LB/DON/64 /08

# $(\underline{0})$

# BIO METHANATION AND COMPOSTING FOR MANAGING SUGAR PROCESSING WASTE

By

W.K. HIROMI ARIYARATNE

A thesis submitted in fulfillment of the requirement for the degree of Master of Science

LIBRARY UNIVERSITY OF MORATUWA, SHI LANKA



MORATUWA University of Moratuwa, Sri Lanka. 66 °07" Electronic Theses & Dissertations www.lib.mrt.ac.lk

in

## THE UNIVERSITY OF MORATUWA

### THE FACULTY OF ENGINEERING

### **DEPARTMENT OF CHEMICAL & PROCESS ENGINEERING**

### MORATUWA, SRI LANKA

01233



JULY, 2007



91233

### DECLARATION

"I certify that this thesis does not incorporate without acknowledge any material previously submitted for a degree or diploma in any university or higher educational institution in Sri Lanka or abroad and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text".

# **UOM Verified Signature**

. . . . . . . . .

W.K.H.Ariyarathe

UOM Verified Signature 州

University of Moratuwa, Sri Lanka. Exploritie Theses & Dissertations www.lib.mrt.ac.lk

**UOM Verified Signature** 

Co-supervisor.



#### ABSTRACT

In Sri Lanka, two integrated sugar cane based sugar plants cum distilleries are running with satisfying around 12% sugar requirement of the country. As the other countries, we are also facing the waste disposal problem of sugar and distillery waste. At present, few of the wastes generated in the plant are being used by the factory it self as material or energy source, but still some wastes are released to the environment with out any proper treatment.

The major objective of this research is to find out the potential of in vessel high rate composting of sugar press mud along with maximum contribution of spent wash and other wastes generated in an integrated sugar plant cum distillery. The major draw back of high rate composting is high energy requirement and it is expected to satisfy through biomethanation of spent wash.

A series of experiments were carried out in a 210 L compost unit to determine possible feedstock composition for in vessel composting. By in-vessel high-rate method, the composting period could be dramatically brought down to about 12 Press mud: spent wash ratio of 18:1 (spent wash added initially) appeared to be best composition for in vessel high rate composting. However, 9:1 ratio could be achieved if spent wash is applied after reaching the highest temperature in the However 183 T of annual nitrogen supply could be achieved through production compost.

Also a series of experiments were carried out to observe biomethanation potential of distillery spent wash. All the experiments were carried out in specially designed laboratory scale apparatus. It was calculated that energy needed to achieve above rates of composting could be easily achieved by simple, single-stage batch type bio-methanation without mixing. 65-70% COD reduction and 9.4  $\text{m}^3/\text{m}^3$  feed to specific gas production could be obtained, by this method with optimum conditions.

i

# **TABLE OF CONTENT**

| Abstract                                                                  | Page no<br>i |
|---------------------------------------------------------------------------|--------------|
| Table of contents                                                         | ii           |
| List of tables                                                            | v            |
| List of figures                                                           | vi           |
| Acknowledgements                                                          | x            |
| Chapter                                                                   |              |
| 1.0 Introduction                                                          |              |
| 1.1 An overview of development of sugar industry in Sri Lanka             | 1            |
| 1.2 Waste generation in a sugar industry                                  | 3            |
| 1.3 Sugar waste management in Sri Lanka                                   | 6            |
| 1.4 Research objectives                                                   | 8            |
| 1.5 Thesis structure                                                      | 8            |
| 2.0 Review of waste management in sugar industry                          |              |
| 2.1 Description of sugar & distillery process in Sevanagata plant         | 10           |
| 2.2 What is press much tronic Theses & Dissertations                      | 13           |
| 2.3 Why sugar press mud must be treated?                                  | 15           |
| 2.4 Possible value addition methods for press mud                         | 15           |
| 2.5 What is distillery effluent (molasses spent wash)?                    | 16           |
| 2.6 Why spent wash must be treated?                                       | 20           |
| 2.7 Possible treatment methods of distillery effluents                    | 22           |
| 3.0 Composting and anaerobic digestion of sugar waste for nutrient and en | nergy        |
| recycling                                                                 |              |
| 3.1 Definition of composting                                              | 28           |
| 3.2 Composting techniques                                                 | 28           |
| 3.3 In-vessel high-rate composting of press mud                           | 32           |
| 3.4 What is aerobic composting?                                           | 33           |
| 3.5 Microbial activity in composting process                              | 34           |
| 3.6 Environmental & operational parameters related to composting pro      | ocess 35     |
| 3.7 Feed characteristics                                                  | 39           |
| 3.8 Compost characteristics                                               | 40           |
| 3.9 Salt concentration of compost                                         | 41           |

| 3.10 Compost quality & standards                                           | 41  |
|----------------------------------------------------------------------------|-----|
| 3.11 Energy and nutrient recycling from distillery spent wash              | 42  |
| 3.12 Selection of reactor configuration                                    | 46  |
| 3.13 Microbial activity of anaerobic digestion                             | 48  |
| 3.14 Process parameters                                                    | 50  |
| 3.14.1 Environmental factors                                               | 50  |
| 3.14.2 Operational parameters                                              | 59  |
| 3.14.3 Feed characterization                                               | 64  |
| 3.15 Biogas                                                                | 67  |
| 3.16 Biogas storage & purification                                         | 68  |
| 3.17 Biomethanated effluent                                                | 68  |
| 4.0 Materials & methods                                                    |     |
| 4.1 Development of the compost unit                                        | 71  |
| 4.2 Material Analysis for feed preparation                                 | 74  |
| 4.3 Materials and feed preparation for the composting process              | 75  |
| 4.4 Active phase composting                                                | 76  |
| 4.5 Compost curing<br>Electronic Theses & Dissertations                    | 80  |
| 4.5.1 frial 3 www.lib.mrt.ac.lk                                            | 80  |
| 4.5.2 Trial 5                                                              | 82  |
| 4.6 Development of anaerobic reactors                                      | 82  |
| 4.7 Development of laboratory scale reactors for batch experiments         | 83  |
| 4.8 Development of Continuous Stirred Tank Reactor                         | 84  |
| 4.9 Analysis of distillery spent wash characteristics for feed preparation | 88  |
| 4.10 Materials and feed preparation for biomethanation                     | 89  |
| 4.11 pH profile test                                                       | 93  |
| 4.12 Batch experiments for biomethanation                                  | 93  |
| 5.0 Results & discussion                                                   |     |
| 5.1 Active phase of composting                                             | 96  |
| 5.2 Compost curing                                                         | 100 |
| 5.2.1 Trial 3                                                              | 100 |
| 5.2.2 Trial 5                                                              | 106 |
| 5.3 Energy requirement for aeration                                        | 111 |
| 5.4 Compost unit details and scale up for industry                         | 112 |
| 5.5 Nutrient recycling                                                     | 113 |

iii

| 5.6 Design details for continuous composting unit for industry                                                                                                                                                                                                 | 114 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 5.7 pH profile test for spent wash                                                                                                                                                                                                                             | 114 |
| 5.8 Theoretical estimation of biomethanation potential from                                                                                                                                                                                                    | 115 |
| spent wash at Sevanagala Sugar Industries Ltd                                                                                                                                                                                                                  |     |
| 5.9 Results of anaerobic digestion of spent wash in batch tests                                                                                                                                                                                                | 115 |
| 5.10 Experimental estimation of biomethanation potential & energy                                                                                                                                                                                              | 124 |
| generation from spent wash at Sevanagala Sugar Industries Ltd                                                                                                                                                                                                  |     |
| 6.0 General discussion                                                                                                                                                                                                                                         |     |
| 6.1 In-vessel high-rate composting of press mud                                                                                                                                                                                                                | 125 |
| 6.2 Biomethanation of distillery spent wash                                                                                                                                                                                                                    | 128 |
| 7.0 Conclusions & recommendations for future work                                                                                                                                                                                                              |     |
| 7.1 Conclusions                                                                                                                                                                                                                                                | 131 |
| 7.2 Recommendations                                                                                                                                                                                                                                            | 132 |
| References                                                                                                                                                                                                                                                     | 135 |
| Appendices                                                                                                                                                                                                                                                     | 140 |
| Appendix I- Process flow diagrams for sugar and ethanol manufacturing<br>University of Moratuwa, Sri Lanka.<br>Electronic Theses & Dissertations<br>Appendix II Programme and operation of stirrer control unit in CSTR<br>Appendix III- Test methods followed |     |

