
15/DON/71/08

COST EFFECTIVE CONSTRUCTION MATERIALS AND METHODS

BY

J S DAYANANDA

University of BRARY tuwa, Sri Lanka. Electronic Moratuwa, Sri Lanka Dissertations www.lib.mrt.ac.lk

This thesis was submitted to the Department of Civil Engineering of the University of Moratuwa in partial fulfillment of the requirements for the Degree of Master of Science in Construction Project Management

01245

DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MORATUWA SRI LANKA FEBRUARY/2008

University of Moratuwa 91245

91245

DECLARATION

The work included in this thesis in part or whole has not been submitted for any other academic qualification at any institution.

h Candidate

J S Dayananda

Certified by Supervisor Dr. (Mrs). Chintha Jayasingheriversity of Moratuwa, Sri Lanka.

Electronic Theses & Dissertations www.lib.mrt.ac.lk

i

ABSTRACT

Housing demand is constantly increasing and the capital cost of construction of a house too is escalating. Main reasons for this price escalation – traditional construction materials are becoming scare and depleting resources, traditional construction methods are becoming expensive.

This ever-increasing cost of construction is an acute problem to house builders and developers. Several cost effective building materials and methods have been introduced to Sri Lanka to reduce the capital cost involved. Out of above methods, several slab systems – NERD system, ICC's SBS system, reinforced concrete beam slab system developed by University of Moratuwa, compressed stabilized earth blocks and MCR tiles are becoming popular.

In this detailed research, cost analysis was done on already introduced popular systems and based on the cost analysis, recommendations would be made to prospective builders on actual cost effectiveness. In addition, a questionnaire survey was carried out to access the awareness, preference and adaptability on popular systems among engineers and construction workers as well. Further, an attempt has been made to automate the cost analysis on popular systems. Now average house builders can easily obtain the cost of walling and roofing materials and slab systems once the market price of the materials are being input to the work sheet.

AKNOWLEDGEMENT

I would like to take this opportunity to thank everybody who assisted me for the successful completion of my research project.

First, I am thankful and grateful to Dr.(Mrs) Chintha Jayasinghe of Department of Civil Engineering, University of Moratuwa for her extreme help, guidance and patient as the academic advisor of this research project.

Further, I take this opportunity to thank Mr. U D H Dharmasiri, Deputy General Manager (Housing Construction) of National Housing Development Authority (NHDA) for recommending me for MSc in Construction Project Management programme and General Manager of NHDA for arranging 50% financial facility to successfully complete the course.

University of Moratuwa, Sri Lanka.

In addition I must thank to all engineers, contractors and construction workers in NHDA project sites for their extended support rendered to me, specially to carry out questionnaire survey successfully.

In addition, I take this opportunity to thank staff of the precast yard in ICC, all officers in NERD center, Ja Ela, MR. N Kamaladase and staff of CHPB and staff of OS Projects (Pvt) Ltd. for their support for the successful completion of my research project.

Finally, I wish to express sincere thanks to my family and to several other persons who are not specially mentioned here for their numerous co-operations.

J S Dayananda

CONTENTS

Chapter 1. Introduction

.

\$

6

6

Page

1.1 General	1-2
1.2 Objectives	3
1.3 Methodology	3
1.4 Main findings	3-4
1.5 Arrangement of Report	4-6

Chapter 2, Literature Review

2.1 General	7
2.2 Alternative walling materials	8-12
2.3 Conventional walling materials	12-13
2.4 Alternative roofing materials University of Moratuwa, Sri Lanka.	14-16
2.5 Conventional roofing materialsonic Theses & Dissertations	16-19
2.6 Alternative floor slab systems.lib.mrt.ac.lk	1 9-23
2.7 Conventional floor slab systems	23-24
2.8 Summary	24

Chapter 3. Performance of alternative materials

3.1 General	29
3.2 Walling material	30-36
3.3 Roofing material	36-39
3.4 Slab systems	39-40
3.5 Summary	41

Chapter 4. Field survey

4.1 General	44
4.2 Pilot study	44
4.3 Analysis of questionnaire survey results	45-50
4.4 Interpretation of questionnaire survey results	51-53
4.5 Summary	53

Chapter 5. Cost analysis

5.1 General	54
5.2 Walling material	54-62
5.3 Roofing material	63-70
5.4 Slab systems	71-87
5.5 Summary of the cost analysis	88
University of Moratuwa, Sri Lanka.	
(O) Electronic Theses & Dissertations	
Chapter 6. Automation of the cost analysis	

Chapter 6. Automation of the cost analysis WWW.110.1111.ac.1k

6.1 General	89
6.2 Development of the work sheet	89
6.3 Summary	89

Chapter 7. Cost comparison

7.1 General	92
7.2 Walling material	92-93
7.3 Roofing material	93-94
7.4 Slab systems	94-95
7.5 Summary	95

v

6

4

Chapter 8. Conclusion and limitations

Reference	98- 100
8.2 Future work	97
8.2 Limitations	97
8.1 Conclusion	96-97

Annexure 1

Annexure 2

Annexure 3

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

List of Tables

9

3

6

Pages

Table 2.1	Dimensions of Calicut tiles	18
Table 2.2	Standard dimension of cement fiber sheets	19
Table 3.1	Materials & slab systems selected for performance analysis	29
Table 5.1	Cost of different roofing materials	70
Table 5.2	Cost of different building materials	88

List of Figures

Figure 2.1	Literature on building materials
Figure 2.2	CSEB wall in progress
Figure 2.3	House completed using CSEB
Figure 2.4	Rammed earth mould ity of Moratuwa, Sri Lanka.
Figure 2.5	MCR filed rodectronic Theses & Dissertations
Figure 2.6	Manufacturing of hand moulded chip concrete tile
Figure 2.7	Model roof constructed with MCR tiles
Figure 3.1	Stabilized rammed earth panel subjected to load test
Figure 3.2	MCR tiled roof subjected to spray test
Figure 3.3	RC precast beam slab system subjected to load test
Figure 4.1	Awareness & preferred slab systems
Figure 4.2	Preferred soffit finish
Figure 4.3	Preferred roofing material
Figure 4.4	Awareness of roofing material
Figure 4.5	Awareness of walling material
Figure 4.6	Acceptance of CSEB
Figure 4.7	Statistical data
Figure 5.1	Common roof details
Figure 5.2	Dimensions of the precast panel of width 300 mm

- Figure 5.3 Insitu cast concrete above precast beam
- Figure 5.4 Dimensions to calculate insitu cast concrete over blockwork
- Figure 5.5 R/F details for the precast slab panels
- Figure 5.6 Arrangement of longitudinal and transverse reinforcement
- Figure 5.7 R/F arrangements for the precast beam
- Figure 7.1 Cost comparison of walling materials
- Figure 7.2 Cost comparison of roofing materials
- Figure 7.3 Cost comparison of slab systems

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk