time having related code grouped

together.

• Products not Projects

Microservices has directly impacted commercialized software development. It tends to

favor products over projects, which reflects that it does not to simply target delivering

some piece of software, but it would earn ownership of an entire product life cycle

covering up to the extent it would be providing support for some extent too. This has

created a separate paradigm where now software engineering community thinks

through the extent that software can assist to enhance the business capabilities.

• Smart endpoints and dumb pipes

Traditional monolith systems focus on smarts communication mechanism. As an

example, traditional systems encourage using ESBs, containing sophisticated

messaging whereas microservices based systems does not put focus on smart

communication.

Unlike above, microservices relies on smart endpoints and dumb pipes. Its focus is on

simple lightweight communication protocols. Tow most commonly used protocols are

HTTP request/response facilitated with resource APIs and lightweight messaging. In

terms of messaging mechanism simple implementations such as ZeroMQ or RabbitMQ

is advised with microservices based applications.

 11

• Decentralized Governance

Microservices supports the advantages obtained by having multiple tech platforms

(development approach, technologies, standards etc.) instead of having one platform

for the whole system as a monolith.

Overheads are less valued in microservices approach. In order to facilitate service

contracts evolving independently service design patterns are often applied.

Incorporating consumer driven patterns increase the confidence of the developed

services which ensures its proper functionality.

• Decentralized Data Management

This is another refactoring provided to the traditional monolith architecture by

microservices, meaning maintaining a separate database for each microservice. This

would allow to vary the chosen databases for a given application as the application is

divided into different microservices.

• Infrastructure Automation – Continuous integration

Evolution of the cloud servicing platforms such as AWS, Google Cloud, Microsoft

Azure has reduced the complexity as well as time to market for applications built and

deployed as microservices.

Most of the microservices based applications are being built by agile teams, those

highly respects continuous integration and delivery (CI/CD). As shown in Figure 3 high

focus lies on automated test execution and automated deployment. These features have

added much value in developing commercial applications in today’s context which

happens to be so much volatile.

 12

Figure 3: Basic Build Pipeline [5]

• Design for failure

Another fundamental which should be adhered in designing true microservices are fault

tolerance of its designed services. Initially, this might include additional complexity to

be handled compared to monolith systems but eventually as the expansion of the system

and growth happens this will increase the quality and maintainability.

• Evolutionary Design

Microservices design provides the developers to control change without slowing down

the change. In simple terms microservices embrace change without any hesitance.

Furthermore, microservices design allows any particular service within the current

system to be consumed by any other third party at any time and complete its need which

would be difficult to accompany with a monolith system.

Apart from many advantages noted above one of the major concerns with microservices

happens to be the intercommunication via Remote Procedure Calls (RPCs) which is relatively

costlier compared to process calls within a monolith system. Furthermore, in terms of

commercial development using microservices, increases the resource usage with the need to

maintain its own container with required memory and Central Processing Unit (CPU) for each

separate functionality or service. Additional effort is required in securing the application with

respect to increased RPCs. Moving from monolith to microservices, creates comparatively

 13

more complex system architecture as well as complex and challenging work on the testing

domain [2], [7].

The positives outweighing the negatives has made the world of software engineering seriously

consider microservices in commercial application development.

2.2 Serverless Architecture

Serverless architecture is a relatively new and evolving concept for the world of software

engineering. Simply, serverless means that application developers only have to focus on

business logic development without focusing on managing and maintaining backend

infrastructure [2], [3], [4]. The most important fact to be highlighted is that this does not mean

that there are no servers to run the application, instead third-party service providers maintain

the entire backend infrastructure on behalf of us. They offer all necessary services such as

maintaining servers, load balancing, auto scaling, security, database operations etc. The

reference terminology which used for the above implementation is called Backend-as-a-

Service (BaaS) or Mobile Backend-as-a-service (MbaaS) [2], [18].

In year 2014, with the introduction of AWS Lambda, Amazon revolutionized the serverless

paradigm. The revolutionary change initiated by AWS introducing AWS Lambda functions,

had a major impact on the traditional way of backend process running on a server 24/7

anticipating HTTP requests/API calls. AWS built a paradigm where instead of a dedicated

server space or a dedicated backend processor running all the time, backend piece of code is

executed based on an event triggered mechanism. Considering from a developer’s context, he

or she can completely ignore focusing on managing and maintaining when being in this

paradigm, instead simply focus on writing proper code to be executed upon an event trigger.

Cloud service provider will then take up the responsibility of finding a server space to execute

the code and manage scaling. This change was noted as Function-as-a-Service (FaaS) [3], [18].

Inception of serverless architectures has made a huge impact on the traditional approach of

modeling a system with the basic three-tier architecture. System under the traditional three-tier

architecture will probably be consisting of rather an unintelligent client and core business logic

written in the server side. Serverless provides the pathway to building applications with rich

clients integrated with BaaS and FaaS. In line with the above statement a traditional systems

 14

authentication logic will be in the server side which would be replaced by a BaaS within

serverless architecture. Furthermore, a core use case could be replaced by a FaaS based on an

event trigger. As mentioned above serverless has been able to add new dimension in the world

of software engineering in developing commercialized applications [2], [3].

FaaS the new dimension of serverless architectures, has many characteristic advantages.

Fundamentally FaaS provides the advantage of running backend code without managing and

maintaining your own servers. FaaS takes the full responsibility in handling the scalability of

the application as well as instead of making payments for the total server up time, FaaS

introduces a charging mechanism which is based on the usage for its millisecond. FaaS will

calculate the server usage based on the incoming requests serving time. In simple terms FaaS

reduces both the development and operational costs [3], [18]. In commercial application

development one other key benefit that FaaS dimension of serverless architectures provide is

the reduction in packaging and deployment complexity. Even though with all the above-

mentioned positives there are areas that needs further improvement within serverless

architectures. Multitenancy is one major concern of being serverless, where multiple customer

applications are running on the same machine. This could lead to security vulnerabilities,

concerns on robustness as well as application performance. Vendor lock-in has become another

concern as the FaaS implementation becomes vendor specific and raises the concerns of if the

developers needs to switch the vendor, then it might be necessary to change operational tools,

code and may even need to change application design or architecture [3], [4], [18], [19].

Considering the advantages that FaaS brings into the world of software development has made

it a to become a huge impact to the modern-day application architecture. Apart from AWS

Lambda, leading tech companies such as Google, Microsoft have entered in facilitating FaaS

with the introduction of cloud functions and Microsoft Azure respectively.

 15

2.3 Rule-Based Systems

A rule-based system contains set of rules which is predefined, or which is learned real time and

evolves continuously in order to produce outcomes based on the existing rules set. In summary

it is special type of expert system [20]. If the rule-based system is modeled to learn from real

data, it would have the ability to continuously update its knowledge base. Capturing and

refining the human expertise is one of the major capabilities of modern-day rule-based systems

[20], [21]. There are many different ways and means which could be used in developing a rule-

based system, but all of those commonly share below set of key properties.

• Incorporating human knowledge is done in conditional if-then rules

• Solves complex problems using appropriate rules combining the results in an

appropriate manner

• Increment of skill level and the improvement of its knowledge base is directly

correlated with each other

• It determines which is the best sequence of rules to be executed

A rule-based system modeled using if-then rules will evaluate the input with the existing

condition and then decide the best suited output. As more data comes in, system will learn from

the data which flows through it and as a result of that existing rules will be continuously

updated. The continuously updating rules will result in a continuous alteration to the output the

system provides, improving the overall accuracy of the system. Probabilistic logic,

Computational logic, Deterministic logic, Rough logic and Fuzzy logic are some of the front

running logic types within rule-based systems [20].

 16

2.4 Domain Specific Software Architecture (DSSA)

Domain-Specific Software Architecture (DSSA) is a collection of software components, which

effectively communicate with each other across a specific domain, brought in to a standardized

and predefined structure effective for building successful applications [22].

Knowledge on DSSAs, performs highly valuable when previous experience and past

architecture knowledge can be brought in to influence on future application development [23],

[24], [25], [26]. The key rational behind the above explanation is that if reasonable amount of

work has been conducted within a specific domain, that knowledge acquired can lead to a best

suitable solution for majority of the applications within that specific domain. Future

applications to be developed within a specific domain should always be inspired by the

previous obtained knowledge and learnings for the past application development within that

domain [22], [25].

2.5 Backend for Frontend (BFF)

BFF defines the concept of containing a dedicated server-side backend for each type of client

application, as shown in Figure 4. Fundamentally the dedicated server-side backend is closly

coupled to a given client application [27].

Figure 4: One BFF per user interface

 17

2.6 Service Oriented Architecture (SOA) and Micro-services

Service-oriented architecture (SOA) contains multiple services which collaboratively work

with each other in order to facilitate a user need. A service identified in SOA means a

completely dedicated process. Communication within each service in a SOA happens across a

network rather than method calls.

Microservices approach has emerged from SOA, considering business boundaries and the

intended services in order to solve a real-world use case. All in all, microservices could be

identified as a specific approach for SOA [7], [28].

2.7 Architecture Description Languages (ADLs) – Model Software Architecture
Based Development

ADL for software applications provide a high-level modeling rather than focusing on detail

implementation points of source code. Accordingly, ADL must be simple in its own context,

understandable, facilitated with tool-based support, visually pleasing and containing graphical

syntax to analyze architectural descriptions [12], [14], [31], [32].

Systems high-level architecture is basically brought up of various components and its

connectors. In order to ADLs to provide a proper representation of systems architecture it needs

to model systems components, connectors and its configurations [31], [32]. Further, it is

mandatory for an ADL tool to provide support for architecture-based development and

evolution in order to truly become useful. Even though a considerable amount of research has

happened in terms of tool-based support for software architecture domain still there is a definite

gap to be bridged between the research scope and actual need. A most common fact on ADLs

are that though they provide tool-based support they focus on single purpose such as

architecture refinement or analysis [12], [14], [29], [30], [31].

Following is an analysis done on several ADLs comparing its effectiveness in modeling

components, connectors, architectural configurations and tool support [14].

 18

Table 1: ADL Facilitation for Modeling Components [14]

 19

Table 2: ADL Facilitation for Modeling Connectors [14]

 20

Table 3: ADL Facilitation for Modeling Architectural Configurations [14]

 21

Table 4: ADL Tool-Based Support [14]

 22

2.8 Formal Process for Software Architecture Improvement

Having a proper software application architecture is utmost necessary specially for larger,

complex and mission critical systems. Few years back the importance given on having a proper

software architecture for the developed system was comparatively very low and as the system

needed to incorporate changes and move forward it became more difficult to embrace change.

To make such changes in the software, it is vital to initially adapt the software to embrace

changes which more importantly require architecture improvements to the existing application

[7], [9], [33], [34].

The research work carried out within this extreme has produced a methodology which analyses

the existing software architecture and evaluates ways to improve it as well as ways to embrace

change using Relation Partition Algebra (RPA) model and improves the existing architecture

with the best suitable value additions. This complete end to end process is known as the

software architecture improvement cycle which is shown in Figure 5 and it is made up of four

main steps [7], [9].

Figure 5: Software Architecture Improvement Cycle [9]

 23

Step 1: Extract

Considering the inputs provided by the architects, the architecture description is extracted from

the software. Software architecture description described in this section refers to the relations

between so-called design entities. Considered design entities levels of abstraction which leads

to functions, models, components etc. RPA model contains the result of extract step.

Step 2a: Evaluate

Here in step 2 the evaluation of the RPA model is conducted. The evaluation will produce an

image of the application architecture according to the RPA model. Most importantly structures

of the software will be visualized as well as calculation of quality aspects would happen. The

benefit of outcomes of this step would be that the architect would be able to provide ideas to

change the existing RPA model in order to finetune the quality aspects.

Step 2b: Change

Outcomes of step 2a will lead to the beginning of step 2b. Hence both “Evaluate”, and

“Change” are closely connected sub parts of step 2. Identified changes of step 2a will be

conducted in step 2b. Importance of this step is that no changes are done to the actual software,

rather the changes are done to the abstract model. It is far easier to change the abstract model

as well as change results are available quickly. This further allows the architect to try different

changes as the changes are only imposed on the abstract model hence the software is not

corrupted. The nature of step 2 is after each “Change” step an “Evaluate” step would be

executed.

Step 3: Submit

The finalized changes on step 2 is used to submit the recipe. The order list of changes to be

performed upon the actual software is known as the recipe. The transformations to carry out in

step 4 will be entirely based on the recipe formulated here.