Appendix IV- Issues & proposals

٩

## LIST OF TABLES

| TablePa                                                                            | ige no. |
|------------------------------------------------------------------------------------|---------|
| 1.1- Wastes and by products generated in different process stages                  | 5       |
| 1.2- Details of Sri Lankan sugar industry cum distillery                           | 6       |
| 2.1- Physicochemical analysis of sugar press mud from literature                   | 14      |
| 2.2- Physicochemical analysis of distillery spent wash from literature             | 18      |
| 2.3- Effluent discharge limits in Sri Lanka                                        | 21      |
| 2.4- Aerobic versus anaerobic treatment                                            | 25      |
| 3.1- Reasonable and preferred characteristics for composting                       | 38      |
| 3.2- Woody material as bulking agent                                               | 40      |
| 3.3- Biomethanation results respect to process configurations                      | 43      |
| 3.4- Annual bioenergy and plant nutrient potential of distillery effluent in India | . 44    |
| 3.5- Results comparison of single phase and two phase digestion                    | 45      |
| 3.6- Biomethanation potential from industrial waste in Sri Lanka                   | 46      |
| 3.7- Comparison of basic process configurations                                    | 47      |
| 3.8- Toxic level of various inhibitors of Moratuwa, Sri Lanka.                     | 56      |
| 3.9- C/N ratio of some organic materials ses & Dissertations                       | 66      |
| 3.10- Composition of biogas, lib.mrt.ac.lk                                         | 67      |
| 4.1- Physicochemical analysis of press mud                                         | 74      |
| 4.2- Analysis of glydiceria leaves                                                 | 75      |
| 4.3- Boiler ash analysis                                                           | 75      |
| 4.4- Feed preparation and operational parameters for batch experiments             | 78      |
| 4.5- Physicochemical analysis of distillery spent wash                             | 88      |
| 4.6- Comparison of spent wash properties with preferable conditions                | 89      |
| 4.7- Potassium added to the system in different buffer concentrations              | 92      |
| 4.8- Sample preparation for pH profile test                                        | 93      |
| 4.9- Sample preparation for anaerobic digestion                                    | 94      |
| 5.1- Compost quality after curing for three months                                 | 104     |
| 5.2- Compost quality after curing for three months                                 | 108     |
| 5.3- Summary of results                                                            | 122     |
| 5.4- Comparison of results with literature                                         | 123     |
| 6.1- Possible heavy metal concentration in compost                                 | 128     |

| Figure Page                                                                      | no. |
|----------------------------------------------------------------------------------|-----|
| 1.1- Variation of per capita consumption of sugar in Sri Lanka with time         | 2   |
| 1.2- Sugar consumption in Sri Lanka                                              | 2   |
| 1.3- Contribution of local sector to satisfy sugar requirement                   | 3   |
| 1.4- Waste types generated in a sugar factory                                    | 3   |
| 1.5- Block diagram for sugar and distillery process                              | 4   |
| 1.6- Proposed research for managing sugar and distillery waste                   | 8   |
| 3.1- windrow system                                                              | 29  |
| 3.2- Aerated static pile                                                         | 29  |
| 3.3- Vertical reactor                                                            | 31  |
| 3.4- Horizontal reactor                                                          | 31  |
| 3.5- Passive composting                                                          | 31  |
| 3.6- Composting techniques                                                       | 32  |
| 3.7- aerobic composting process                                                  | 33  |
| 3.8- Typical temperature time profile<br>University of Moratuwa, Sri Lanka.      | 34  |
| 3.9- Anaerobic reactor Electronic Theses & Dissertations                         | 47  |
| 3.10- Anaerobic digestion process (Ghaly, Sadaka & Hazza'a, 2000)                | 49  |
| 3.11- Biogas yield variation according to temperature                            | 51  |
| 3.12- pH and alkalinity profiles versus VFA concentration in the reaction medium | 52  |
| 3.13- Variation of redox potential and activity with time                        | 58  |
| 3.14- Identification of mean HRT                                                 | 60  |
| 3.15- Dairy waste volatile solids destruction                                    | 61  |
| 4.1- Front view of compost unit                                                  | 71  |
| 4.2- Right side view of compost unit                                             | 71  |
| 4.3- Left side view of compost unit                                              | 72  |
| 4.4- Air inlet points                                                            | 72  |
| 4.5- Compressor                                                                  | 72  |
| 4.6- Rotameter                                                                   | 72  |
| 4.7- Drawing of compost unit                                                     | 73  |
| 4.8- Sugar press mud                                                             | 75  |
| 4.9-Yeast                                                                        | 75  |
| 4.10- Spent wash                                                                 | 75  |

## LIST OF FIGURES

| 4.11- Boiler ash                                                    | 76  |
|---------------------------------------------------------------------|-----|
| 4.12- Gypsum                                                        | 76  |
| 4.13- Mulched glydeceria leaves                                     | 76  |
| 4.14- Composting vessel indicating temperature measurement points   | 77  |
| 4.15- Curing as 3 categories                                        | 80  |
| 4.16- Germination test 2 model                                      | 81  |
| 4.17- Material unload for curing of trial 5                         | 82  |
| 4.18- Sketch of the batch reactor                                   | 83  |
| 4.19- Developed batch reactors                                      | 84  |
| 4.20- CSTR with earlier collector                                   | 84  |
| 4.21- Top view of CSTR                                              | 84  |
| 4.22- CSTR with later collector                                     | 85  |
| 4.23- Gas collector unit (later)                                    | 85  |
| 4.24- Specially designed stirrer                                    | 85  |
| 4.25- Control unit of stirrer                                       | 85  |
| 4.26- Sketch of gas collector unit                                  | 86  |
| 4.27- Drawing of CSTR Electronic Theses & Dissertations             | 87  |
| 4.28- Bottles with spent wash used in pH profile test               | 93  |
| 5.1- Temperature variation in trial 1                               | 96  |
| 5.2- pH variation in trial 1                                        | 96  |
| 5.3- Temperature variation in trial 2                               | 97  |
| 5.4- pH variation in trial 2                                        | 97  |
| 5.5- Composting with ash                                            | 97  |
| 5.6- Temperature variation in trial 3                               | 98  |
| 5.7- pH variation in trial 3                                        | 98  |
| 5.8- Temperature variation in trial 4                               | 99  |
| 5.9- pH variation in trial 4                                        | 99  |
| 5.10- Temperature variation in trial 5                              | 99  |
| 5.11- pH variation in trial 5                                       | 100 |
| 5.12- "Diptera" type worms could be seen in active phase            | 100 |
| 5.13- Fungi were developed in aerated bin by one month after curing | 100 |
| 5.14- Flies ("Diptera") in non-aerated bin                          | 101 |
| 5.15- Green gram germinated and grown in the aerated samples        | 101 |
| 5.16- Germination in non-aerated samples                            | 102 |

