WAVE ENERGY RESOURCE ASSESSMENT FOR SRI LANKA

Mahanthe Gamage Pravin Maduwantha

198006V

Degree of Master of Science

Department of Civil Engineering

University of Moratuwa Sri Lanka

July 2020

WAVE ENERGY RESOURCE ASSESSMENT FOR SRI LANKA

Mahanthe Gamage Pravin Maduwantha

198006V

Thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Civil Engineering

Department of Civil Engineering

University of Moratuwa Sri Lanka

July 2020

DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or Institute of Higher Learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:	Date:
------------	-------

The above candidate has carried out research for the MSc Thesis under my supervision.

Name of the supervisor: Dr P. K. C. De Silva	
Signature of the supervisor:	Date:

Name of the supervisor: Mr. A. H. R. Ratnasooriya

Signature of the supervisor: Date:

ABSTRACT

Marine energy is recognised as a widely available alternative for energy generated by burning fossil fuels in countries surrounded by seas and oceans. Among the marine energy resources, wave energy contains the highest energy density world-wide. The widespread availability of wave energy resource and relatively low impact of energy intake on the ocean environment have led to numerous research and developments on wave energy harvesting. The direct south-west swell wave approach and relatively narrow continental shelf create more favorable conditions for wave energy harvesting in Sri Lankan coastal region. The assessment of wave energy characteristics in coastal waters of Sri Lanka is important in identifying such a potential.

In this study, ocean waves are projected by a numerical wave model developed using the Simulated Nearshore Wave (SWAN) model, which used atmospheric data obtained by a Global Climate Model (GCM) within two (02) time slices of "present" and "future". The model output was validated using measured wave data from the southwest coast and other data sources.

The wave output indicates that the coastal areas of Sri Lanka from the southwest to the south-east have a significant amount of wave power. Under the present wave climate, the available wave power varies between 10-30 kW/m. When waves propagate towards the shoreline on the continental shelf, the wave power reduces. Although the southwest monsoon has greatly modulated the offshore wave power up to 30 kW/m, it mostly remains between 10-20 kW/m throughout the year. The spatial variation of wave power along the coast is also obvious. The study also shows that although minor variations are observed, the inter-annual and decadal-scale wave power variation is almost stable.

According to the future wave projections, the average available wave power in the south-west and south-east coastal areas of Sri Lanka will be slightly reduced in the future. This reduction is mainly due to changes in the south-west monsoon system caused by the global climate change. The available wave power resources associated with the swell wave component remain largely unchanged. Although detailed analysis of monthly and annual average wave power shows that strong seasonal and inter-annual changes in wave power can be seen on most of the western and southern coasts of Sri Lanka. Based on the modeled wave outputs of 25-year period, no decadal scale trends cab be observed. Finally, the results show that the wave power attributed to sea and swell waves very stable over the long term with a slight wave power reduction in the future.

Keywords: Wave power, Wave projections, Climate change, Monsoons, Sri Lanka, Indian Ocean

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to my supervisor Dr. P. K. C. De Silva for his immense support, guidance and encouragement throughout this research. Because of his support I was able to successfully complete my masters and also able to get a very big exposure to local and international environments. And also I would like to express my sincere gratitude to my co-supervisor Mr.Harsha Ratnasooriya for his immense support and guidance for the successful completion of my masters.

Also I should acknowledge Prof Harshani for initiating the study, providing financial assistance and also the technical guidance and encouragement. Dr Bahareh should be acknowledge for carrying out large scale modelling and providing the data used for the study without which this research would not have been possible.

Further, I would like to express my appreciation to the Research Coordinator of the Department of Civil Engineering, University of Moratuwa, Dr. J. C. P. H. Gamage, who instructed me to improve my research work. And also I would like to express my gratitude to Prof. S.A.S. Kulathilaka, Head of Department, Department of Civil Engineering for the support extended.

My special thanks go to the Swansea University for providing the financial support through the Global Challenge Research Fund project 'Wave energy resource characterization for Sri Lanka in a changing ocean climate' to carry out this research study. The Japan Meteorological Agency is acknowledged with gratitude for sharing atmospheric model outputs to run the wave models.

TABLE OF CONTENTS

DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENTS	v
LIST OF FIGURES	vii
LIST OF TABLESError! Bookmark	not defined.
LIST OF ABBREVIATIONS	xii
1.0 INTRODUCTION	1
1.1 Background	1
1.2 Problem Statement	1
1.3 Study Area	2
1.4 Research Objectives	4
1.6 Structure of the Thesis	4
2.1 Introduction	5
2.2 Origins of Wave Power and its Global Distribution	5
2.3 Wave power estimation	6
2.4.1 Measured data set at Galle	9
2.4.1 Measured wave data set at Matara	
2.5 Regional-scale wave energy assessments	
2.5.1 Mediterranean Sea	
2.5.2 Southern Caspian Sea	
2.5.3 Peninsular Malaysia	19
2.5.4 Canary Islands	19
2.5.5 Shandong peninsula, China	
2.5.6 Other similar studies on wave energy potential	
2.6 Wave energy assessments for Sri Lankan region	23
2.7 Impact of global climate change on wave energy resource	24
3.0 RESEARCH METHODOLOGY	
3.1 Introduction	
3.2 Methodology flow chart	
4.0 WAVE MODEL AND MODEL VALIDATION	

4.1 Introduction	27
4.2 Process of the development of the wave model	27
4.3 Model validation	29
5.0 EVALUATION OF SPATIO-TEMPORAL VARIABILITY OF WAVE ENERGY RESOURCE	36
5.1 Introduction	36
5.2 Wave power distribution around Sri Lanka	36
5.2.1 Spatial distribution of wave power	36
5.2.2 Temporal and directional variations at selected sites	39
5.2.3 Wave power matrix	46
5.2.4 A summary of available wave energy resource	. 51
6.0 IMPACTS OF GLOBAL CLIMATE CHANGE ON THE OCEAN WAVE ENERGY RESOURCE	
6.1 Introduction	53
6.2 Climate change impact on wave power variations	53
6.2.1 Spatial distribution of future wave power	54
6.2.2 Effect of monsoon systems	57
6.2.3 Temporal and directional wave power variations in the future	59
6.2.4 Changes in power fraction	65
7.0 CONCLUSIONS	69
7.1 Introduction	69
7.2 Wave power potential	69
7.3 Temporal variations of wave power	70
7.2 Climate change impact on wave energy resource	70
REFERENCES	72

LIST OF FIGURES

Figure 1.1: Location of Sri Lanka in the Indian Ocean
Figure 1.2: Sea Bed Bathymetry Map of the Coastal Regions of Sri Lanka. (The contour heights are given in) meters)
Figure 2.1: Global distribution of annual mean wave power (Source: (Cornett, 2008))
Figure 2.2: A simple sinusoidal wave (source: (World Meteorological Organization, 1998)
Figure 2.3: Buoy locations of measured data sets
Figure 2.4: A sample of measured time series of offshore sea/swell significant wave height (a) and period (b)
Figure 2.5: Significant swell wave height roses determine from waves measured off the south-west coast of Sri Lanka in Galle over a period of 3 years between 1989 and 1992
Figure 2.6: Location of Matara Buoy 1 (Source: Google Earth)12
Figure 2.7: Location of Matara Buoy 2 (Source: Google Earth)12
Figure 2.8: Time series of measured significant wave height Hs (<i>a</i>) and period T (<i>b</i>) time series of Matara B1 (red) and B2 (blue)
Figure 2.9: Significant wave height roses determine from waves measured at Matara wave boy 2 during April 2013 – April 2014
Figure 2.10: The annual mean spatial distribution of wave energy around Malayasia (Source: (Mirzaei A., Tangang F, Juneng L., 2016)
Figure 2.11: Average annual wave power along the Canary Islands (Source: (Gonçalves M., Martinho P., Soares C.G., 2014)
Figure 2.12: Distribution of average wave energy density (kW/m) in Shandong-China (Source: (Liang B., Fan F., Yin Z., Shi H., Lee D., 2013)
Figure 3.1: Research methodology flow chart

Figure 4.1: (a) Indian Ocean KU_IO, (b) KU_IND and (c) KU_SLK wave model
domains used to generate wave projections for the Sri Lanka region
Figure 4.2: Map with all data locations used for wave model validation. GMO – Galle
(Modelled), GE - Galle (ERA-Interim), GM - Galle (Measured), P1 and P2 are
additional model validation points
Figure 4.3: Comparison of modelled [at GMO, (5.93° N 80.23° E)] (green), ERA-
Interim Reanalysis [at GE (6.0N, 80.250E) (yellow) and measured [at GM (5.93 N,
80.23E)] (red) wave height time series
Figure 4.4: Comparison of modelled [at GMO, (5.93° N 80.23° E)] (green), ERA-
Interim Reanalysis [at GE (6.0N, 80.250E) (yellow) and measured [at GM (5.93 N,
80.23E)] (red) monthly average significant wave heights
Figure 4.5: Comparison of modelled [at GMO, (5.93° N 80.23° E)] (green), ERA-
Interim Reanalysis [at GE (6.0N, 80.250E) (yellow) and measured [at GM (5.93 N,
80.23E)] (red) monthly average wave period
Figure 4.6: A comparison of ERA-Interim data and modelledsignificant wave heights
during the period 1999-2003 at points P1 and P2
Figure 4.7: A comparison of modelled and ERA-Interim Reanalysis mean energy
period during the period 1999-2003 at points P1 and P2
Figure 4.8: A comparison of modelled (green) and ERA-Interim Reanalysis (yellow)
monthly averaged significant wave height and mean energy period during the period
1999 and 2003 at points P1 (top) and P2 (bottom)
1999 and 2003 at points P1 (top) and P2 (bottom)
Figure 5.1: A spatial distribution of average wave power (averaged over the simulated
Figure 5.1: A spatial distribution of average wave power (averaged over the simulated 25-year period between 1979 and 2003) for the Sri Lankan domain
Figure 5.1: A spatial distribution of average wave power (averaged over the simulated 25-year period between 1979 and 2003) for the Sri Lankan domain
Figure 5.1: A spatial distribution of average wave power (averaged over the simulated 25-year period between 1979 and 2003) for the Sri Lankan domain

Figure 5.4: Wave power distribution at the selected nearshore locations (PN-1 to PN-
9) around the south-west to south-east coastline of Sri Lanka
Figure 5.5: Wave power distribution at the selected offshore locations (PO-1 to PO-9)
around the south-west to south-east coastline of Sri Lanka
Figure 5.6: Box-Whisker plots of offshore and nearshore wave power around the
south-west to south-east coastline of Sri Lanka.(for PN-01 to PN-05)
Figure 5.7: Box-Whisker plots of offshore and nearshore wave power around the
south-west to south-east coastline of Sri Lanka.(for PN-06 to PN-09)
Figure 5.8: Annual average wave power os selected 18 locations for the period 1979-
2003. Broken lines refer to the nearshore points while dark lines refer to the offshore
points
Figure 5.9: Power matrices of available wave power at locations PN-1 to PN-5. Power
is given as a fraction of available power in each sea state to total power available at
the selected location
the selected location
Figure 5.10: Power matrices of available wave power at locations PN-6 to PN-9.
Figure 5.10: Power matrices of available wave power at locations PN-6 to PN-9. Power is given as a fraction of available power in each sea state to total power available
Figure 5.10: Power matrices of available wave power at locations PN-6 to PN-9. Power is given as a fraction of available power in each sea state to total power available at the selected location
Figure 5.10: Power matrices of available wave power at locations PN-6 to PN-9. Power is given as a fraction of available power in each sea state to total power available at the selected location
Figure 5.10: Power matrices of available wave power at locations PN-6 to PN-9. Power is given as a fraction of available power in each sea state to total power available at the selected location
Figure 5.10: Power matrices of available wave power at locations PN-6 to PN-9. Power is given as a fraction of available power in each sea state to total power available at the selected location
Figure 5.10: Power matrices of available wave power at locations PN-6 to PN-9. Power is given as a fraction of available power in each sea state to total power available at the selected location
Figure 5.10: Power matrices of available wave power at locations PN-6 to PN-9. Power is given as a fraction of available power in each sea state to total power available at the selected location
Figure 5.10: Power matrices of available wave power at locations PN-6 to PN-9. Power is given as a fraction of available power in each sea state to total power available at the selected location

Figure 6.1: The distribution of average wave power around Sri Lanka. (a) 'present' 25- year simulation period from 1979 to 2003 ; and (b) 'future' 25-year simulation period from 2075 to 2099
Figure 6.2: The distribution of difference between 'future' and 'present' average wave power (Future-Present) around Sri Lanka
Figure 6.3: The difference between 'future' and 'present' monthly averaged wave power
Figure 6.4: Difference between 'future' and 'present' average wave power during (a) monsoon (May-September) and (b) non-SW-monsoon (October-April) periods 57
Figure 6.5: Difference between 'future' and 'present' average significant wave height during (a) monsoon (May-September) and (b) non-SW-monsoon (October-April) periods
Figure 6.6: Difference between 'future' and 'present' average Tm-10 during (a) monsoon (May-September) and (b) non-SW-monsoon (October-April)
Figure 6.7: Offshore locations around the west and south coast selected
Figure 6.8: Present and future annual average wave power around Sri Lanka for M1 to M10. X-axis gives the year number, staring from the beginning of the 'present' and 'future' 25-year simulation time slices
Figure 6.7: Box-Whisker diagrams of current and future wave power resource at locations M1 to M10
Figure 6.9: Wave power roses representing 'present' wave climate
Figure 6.10: Wave power roses representing 'futuret' wave climate
Figure 6.11: Variation of available wave power at different energy period and significant wave height classes as a fraction of total available power (for sea waves)
Figure 6.12: Variation of available wave power at different energy period and significant wave height classes as a fraction of total available power (for swell waves)

LIST OF TABLES

Table 4.1:	Details of all data locations used for wave model validation
Table 6.1:	Coordinates and water depths of locations selected for detailed
	analysis of climate change impacts on the wave resource around
	Sri Lanka 60

LIST OF ABBREVIATIONS

Abbreviation	Description
AGCM	Atmospheric Global Climate Model
GCM	Global Climate Model
GMO	Galle Modelled data
GE	Galle ERA-Interim data
GM	Galle Measured Data
IOD	Indian Ocean Dipole
NAO	North Atlantic Oscillation
RMSE	Root Mean Square Error
SO	Southern Oscillation
SWL	Still Water Level