Step 4: Transform

Step 4 will be executed based on the recipe provided by step 3. Automating the transform step

will result in eliminating human errors which could occur if done manually as well as speed up

the process. Upon completion of step 4 software will again reflect the RPA model. Software

architecture improvement process can be restarted without conducting the extract step,

assuming the tool chain is error free.

 24

2.9 Scenario-Based Software Architecture Evaluation

Software architecture analysis and evaluation has become a well-established important practice

within the architecting paradigm of the software systems. Increased demand to achieve high

quality software systems has led it to be so. As the system gets more complex the development

effort, time to market, cost goes higher. The architects as well as developers use various tools

and methodologies to evaluate the quality of a system against its requirements [35]. After

conducting various research initiatives by various different research groups wide variety of

methods have been introduced for software architecture quality evaluation [10], [11], [12],

[13], [14], [36], [37].

Software Architecture Analysis Method (SAAM)

Industry identifies SAAM as the First mainstream scenario-based software architecture

analysis method. One of the most highlighting factors of SAAM is that it has the ability to

quickly assess many quality attributes such as modifiability, integrability, extensibility,

portability and functional coverage. Further SAAM asses the non-functional quality aspects

such as performance and reliability [10], [11], [13].

Architecture Tradeoff Analysis Method (ATAM)

ATAM is an improved version of SAAM to assess the quality attributes such as portability,

extensibility, modifiability, and integrability. The main improvement over SAAM is that

ATAM not only assess the quality attributes but also its interactions and interdependencies

among them too. This assessment allows to highlight opportunities and trade-off mechanisms

between each of the identified quality metrics.

In summary ATAM is based on SAAM, but yet an improved version of SAAM which primarily

focus on how effectively and efficiently current software architecture satisfies identified

quality goals [10], [11], [12].

 25

Cost Benefit Analysis Method (CBAM)

CBAM main focus areas are analyzing benefits, costs as well as implications of architectural

decisions. Most importantly CBAM evaluates the level of uncertainty associated with

architectural decisions hence it allows the architects to make their decisions based on more

informed basis. Another element of CBAM is it acts as a bridge between the architecting

process and the economics of the software development organization.

Preliminary focus of SAAM and ATAM was around the quality attributes such as performance,

availability, usability, modifiability etc. CBAM makes a mark on claiming architectural costs,

benefits and risks are highly important and should be given the same consideration compared

to the quality attributes focused by SAAM and ATAM [10], [11], [14].

Architecture Level Modifiability Analysis (ALMA)

ALMA is another type of scenario-based analysis method which focus on software

architecture modifiability. It allows to conduct software architecture modifiability assessment

by having set of indicators, assessing the risk and predicting maintenance cost. ALMA

supports comparing different systems among each other supporting software architecture

selection as well. In order to conduct multi system comparison ALMA uses change-

scenarios. As the first step of the modifiability assessment, a set of scenarios are identified

which might happen during the evolution of the system and then evaluate how well the

current architecture embrace change [10], [15], [16].

Family – Architecture Analysis Method (FAAM)

FAAM is a special type of scenario-based software architecture assessment technique

conducted upon information systems, focusing on two aligning quality aspects, extensibility

and interoperability. The main purpose of FAAM is to create a process to evaluate and assess

information system family architectures [10], [17].

 26

3. Methodology

The modularized architecture of TheArchitect, is illustrated in Figure 6. In order to explain

each modules workflow, I will be using a real-world example project (Commission Calculator)

which is designed to calculate commission for the sales agents.

Figure 6: High-level architecture of TheArchitect

3.1 Input Wizard

The input wizard initially requests to specify the focused application domain for the considered

application from a list of application domains (e.g., finance is the application domain for

Commission Calculator system). If the focused application domain does not appear within the

provided list of applications, user has the option to add it to the list. Next, the set of system

requirements need to be provided to the system.

Following are the information which will be fed to TheArchitect via the Input wizard

component.

• API availability – Contains information about the necessary APIs (e.g., In order to get

financial details Commission Calculator desktop application needs to consume finance

API).

• Data Storage – Contains the necessity of a database.

 27

• Read / Write Data privileges – Contains information on the responsibility of each use

case to write/read data to/from database.

• Client application/s – Contains information on which client application/s consumes

which service/s (e.g., finance services are only related to desktop client application

while commission grid related services will be used by both mobile and desktop

clients).

Furthermore, the set of rules which will be used within the architecture generator would be

determined based on the application domain that the user specified at the beginning of the

architecture generation process. In order to follow the concepts of DSSAs [24], TheArchitect

maintains a different rule set for each application domain. To start with any domain will be

using a base rule set as shown in Figure 7 to generate architecture design specific to that domain

until an experience software architect conduct modification upon the system generated

architecture which proves better than the system generated architecture.

Figure 7: TheArchitect - Base rule set for any application domain

 28

3.2 Data Processor

Responsibility within the Data processor is to map the system requirement related information

into set of predefined models. TheArchitect becomes a domain independent solution with its

ability to map system requirements of any domain to a predefined set of models. Internal

models of TheArchitect are as follows.

• Application model – Variations of client applications the system contains are collected

within the Application model (e.g., Commission Calculator system requires a mobile

and desktop client).

• Service model – Service model will contain details about each system requirement,

respective feature category and the respective client application/s which consumes it

(e.g., Obtaining and modifying financial statistics for the system are captured under

finance feature which only has access via desktop application).

• Data store model – Data store model contains API information which requires for

functionality of the system as well as data storage information (read / write capabilities).

3.3 Architecture Generator

Architecture generator determines the relevant client-side applications, BFFs, serverless-

microservices, data sources and the communication within each other. High-level architecture

generation algorithm (Algorithm 1) will start processing the models received from data

processor module.

Algorithm 1 (Figure 11, Figure 12, Figure 13) replicates the way that an experienced architect

thinks through in designing a system modeled with serverless-microservices. Next, the

processed set of components will then be flown through the flow shown in Figure 16. This will

verify and ensure that the finalize components and interactions among them are adhering to the

domain specific rule set. The only possible way where the domain specific rule set to be

updated would be based on the acceptance of a suggested change on the system generated

architecture by an experienced architect. If the rules within the relevant application domain has

 29

not been modified in a previous usage of TheArchitect, it will contain the initial state as

represented in Figure 7.

3.4 Visual Representation

Responsibility of this module is to display the generated serverless-microservices by

TheArchitect. Figure 8 contains components and interactions among them. The serverless

technology analysis is listed in Figure 9. Furthermore, visual representation module allows the

users to interact with the system in order to suggest modifications on the system generated

architecture.

Figure 8: Commission Calculator Application - High-level architecture design diagram

 30

Figure 9: Commission Calculator - Serverless technology analysis

 31

4. Implementation

The following section contains the implementation details regarding the knowledge base,

architecture generation algorithm and visual representation module. These have been already

published as my research contributions in [38] and [39].

4.1 Knowledge Base

Knowledge base comprises of set of documents each containing a different set of rules

associated with a respective application domain. Figure 7 contains the base rules set which is

applied to any application domain. Once the user modifications are accepted, the base rule set

will be modified (e.g., If a system generated architecture for Commission Calculator system is

modified and accepted, it will result modifying the base rules set under the respective

application domain as shown in Figure 10).

Furthermore, user modifications will be only accepted if the weighted average score of the

metrics for modified software architecture surpasses the system generated architecture

weighted average score. The considered metrics are listed under metrics-based evaluation [7]

technique.

Figure 10: Commission Calculator - Updated rules set for finance domain

 32

4.2 Architecture Generation Algorithm

Figure 11: Algorithm 1 – High-level architecture generation algorithm

 33

Figure 12: Algorithm 2 – Path builder algorithm

Figure 13: Algorithm 3 – Clear path algorithm

 34

Figure 11 contains the algorithm for high-level architecture generation along with Figure 12

and 13 denoting the path builder and clear path algorithms which is used within Algorithm 1

(Figure 11). Set of services and dataStores lists are input parameters for Algorithm 1 (Figure

11). These two params respectively contains service models and database models. One model

object representing each functional requirement contains within these lists.

Algorithm 1 (Figure 11) initially determines the necessary architectural components for the

intended system. Referring to lines 10-14, apps, type, APIs, dbReadStatus and dbWriteStatus

contains information on each system requirement with respect to associated client application

names, feature category it belongs to, APIs, data store information and data read/write

privileges.

To start with, algorithm will check whether the considered requirement is using any external

APIs (line 15). If it so next it will check whether there has been a record added to the apiRecords

list previously for the same type of a requirement and if it does not find any, a new entry will

be added to apiRecords (line 17). In similar terms line 18 checks whether dbRecords list

contains an entry related to the type the requirement belongs to and if it founds such a record

the old path will be cleared off (line 19) and a new with will be added (line 20). This path

modification ensures that the identified components are in line with the fundamentals of

microservices (e.g., persisting and fetching profile information both needs to be served by the

profile microservice). If it does not find the focused type within dbRecords, then it will check

whether it will exist within recordsWithoutDbs list (line 22) and if so, older path is cleared off.

Further the new path will be added (line 25).

Next, as shown in line 29 it checks whether the considered system requirement has any

associated data base read/write privileges. If at least one such privilege is found related to the

focused system requirement, algorithm will evaluate whether a old record exists within the

dbRecords list containing the same type (line 30). If no entry found, then type will be added to

the dbRecords list (line 31) and then it would check whether there is a record existing under

the focused type within apiRecords list (line 32) and if so the old path will be cleared (line 33)

and a new path will be added (line 35).

As checked in line 29 if the type related to the focused functional requirement does not have

any database privileges, then it would check whether there are no entries in dbRecords (line

 35

38). If it turns out to be true, then an entry will be added to the recordsWithoutDbs list (line

39) and also will be checked whether an entry exists in apiRecords list too (line 40). If it is so

the old path will be cleared off (line 41) and a new path will be added (line 43).

All system requirements will be processed through the focused loop from line 7 to line 46, and

as the final result of Algorithm 1 (Figure 11), a paths list will be returned. This list will contain

all the interactions among the identified serverless-microservices. The Algorithm 1 (Figure 11)

which is in the pseudocode format, is simplified and explained using Figure 14 and Figure 15.

Figure 14 covers from line 15 – line 28 whereas Figure 15 covers from line 29 – line 45.

 36

Figure 14: Flow chart – High-level architecture generation algorithm based on API
availability

 37

Figure 15: Flow chart - High-level architecture generation algorithm based on database

availability

 38

Figure 16: Flow chart - Incorporating domain specific rules set in generating high-level

architecture

 39

Next the paths list will be flown through the flow shown in Figure 16. The process will obtain

the latest set of rules related to the focused domain and would check whether any user has

modified the base rules set by evaluating modifiedByUser field. If a prior modification has not

happened means the paths list will not change hence this process stops and visual representation

component will be called upon to display the architecture design. Only if a previous

modification has taken place it will check upon the enableCombineMSs flag status in order to

determine whether there are any components to be combined. In case enableCombineMSs

results to be true TheArchitect will check whether there are any components containing a lesser

number of connections than which is specified under maxInteractions and if there are any those

will be combined with any of the previously combined components. Next, based on the value

of the enableMSwithoutDB flag TheArchitect would decide whether to introduce a

microservice to a flow which currently does not have a microservice with the intention to

decouple the API/DB layer and BFF component/s.

Visual representation model takes the necessary responsibility of focusing on the

enableOneBFFperClientApp flag. If the flag is true it will be move ahead with having one BFF

per each client application and it is false it will have one BFF for all listed client applications.

Finally, after the above modifications the modified paths list will be passed to the visual

representation component in order to display the determined high-level architecture.

 40

4.3 Visual Representation

Visual representation component displays the system generated architecture which contains

identified set of components as well connections between them (Figure 8). In order to draw the

architecture, TheArchitect will iterate via each path element within the paths list. One path

representing each feature category is included in the paths list.

Firstly, to formulate the links between BFF components and feature microservices,

TheArchitect will figure out the number of client applications and the features belonging to

each other. Any feature belonging to a specific client application will have a link to the specific

BFF which contains a direct link with its client application. Next, based on the microservices

and database statuses the other necessary elements will be drawn. Further, the external APIs,

would be added to the design along with the feature links.

The serverless technology analysis will be a static analysis conducted upon the identified

microservices as shown in Figure 9. As mentioned previously this module also facilitates in

obtaining change requests from experienced architects. Architect is provided with the facility

to mark the component that he intends to change and then to specify the other two components

that should become the successor and predecessor of the changed component.

 41

5. Experiments

Experimental setup of three different experiments that were conducted to study different

aspects of TheArchitect, is presented within this section.

The first type of experiment targeted comparing the system generated serverless-microservices

based architecture against an experienced architects design.

Focus of the second type of experiment was to measure the performance/processing time it

takes TheArchitect to generate a high-level architecture design containing serverless-

microservices.

The focus of the third type of experiment was to evaluate the user preference to use

TheArchitect against following the normal process of designing high-level architecture

diagrams for custom applications.

5.1 Experiment Design

To evaluate TheArchitect, we used to design architecture designs for multiple enterprise

applications. The first type of experiment targeted evaluating TheArchitect which was done

using a metrics-based evaluation to generate an overall score of the design architecture. The

evaluation parameters and the weights of those parameters were obtained from a panel of

industry/domain expert software architects.

Since the tool focused domain driven design, we specifically limited for one domain (restaurant

industry) in obtaining real world applications for which the tool generated architecture designs.

Further once TheArchitect generates the high-level architecture it was provided to the same

panel of architects and allowed them to conduct modifications and checked the evaluation score

on the modified architecture and then allowed TheArchitect to update the rule set of

architecture generation for the specific domain if the modified architecture exceeded the

evaluation score obtained by TheArchitect for the initial design. Further since the experiment

was limited to one domain of problems the refined rule set after generating a high-level design

was used in designing the next high-level design for the next real-world application. The

continuous learning model of TheArchitect allowed it to improve upon each architecture deign

 42

generation as well as reduce the number of problem elements/ manual modifications each time

it generates an architecture for a new real-world application in a domain which it had already

generated at least one architecture.

Focus of the second type of application was performance/processing times of TheArchitect and

in order to evaluate it multiple magnitude real world application system requirements were fed

to TheArchitect and measured time to generate a high-level architecture design which approves

by the panel of architects.

Third type of experiment focused on the usability evaluation of TheArchitect and in order to

obtain statistics on industry likeness to use TheArchitect deviating the traditional process of an

experienced architect generating the architecture from scratch each time was evaluated through

a questioner-based user study.

5.2 Experiment Type A

The quality of the generated architecture depends on the rule set that used to generate it, which

is ultimately specific to the application domain. Here we used multiple similar projects which

belongs to the same application domain, with the objective of evaluating the architecture

diagrams generated from TheArchitect on even grounds. Following are the metrics considered

for the architecture evaluation process [10].

• Coupling – Level of dependency between two components.

Coupling = Number of components called for each service / Number of services

• Cohesion – Similarity of the facilitated use cases by each component.

• Number of services provided by a component – This determines the distribution of

functionality over the entire design.

• Fan in – Number of called services of a component

• Fan out – Number of service calls of a component

 43

• Depth of scenario – Provides a measurement of the level of complexity of a given

scenario based on the designed architecture.

 Depth of scenario =

Total of number of Component interactions for each service / Number of services

If a specific element within the system generated architecture happens to produce an outlying

metric value, then that specific element is detected as a problematic element. The values differ

more than the twice the standard deviation from the mean value are identified as outlaying

values.

As explained above, TheArchitect provides the facility to a software architect to request

modifications against the system generated architecture. In order to evaluate the system

generated architecture against the experienced architect modified system we use weighted

average score of the above explained metrics. These weights would be deciding which metrics

are more critical in evaluating the more superior architectural design. Similarly, as the rule set,

weights would also be specific to a focused domain. Hence before using TheArchitect to

generate architectural designs for a new application domain expert architects need to define the

weights which are most appropriate for that domain. If the weights are not predefined

TheArchitect will be using equal weights in determining superior design. Furthermore, these

weights will only be allowed to tune once to avoid distorting the evaluation process. If this

restriction does not take place, then the architect/s could always twist around the weights and

force manually generated architecture to be superior than the system generated architecture.

Since the objective is to conduct domain driven design, the type A experiment was focused to

restaurant management industry related application. Three architects were involved in deciding

weights for the metrics which will be used for the architecture evaluations within the restaurant

domain. The architects who involved in this process had more than 8 years of experience in

designing applications for restaurant management domain. The weights that the panel of

architects determined for each metric for the restaurant management domain are shown in

Table 5.

 44

Table 5: Weights of evaluation metrics – Restaurant management domain

Metric Weight
Coupling 0.05
Cohesion 0.05
Number of services provided by a
component

0.3

Fan in 0.2
Fan out 0.2
Depth of scenario 0.2

First real-world system that TheArchitect was used to design a high-level architecture design

was “Order Receive Application”. “Order Receive” is a mobile application developed for

restaurant owners to obtain insights on their incoming deliveries. The mobile application

provides real time updates of the delivery time predicting any early/delay arrivals. Further, it

also provides information related to invoices associated with each delivery and maintains

profile-based preferences to subscribe/unsubscribe for push notifications. Hence this was the

first application used to design a high-level architecture, TheArchitect used its base rule set in

generating the architecture design and accepted domain experienced architect’s suggestions

upon the generated architecture where TheArchitect updated the rule set and created a domain

specific rule set which it used in the second experiment in terms of designing architectural

design for the second real world application in the restaurant management domain. “Order

Receive Application” contained 138 requirements categorized in to 11 high-level system epics.

Second real-world system which TheArchitect generated a high-level architecture design was

“Inventory Management Application”. “Inventory Management Application” mainly

facilitates in managing inventory within the restaurants. Application contains a desktop and

mobile client both. Restaurant owner can place orders, record sales and purchases using the

desktop application. Mobile client is developed for the suppliers, from which they can check

on orders, accept or reject order requests. Profile based preferences are configurable in both

clients. “Inventory Management Application” contained 151 requirements categorized in to 14

high-level system epics.

 45

5.3 Experiment Type B

The performance of TheArchitect was measured based on the processing times it takes to

process all the input system requirements and generate the high-level architecture designs.

5.4 Experiment Type C

In terms of experimenting the usability of TheArchitect, we conducted a survey among

software architects and software developers to mark whether they like or dislike to use

TheArchitect in their day to day work.

 46

6. Results and Discussion

6.1 Order Receive Application

The initially generated architecture diagram by TheArchitect for the Order Receive mobile

application is shown in Figure 17 and the architecture diagram with accepted user

modifications for the same system is shown in Figure 18. Metrics based evaluation is conducted

upon 6 identified components, facilitating 138 system requirements categorized into 11 high-

level system epics.

Figure 19 contains the component-based evaluation conducted upon initial system generated

architecture along with Figure 20 contains the component-based evaluation conducted upon

the architecture with accepted user modifications. Vertical bars in Figure 19 and Figure 20

represents Component based metric values shown for systems architecture without and with

user modifications. Horizontal bar in the same two figures shows the anomaly detection

benchmark for each metric using the summation of mean and two times the standard deviation

value.

Table 6 and Table 7 respectively contains the services-based metrics evaluation for initial

system generated architecture and the architecture with accepted user modifications.

In analyzing system generated architecture in Figure 17 against the architecture with accepted

user modifications shown in Figure 18 it is clear that user has requested to introduce an Order

MS from which the invoices and deliveries will be fetched/updated along with authentication

API to be invoked via Profile MS. Accepting user modifications resulted in eliminating external

API invocations directly from BFF and also reduce the number of components focused under

the component based metrics evaluation. Even though the deliveries component was a problem

element in terms of fan out measure within the system generated architecture, no problem

elements found within the amended architecture design. Further the possibility of a component

becoming a problem element even in future was also being reduced as a result of the user

modifications.

Table 6 figures compared against Table 7 figures proves that the accepted user modifications

have negatively impacted upon the coupling and depth of scenario measurements within the

 47

architecture. Yet TheArchitect accepts the requested user modifications relying on the weights

provided by the panel of experienced architects which denotes that positive impact of changes

outweigh the negative impact created by the two-metrics considered under services-based

metrics evaluation.

Figure 17: Order Receive Application - System generated high-level architecture design
diagram

 48

Figure 18: Order Receive Application - High-level architecture design diagram with accepted

user modifications

 49

Figure 19: Order Receive Application - Component based metrics evaluation on system
generated architecture diagram

Figure 20: Order Receive Application - Component based metrics evaluation on user
modifications accepted architecture diagram

 50

Table 6: Order Receive Application - Services based metrics evaluation on system generated

architecture

Metric Value
Coupling 1.27 component calls per service
Depth of scenario 1.64 component interactions per service

Table 7: Order Receive Application - Services based metrics evaluation on user
modifications accepted architecture

Metric Value
Coupling 1.91 component calls per service
Depth of scenario 2.27 component interactions per service

6.2 Inventory Management Application

Figure 21 shows the initially generated high-level architecture for the Inventory Management

application by TheArchitect and the architecture diagram with accepted user modifications for

the same system is shown in Figure 22. Metrics based evaluation is conducted upon 4 identified

components, facilitating 151 system requirements categorizing into 14 high-level system epics.

Figure 23 contains the component-based evaluation conducted upon initial system generated

architecture along with Figure 24 contains the component-based evaluation conducted upon

the architecture with accepted user modifications. Vertical bars in Figure 23 and Figure 24

represents Component based metric values shown for systems architecture without and with

user modifications. Horizontal bar in the same two figures shows the anomaly detection

benchmark for each metric using the summation of mean and two times the standard deviation

value.

Table 8 and Table 9 respectively contains the services-based metrics evaluation for initial

system generated architecture and the architecture with accepted user modifications.

In analyzing system generated architecture in Figure 21 against the architecture with accepted

user modifications shown in Figure 22 it is clear that user has requested to eliminate purchases

microservice and incorporate all purchases related functionality within the order microservice

because ultimately purchases are a part of the order. Furthermore, as a result of learning under

 51

took with the architecture generation for Order Receive application, the authentication API is

being invoked via Profile MS. Accepting user modifications resulted in reducing the number

of components focused under the component-based metrics evaluation. Even though the system

generated architecture did not consist of any problem elements, as a result of accepting user’s

modifications, the possibility of a component becoming a problem element even in future has

also being reduced.

Table 8 figures compared against Table 9 figures proves that the accepted user modifications

have result in 0.01 reduction in the coupling measurement and no change in the depth of

scenario measurement. TheArchitect accepts the requested user modifications relying on the

weights provided by the panel of experienced architects since user requested modifications has

improved both component and services based metric evaluation statistics.

Figure 21: Inventory Management Application - System generated high-level architecture
design diagram

 52

Figure 22: Inventory Management Application - High-level architecture design diagram with

accepted user modifications

 53

Figure 23: Inventory Management Application - Component based metrics evaluation for

system generated architecture diagram

Figure 24: Inventory Management Application - Component based metrics evaluation on user

modifications accepted architecture diagram

 54

Table 8: Inventory Management Application - Services based metrics evaluation on system
generated architecture

Metric Value
Coupling 1.29 component calls per service
Depth of scenario 2 component interactions per service

Table 9: Inventory Management Application - Services based metrics evaluation on user
modifications accepted architecture

Metric Value
Coupling 1.28 component calls per service
Depth of scenario 2 component interactions per service

6.3 Performance Evaluation

As another experiment step we analyzed the performance of TheArchitect by evaluating the

processing time it takes to generate the architecture diagrams for enterprise applications.

Table 10: Number of high-level system epics vs processing times

Number of high-level

System Epics
Processing Time (seconds)

14 (Inventory Management
Application)

1

33 2.5
57 4.5
93 7
113 8.5

Processing time listed in Table 10 include the complete timespan, starting from processing the

system requirements up to the time tool finishes displaying the generated architecture. It is

proven that tool has been able to speed up the traditional process of designing architecture

diagrams, along with processing 100 high-level epics, in less than 10 seconds.

 55

Figure 25: Number of problem elements against the number of modifications for the rule set

In terms of assessing the accuracy of the rule-based processing technique, conducted

experiment obtained the statistics on how the number of problem elements got changed with

the amount of fine tuning done on the domain specific rule sets.

Figure 25 shows how the number of problem elements reduces as we conduct expert fine tuning

on the generated architecture. This was evaluated using two enterprise systems each containing

66 and 42 components. The statistics displays, that upon 5 modifications, number of problem

elements could be reduced to less than 4% of the total number of elements.

6.4 User Study Statistics

TheArchitect was introduced to 4 different companies which operates within IT sector building

enterprise software applications. We built up a pool of software architects and software

developers consisting 50 from each category in order to conduct the user study.

Statistics presented in Figure 26 displays only 12 software architects and 6 software developer

have voted against TheArchitect mentioning that they still prefer the traditional way of

generating architecture designs. 76% of architects and 88% of developers who voted for

 56

TheArchitect stated that it simplified and accelerated the process of generating a high-level

architecture for a given system.

In summary, a considerable higher majority of both architects and develoeprs prefer to use

TheArchitect in order to generate high-level architecture designs.

Figure 26: User preference statistics for TheArchitect

 57

7. Conclusion

Software is critical in today's world. It is utmost necessary to get the architecture designed

perfectly as all the subsequent development will be carried out based on the designed

architecture. As explained throughout the document it is necessary to structure the architecture

properly in order to deliver the application aligning with the customers expectation as well as

adhering to the highest possible quality metrics. Current practice is that software architects

design the initial architecture for a enterprise application considering the above facts, which

requires high expertise and experience.

Software architecture is an area of interest that is subjected to content change. Currently the

world is shifting towards designing and architecting serverless-microservices moving out from

large monolithic systems. The traditional process of coming up with an architecture for a

software system starts with the business analyst briefing the software architect with the

necessary functionalities, outcomes of the intended system. The high-level architecture design

that the software architect completes will be the foundation for the entire application. All the

development decisions will be based on the high-level design hence it is utmost important to

have a high-quality architecture design which takes into account the functional as well as non-

functional requirements of the system. Generally, the above explained traditional process of

coming up with an architecture design is tedious as well as could be error prone if not done

with necessary expertise. As a solution this research proposes TheArchitect, a tool-based

assistance for the architect in order to simplify and accelerate the traditional process of

designing an architecture for a custom application.

We suggest TheArchitect, which is a rule-based system to auto generate serverless-

microservices based high-level architecture designs for a given system, provided all the

requirements are inserted to TheArchitect. As another important feature TheArchitect gives the

opportunity to change the system generated architecture. As proved with experimental values

TheArchitect maintains a superior quality in terms of the auto generated architecture diagrams.

Further, the research also contains convincing statistics on the performance of TheArchitect in

terms of accuracy of the processing technique and processing times.

 58

Apart from creating a breakthrough platform for the software architects to escape from the

traditional process of designing a high-level architecture into more efficient and accelerated

mechanism it also allows any software developer to generate a high-level architecture for a

software application minimizing the necessity of assistance of an experienced software

architect. TheArchitect will process and map the system requirements provided by the business

analyst or any other stakeholder who is familiar with the system requirements, into a set of

predefined models. Next, the models will be passed to the architecture generator, which will

process the models and infer the necessary architectural design for the intended application.

Furthermore, moving back to the ongoing debate of serverless-microservices against large

monolith applications, world seems to be moving along with serverless-microservices with the

high value adding positives which it has produced. This is the main reason behind designing

TheArchitect to generate best fitted high-level architecture designs which incorporates

serverless-microservices.

7.1 Study Limitations

TheArchitect uses metrics-based architecture evaluation methodology in which it uses multiple

metrics and weights for each metric. These metrics and weights need to be decided and

determined by a panel of experienced architects. If incorrect metrics or weights come in to the

equation it will directly impact the quality of the generated architecture. This is one critical

limitation of TheArchitect as it requires human intervention and the entire evaluation depends

on it.

If TheArchitect had not been used to generate an architecture designs for a specific domain, it

would be using the base rule set hence it would need to go through few iterations to fine tune

the rule set specific to that domain using experience architects’ modifications.

Current version of TheArchitect does not consider non-functional requirements such as

performance, security etc. in generating the high-level architecture. This would be another

critical limitation when it comes to generating architecture designs for mission critical systems.

 59

7.2 Future Directions

An important future directive is to improve the current architecture evaluation methodology to

reduce/eliminate the dependence of defined metrics and its weights. Currently the designed

architecture is only evaluated under a metric-based evaluation mechanism. This evaluation

heavily dependent on the initial metrics that had been chosen and the weights used for each

metric. Another future directive would be to conduct extensive research on the possibilities of

incorporating another level of architecture evaluation schema. One possibility would be to

evaluate more on scenario-based architecture evaluation methods such as SAAM, ATAM,

CBAM, ALMA, FAAM etc.

Another future directive which could be taken upon in order to improve TheArchitect is to

incorporate non-functional requirements in finalizing the high-level architecture for the system.

Considering non-functional factors such as performance, security along with the functional

requirements will allow the tool to perform better in terms of designing high-level architecture

diagrams for mission critical systems.

Another future direction is to enhance the user experience in terms of modifying the system

generated architecture. This will allow experienced architects to seamlessly engage with

TheArchitect and effortlessly modify the system generated architecture.

 60

8. References

[1] D.Namiot and M.Sneps-Sneppe, “On microservices architecture,” Intl. Journal of Open
Information Technologies, vol. 2, pp. 24–27, 2014.

[2] M. Roberts, “Serverless architectures,” 2016. [Online]. Available:
https://martinfowler.com/articles/serverless.html

[3] T. Lynn, P. Rosati, A. Lejeune, and V. Emeakaroha, “A preliminary review of enterprise
serverless cloud computing (function-as-a-service) platforms,” in Proc. IEEE Intl. Conf. on
Cloud Computing Technology and Science (CloudCom), December 2017.

[4] A. Eivy, “Be wary of the economics of serverless cloud computing,” in Proc. IEEE Cloud
Computing, April 2017, pp. 6–12.

[5] J. Lewis and M. Fowler, Microservices, 2014. [Online]. Available:
https://martinfowler.com/articles/microservices.html

[6] T. Salah, M. J. Zemerly, C. Y. Yeun, M. Al-Qutayri, and Y. Al- Hammadi, “The evolution
of distributed systems towards microservices architecture,” in Proc. 11th Intl. Conf. on Internet
Technology and Secured Transactions (ICITST), December 2016.

[7] N. Alshuqayran, N. Ali, and R. Evans, “A systematic mapping study in microservice
architecture,” in Proc. 9th IEEE Intl. Conf. on Service- Oriented Computing and Applications
(SOCA), November 2016.

[8] P. D. Francesco, I. Malavolta, and P. Lago, “Research on architecting microservices:
Trends, focus, and potential for industrial adoption,” in Proc. IEEE Intl. Conf. on Software
Architecture (ICSA), April 2017.

[9] R. Krikhaar, A. Postma, A. Sellink, M. Stroucken, and C. Verhoef, “A two-phase process
for software architecture improvement,” in Proc. IEEE Intl. Conf. on Software Maintenance,
August 1999.

[10] J. Muskens, M. R. V. Chaudron, and R. Westgeest, “Software architecture analysis tool:
software architecture metrics collection,” in Proc. 3rd PROGRESS Workshop on Embedded
Systems, October 2002, pp. 128–139.

[11] M. T. Ionita, D. K. Hammer, and H. Obbink, “Scenario-based software architecture
evaluation methods: An overview,” 2002.

[12] P. Clements, R. Kazman, and M. Klein, “Evaluating software architectures: Methods and
case studies, Addison Wesley,” 2002.

[13] R. Kazman, L. Bass, G. Abowd, and M. Webb, “Saam: A method for analyzing the
properties of software architectures,” in Proc. 16th IEEE Intl. Conf. on Software Engineering,
May 1994.

 61

[14] N. Medvidovic and R. N. Taylor, “A classification and comparison framework for
software architecture description languages,” in Proc. IEEE Transactions on Software
Engineering, January 2000.

[15] S. Newman, “Building microservices: Designing fine-grained systems,” 2015.

[16] J.Gouigouxand and D.Tamzalit,“From monolith to microservices: Lessons learned on an
industrial migration to a web oriented architecture,” in Proc. IEEE Intl. Conf. on Software
Architecture Workshops (ICSAW), April 2017.

[17] C. M. Aderaldo, N. C. Mendona, and C. Pahl, “Benchmark requirements for microservices
architecture research,” in Proc. IEEE/ACM 1st Intl. Workshop on Establishing the Community-
Wide Infrastructure for Architecture-Based Software Engineering (ECASE), May 2017.

[18] A. Avram, “Faas, Paas, and the benefits of the serverless architecture,” 2016. [Online].
Available: https://www.infoq.com/news/2016/06/faas- serverless-architecture

[19] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, “Serverless programming
(function as a service),” in Proc. 37th IEEE Intl. Conf. on Distributed Computing Systems
(ICDCS), June 2017.

[20] H. Liu and A. Gegov, “Rule based systems and networks: Deterministic and fuzzy
approaches,” in Proc. 8th IEEE Intl. Conf. on Intelligent Systems (IS), September 2016.

[21] F. Hayes-Roth, “Rule-based systems,” in Proc. Communications of the ACM, September
1985, pp. 921–932.

[22] E. S. D. Almeida, A. Alvaro, V. C. Garcia, L. Nascimento, S. L. Meira, and D. Lucredio,
“Designing domain-specific software architecture (DSSA): Towards a new approach,” in Proc.
IEEE/IFIP Intl. Conf. on Software Architecture (WICSA), January 2007.

[23] J. S. Fant, “Building domain specific software architectures from software architectural
design patterns,” in Proc. 33rd IEEE Intl. Conf. on Software Engineering (ICSE), May 2007.

[24] G. Gangyong, Z. Cuihao, and C. Wei, “A domain-specific software architecture,” in Proc.
IEEE Intl. Conf. on Intelligent Processing Systems, October 1997.

[25] V. Mezhuyev, “Architecture of software tools for domain-specific mathematical
modelling,” in Proc. IEEE Intl. Conf. on Computer, Communications, and Control Technology
(I4CT), September 2014.

[26] C. Hu, F. Jiao, and C. Zhao, “An architectural quality assessment for domain-specific
software,” in Proc. IEEE Intl. Conf. on Computer Science and Software Engineering,
December 2008.

[27] S. Newman, “Backends for frontends,” November 2015. [Online]. Available:
http://samnewman.io/patterns/architectural/bff/

 62

[28] M. Kajko-Mattsson, G. A. Lewis, and D. B. Smith, “A framework for roles for
development, evolution and maintenance of SOA-Based systems,” in Proc. IEEE Intl.
Workshop. on Systems Development in SOA Environments (SDSOA’07: ICSE Workshops
2007), May 2007.

[29] M. Zuiga-Prieto, E. Insfran, and S. Abraho, “Architecture description language for
incremental integration of cloud services architectures,” in Proc. 10th IEEE Intl. Symposium.
on the Maintenance and Evolution of Service-Oriented and Cloud-Based Environments
(MESOCA), October 2016.

[30] J. Wang, W. Chen, and H. Yang, “Architecture description language based on software
reliability evaluation for distributed computing system,” in Proc. IEEE Intl. Conf. on Computer
Application and System Modeling (ICCASM 2010), October 2010.

[31] A. Smeda, M. Oussalah, and T. Khammaci, “Madl: Meta architecture description
language,” in Proc. 3rd ACIS Intl. Conf. on Software Engineering Research, Management and
Applications (SERA’05), August 2005.

[32] Y. Zhenhua and C. Yuanli, “Novel architecture description language based on high-level
petri nets,” in Proc. IEEE Intl. Conf. on Information and Communication Technologies: From
Theory to Applications, April 2004.

[33] R. Kazman, “The essential components of software architecture design and analysis,” in
Proc. 12th Asia Pacific Conf. on Software Engineering (APSEC’05), December 2005.

[34] F. Garcia, F. Ruiz, and M. Piattini, “Metamodeling and measurement for the software
process improvement,” in Proc. ACIS/IEEE Intl. Conf. on Computer Systems and Applications,
July 2003.

[35] E. Hebisch, M. Book, and V. Gruhn, “Scenario-based architecting with architecture trace
diagrams,” in Proc. 5th IEEE/ACM Intl. Workshop. on the Twin Peaks of Requirements and
Architecture, May 2015.

[36] A. Patidar and U. Suman, “A survey on software architecture evaluation methods,” in
Proc. 2nd IEEE Intl. Conf. on Computing for Sustainable Global Development (INDIACom),
March 2015.

[37] M. Babar and I. Gorton, “Comparison of scenario-based software architecture evaluation
methods,” in Proc. 11th Asia-Pacific Intl. Conf. on Software Engineering, December 2004.

[38] K. J. P. G. Perera and I. Perera, “Thearchitect: A serverless-microservices based high-
level architecture generation tool,” in Proc. 17th IEEE/ACIS Intl. Conf. on Computer and
Information Science (ICIS), June 2018.

[39] K. J. P. G. Perera and I. Perera, “A rule-based system for automated generation of
serverless-microservices architecture,” in Proc. 4th IEEE Intl. Symposium. on Systems
Engineering (ISSE), October 2018