| 5.17- Ash mixed sample                                       | 102 |
|--------------------------------------------------------------|-----|
| 5.18- Plants grown in aerated sample                         | 102 |
| 5.19- Plants grown in non-aerated sample                     | 102 |
| 5.20- Plants grown in control                                | 103 |
| 5.21- Plants dried in control due to dehydration             | 103 |
| 5.22- Aerated sample packet after one month curing           | 103 |
| 5.23- Non-aerated sample packet after one month curing       | 103 |
| 5.24- Uncured compost packet                                 | 103 |
| 5.25- Aerated-2 months cured                                 | 103 |
| 5.26- Non-aerated-2 months cured                             | 103 |
| 5.27- 3 months cured-aerated                                 | 105 |
| 5.28- 3 months cured- non-aerated                            | 105 |
| 5.29- 14 days after packing-aerated                          | 105 |
| 5.30- 14 days after packing-non-aerated                      | 105 |
| 5.31- Particle size distribution curve                       | 105 |
| 5.32- Water retention time test results                      | 106 |
| 5.33- Worms in non-aerated bin                               | 107 |
| 5.34- Plants grown in aerated sample<br>WWW.llD.mrt.ac.lk    | 107 |
| 5.35- Plants grown in non-aerated sample                     | 107 |
| 5.36- Plants grown in openly cured sample                    | 107 |
| 5.37-8 days after packing-aerated                            | 108 |
| 5.38-8 days after packing- non-aerated                       | 108 |
| 5.39- 8 days after packing-openly cured                      | 108 |
| 5.40- 3 months cured compost-aerated                         | 109 |
| 5.41- 3 months cured compost-non-aerated                     | 109 |
| 5.42- 3 months openly cured compost                          | 109 |
| 5.43- Particle size distribution curve                       | 110 |
| 5.44- Water retention time test results                      | 111 |
| 5.45- pH variation with time                                 | 115 |
| 5.46- Comparison of gas production in trial 2, 6 and 8       | 116 |
| 5.47- Comparison of gas production in trial 7 and 9          | 117 |
| 5.48- Comparison of gas production in trial 1,2,4,5 and 9    | 119 |
| 5.49- Comparison of gas production in trial 2, 10, 11 and 12 | 120 |
| 6.1- Temperature profile                                     | 125 |

| 6.2- Moisture profile | 125 |
|-----------------------|-----|
| 6.3- pH profile       | 126 |



University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

#### **ACKNOWLEDGEMENTS**

I wish to express my heartfelt gratitude to Prof. Ajith De Alwis, Dr. Manisha Gunasekera and Mr. Missaka Hettiarachchi for supervising my research project and the invaluable assistance, guidance, advice and encouragement given during the course of this research study.

A special thanks is due to Mr. Daya Gamage, the chairman of the Sevanagala Sugar Industries Ltd for funding this research project and Mr. Nihal Sooriyaarachchi, Director Research & Development International Consultancies for giving me this great opportunity to expand my knowledge and experience.

I also like to thank Dr. P.G Rathnasiri and all other academic staff of Chemical & Process Engineering Department. The help given by the staff of Sevanagala Sugar Industries Ltd Electronic Theses & Dissertations and the staff of Research & Development International Consultancies are also gratefully acknowledged. At the same time I extend my sincere thanks to Dr. Mahesh Jayaweera, Prof. Lal Fernando and Mr. Janaka Mangala for giving me permission to carry out some of my research work in their laboratories.

I would also place on record my appreciation of Ruwan Abeysinghe, Chemical Engineer at Sevanagala distillery plant for sending the samples from the plant in a timely manner.

I would like to further thank Mr. Rajapakse from Practical Action for sharing his valuable knowledge with me.

My special thanks goes to Thivanka Wickramasuriya, Chathura Wickramarathne, Inoka Manthilaka for giving great guidance in fabrication of compost unit. I am also greatful to Kosala Jayasundara, Gamini Jayasinghe for dedicating their valuable time for making the control unit for the bio gas reactor.

I would like to include following personals in my word appreciation, Mr. B.G.N. Asoka, Mr. Kelum Gunarathna, Mr. Somanath Premadasa, Ms. Amali Wahalathanthri, Mr. Lalith Fernando, Mrs. Dinusha Martino, Mr. H.R. Saranelis, Mr. Ranjith Masekorala and all other technical officers and lab attendants in Chemical & Process Engineering Department who helped me to success my research.

I should appreciate Edward Ishiyama, Miyuru Kannangara, Sandun Gajaweera, Dinuka Perera who gave me technical assistance for the research project.

Thanuja Pathiraja, Gayan Bandara, Kavitha Raamshangar, Niluka Kumara, Buddhika Miyuri, Dilini Dhanusekara, Asanka Rahubadda, Ruwan Shaminda, Hasanthi Dissanayake, Kumuduni Abeysinghe, Charitha Udani, Yashodini Wimalasiri and all other research students and Engineering undergraduate students who gave me an invaluable assistance for my research activities in various ways are also gratefully acknowledged.



University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk