LB/TON/74/08

HUMAN EXPOSURE TO STREET LEVEL AIR POLLUTANTS IN COLOMBO AND EXPLORATION OF MITIGATION OPTIONS USING CFD MODELING

Being a dissertation submitted in partial fulfillment of the requirements of

The Degree of Master of Philosophy

LIBRARY

UNIVERSITY OF MORATUWA, SRI LANKA MORATUWA University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

GAMAGE BIMALKA SAJEEVI PERERA

91248

32 . 18

2 COAt

Department of Architecture,

University of Moratuwa,

Moratuwa,

Sri Lanka

University of Moratuwa 91248

March 2008

Postgraduate Smittles Division Faculty of Architecture
29 APR 2008
University of Meratuwa Sri Lanka.

91248

DEDICATION

This dissertation is dedicated to my beloved husband Sumal and my child Sithika

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

DECLARATION

I hereby declare this submission is my own work and that, to the best of my knowledge and belief, it contains no material previously published or written by another person nor material, which to substantial extent, has been accepted for the award of any other academic qualification of a University or any other Institute of higher learning except where acknowledgement is made in the text.

UOM Verified Signature

G.B.S. Perera Name of the student

Signature

UOM Verified Signature

Prof. Rohinton Emmanuel Name of Supervisor

Date: 26/03/2008

Signature

ACKNOWLEDGEMENT

I wish to express my most profound gratitude to Prof. M. P. R. Emmanuel of the Department of Architecture, University of Moratuwa for the intellectual guidance conferred to me in realization of this dissertation.

I also warmly acknowledge the contributions made by Prof. Rohine Senaviratne, Professor of Community Medicine, University of Colombo, Prof. Hewamanna, Chairman and Mrs. Sherani Senavirathna, Senior Scientist, Atomic Energy Authority, Mr. M.D. Clarence Perera, Head, Environment Division, Mr. R.P. Samarakkody, Mr. H. Premasiri, Mr.V.P. Iddamalgoda, National Building Research Organization, Dr.Y.L.S.Nandasena, Medical Officer of Health, Padiyathalawa and M.O.H. Staff, Electronic Theses & Dissertations Padiyathalawa Dr. Ruwan Wijayamunik Chief Medical Officer Health, Colombo Municiple Council, Dr. S.G.T. Sugathapala, Head, Department of Mechanical Engineering, University of Moratuwa, Mrs. Mahawaththa, Department of Nuclear Science, University of Colombo, for providing resources and support to complete this work successfully.

I express my thanks to the active participation of Mr. A.T.R.Fernando and Mrs. Ajantha Perera, Technical Officers, National Building Research Organization and Mr. Miuru Wijesinghe, Department of Architecture, University of Moratuwa, Mr. Gunaratne, Mr. Jayawardana, M.O.H. Staff, Padiyathalawa.

I extend my grateful appreciation to all those who contributed to this study.

iv

TABLE OF CONTENTS

-

V

Ť

≯

		Page
Acknowledgement		iv
Table of Contents		v
List of Figures		vii
List of Tables		ix
Abbreviations		xi
Abstract		xiv
CHAPTER 1	INTRODUCTION	1
CHAPTER 2	URBAN AIR POLLUTION	7
2.1.	Air Pollution in Global Context	7
2.2.	Urban Air Pollutants	10
2.3.	Reported Health Effects due to Air Pollution University of Moratuwa, Sri Lanka.	13
2.4	Air Quality Management in Sri Lanka	20
	2,4,1,W. Air Quality Monitoring	22
	2.4.2. Transportation and Emission Inventory	24
	2.4.3. Previous Air Quality Studies and Research in	27
	Sri Lanka	
2.5	Air Quality Guidelines and Standards	30
CHAPTER 3	AIR QUALITY MODELING	34
3.1.	Air Quality Models	34
3.2.	ENVI-met Model and its Applications	39
CHAPTER 4	METHODOLOGY	42
4.1.	Basic Approach in the present methodology	42
4.2.	Phase I- Air Quality Monitoring with Different	43
	Meteorological Conditions	
4.3.	Phase II- Health risk assessment	46
	4.3.1. Health Risk Assessment of Adults	47
	4.3.2. Health risk assessment of children	53

Page

4.4.	Phase III- Appropriate Computer modeling	55
	4.4.1 ENVI-met model to Sri Lankan context	55
	4.4.2. Simulations carried out for the urban area	56
	4.4.3. Simulations carried out for the Urban School	63
	Areas	
CHAPTER 5:	RESULTS & DISCUSSION	67
5.1.	Phase I: Air Quality Monitoring with Different	67
	Meteorological Conditions	
5.2.	Phase II- Health risk assessment	76
	5.2.1. Health risk assessment of adults	76
	5.2.2. Health risk assessment of children	85
5.3.	Phase III- Appropriate Computer modeling	93
	5.3.1 ENVI-met model to Sri Lankan context	93
Anton	5.3.2. Simulations carried out for the urban area	94
	5.3.3 Simulations carried out for the Urban School Areas Electronic Theses & Dissertations	111
CHAPTER 6	CONCLUSIONS & RECOMMENDATIONS	119
6.1.	Conclusions	119
6.2.	Key Recommendations	123
6.3.	Limitations of the Study	125
6.4.	Directions for further study	127

REFERENCES:

•

¥

Υ.

*

4

130

ANNEXURE:		141
Annex I :	Sub element Analysis	141
Annex II :	Calibration of the Dust Samplers & Instrumentation	147
Annex III :	Active & Passive Sampling techniques extensively	150
Annex IV:	Adult Questionnaire for Respiratory Health	157
Annex V :	Children Questionnaire for Respiratory Health	164
Annex VI:	City Base Case input file	170
Annex VII:	School Base Case input file	172

vi

LIST OF FIGURES

۲

۲

≯

Fig.4.1 :	Summary chart of the overall study	42
Fig.4.2 :	Air quality measurements at high-risk busy town.	43
Fig. 4.3 :	Out-door air sampling	49
Fig. 4.4 :	High risk busy street indoor TSP Air Sampling	49
Fig. 4.5 :	Passive Samplers	50
Fig. 4.6 :	High risk city school - St. Paul's Milagiriya, Colombo	54
Fig: 4.7 :	Aerial View of Mount Lavinia	57
Fig: 4.8 :	ENVI-met representation of Mount Lavinia	57
Fig: 4.9 :	Very High Green Case of Urban Area	58
Fig: 4.10:	High Green Case of Urban Area	58
Fig: 4.11:	Medium Green Case of Urban Area	59
Fig: 4.12:	Zero Green Case of Urban Area	59
Fig: 4.13:	High Building Case of Urban Area	60
Fig: 4.14:	Medium Building Case of Urban Area	60
Fig: 4.15:	Low Building Case of Urban Area, Sri Lanka.	60
Fig: 4.16:	Base Case showing the source distribution of Urban Area WWW.110.1117.ac.1K	61
Fig: 4.17:	50% banning of vehicles at Station Road of Urban Area	61
Fig: 4.18:	100% banning of vehicles at Station Road of Urban Area	62
Fig: 4.19:	Aerial View of Bambalapitiya	63
Fig: 4.20:	CAD drowning of Urban School Area	63
Fig: 4.21:	ENVI-met representation of Urban School Area	63
Fig: 4.22:	Green Case of Urban School Area	64
Fig: 4.23:	Building Case of Urban School Area	65
Fig: 4.24:	Base Case showing the source distribution of Urban School	65
Fig: 4.25:	100% banning of vehicles at School Road Case of Urban	65
	School Area	
Fig. 5.1 :	Stratified Calibrated RPM Data vs Vehicle Count at Mount	68
	Lavinia junction	
Fig. 5.2 :	Normalized RPM vs Temperature at Mount Lavinia junction	69
Fig. 5.3 :	Normalized RPM vs Relative Humidity at Mount Lavinia	69
	junction	
Fig.5.4 :	Normalized RPM vs Temperature- Humidity Index data at	70
	Mount Lavinia Junction	

Page

		Page
Fig. 5.5 :	Normalized RPM vs Wind Speed at Mount Lavinia junction	70
Fig. 5.6 :	Self-reported medical conditions among city dwellers	84
Fig. 5.7 :	Self-reported medical conditions among rural dwellers	84
Fig.5.8 :	Actual & Model Temperature distribution at urban area	93
Fig. 5.9 :	Actual & Model Particulate Matter (PM10) distribution at urban	94
	area	
Fig: 5.10:	Base Case simulation mapping at the urban area	95
Fig: 5.11:	Base Case simulation PM_{10} movement at the urban area	96
Fig: 5.12:	Very High Green Case simulation mapping at the urban area	97
Fig: 5.13:	Very High Green Case simulation PM_{10} movement at the urban	98
	area	
Fig. 5.14:	Temperature variations at different Green Cases in the urban	99
	area	
Fig. 5.15:	Wind speed variations at different Green Cases in the urban area	100
Fig: 5.16:	High Building Case simulation mapping at the urban area	101
Fig: 5.17:	High Building Case simulation PM of movement at the urban	102
	area www.lib.mrt.ac.lk	
Fig. 5.18:	Temperature variations at different Building Cases in the urban	103
	area	
Fig. 5.19:	Wind speed variations at different Building Cases in the urban	104
	area	
Fig: 5.20:	Source Case simulation mapping at the urban area	106
Fig.5.21 :	Temperature variations at different Source Cases in the urban	107
	area	
Fig. 5.22:	Wind speed variations at different Source Cases in the urban	108
	city area	
Fig: 5.23:	Base Case simulation mapping at the Urban School area	111
Fig: 5.24:	Base Case simulation PM_{10} movement at the urban school area	112
Fig: 5.25:	High Green Case simulation mapping at the Urban School	113
Fig: 5.26:	High Building Case simulation mapping at the Urban School	114
Fig: 5.27:	Source Case simulation mapping at the Urban School area	115
Fig. 5.28:	Temperature variations at different Green Cases in the urban	116
	area	

٣

~

*

P

LIST OF TABLES

T

4

*

		Page
Table 2.1 :	Sri Lanka Air Quality Index Levels of Health Concern	30
	Colours	
Table 2.2 :	WHO ambient air quality guidelines published in 2006	31
Table 2.3 :	USEPA National Ambient Air Quality Standards	32
Table 2.4 :	Proposed Standards for main air pollutants in Sri Lanka	33
Table 4.1 :	Peak hours of the 8 hour period of a working day	46
Table 4.2 :	Different sampling measurements carried out	48
Table 5.1 :	Air quality and meteorological data at high-risk location	67
Table 5.2 :	RPM data at high- and low-risk areas	72
Table 5.3 :	Comparison of multi-element data obtained from TSP dust	74
	samples by XRF method with Standards	
Table 5.4 :	Hourly TSP data collection at Mount Lavinia Junction	75
Table 5.5 :	Hourly Normalized TSP Levels and other parameters at	75
130	University of Moratuwa, Sri Lanka.	
Table 5.6 : 📎	Electronic Theses & Dissertations Active sampling Data collection of TSP, SO ₂ , NO ₂ and NO	78
	at high risk busy street	
Table 5.7 :	Average NO_2 and SO_2 Passive Sampling values at High	79
	risk and Low risk sites	
Table 5.8 :	Comparison of passive sampling data on urban, suburban	81
	and rural bus routes	
Table 5.9 :	Comparison of self-reported medical conditions among	83
	city dwellers and rural dwellers	
Table 5.10:	Active sampling Data of TSP, SO_2 and NO_2 at St. Paul's	85
	Girls School	
Table 5.11:	Comparison of City School Active sampling data at	86
	different sites	
Table 5.12:	Passive sampling data of SO_2 and NO_2 at the premises of	88
	St. Paul's Girls School, Colombo	
Table 5.13:	Passive sampling data of SO_2 and NO_2 at the premises of	89
	Padiyathalawa Maha Vidyalaya	
Table 5.14:	Comparison of Passive sampling data Urban School vs	89
	Rural School	

Page

Table 5.15:	Comparison of Passive sampling data in urban school –	90
	Ground floor vs First floor	
Table 5.16:	Estimated univariate OR and confidence interval of	90
	common symptoms among the school children of city	
	school and rural school	
Table 5.17:	Stratum specific OR of cough- stratified by the type of	91
	cooking fuel and mosquito coil use.	
Table 5.18:	Stratum specific OR and confidence interval of phlegm –	92
	stratified by the type of cooking fuel	
Table: 5.19:	Comparison of PM concentration of different simulations	109
	with the Base case at urban area	
Table: 5.20:	Comparison of PM concentration of different simulations	117
	with the Base case at urban school area	

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

-

ABBREVIATIONS

AAS	Atomic Absorption spectrometry
AEA	Atomic Energy Authority
AirMAC	Air Resource Management Centre
Al	Aluminum
ATS-DLD	American Thoracic Society, Division of Lung Diseases WHO
Br	Bromine
С	Carbon
Ca	Calcium
CAI-Asia	Clean Air Initiatives for Asia
Cd	Cadmium
CEA	Central Environmental Authority
CFC	Chlorofluorocarbons
CH ₄	Methane
CI	Confident Interval University of Moratuwa, Sri Lanka.
CISIR	Ceylon Institute for Scientific and Industrial Research
Cl	vChloring.mrt.ac.lk
CMA	Colombo Metropolitan Area
CMR	Colombo Metropolitan Region
CO	Carbon monoxide
CO ₂	Carbon dioxide
COI	Cost of Illness
Cr	Chromium
CTMs	Chemical/Transport Models
Cu	Copper
df	degree of freedom
ENVI-met	Environmental Meteorology
EPA	Environmental Protection Agency
ESP	Environment Systems Products
Fe	Iron
GIS	Geographic Information System
H_2O_2	Hydrogen Peroxide

1

7

HC	Hydro Carbon
HCFC	Hydrochlorofluorocarbons
HEI	Health Effects Institute
HFC	Hydrofluorocarbons
HM	Heavy Metals
HNO ₃	Nitric acid
I/M	Inspection and Maintenance
IR	Infrared
ISB	Industrial Service Bureau
ITI	Industrial Technology Institute
K	Potassium
Mn	Manganese
MS	Mean square
MTBE	Methyl Tertiary Butyl Ether
N ₂ O	Nitrous Oxide
Na	Sodium University of Moratuwa Sri Lanka
NBRO	University of Moratuwa, Sri Lanka, National Building Research Organization Electronic Theses & Dissertations
NEA 🦉	Wational Environmental Act
NEDA	(1-Naphthyl)-ethylenediamine dihydrochoride
Ni	Nickel
NMHC	Non-Methane Hydrocarbons
NO	Nitrogen monoxide
NO ₂	Nitrogen dioxide
NOx	Oxides of Nitrogen
O ₃	Ozone
ОН	Hydroxyl
OR	Odd Ratio
Pb	Lead
PM	Particulate Matter
PM ₁₀	Particulate matter less than 10 microns (μ m) in diameter)
PM _{2.5}	Particulate matter less than 2.5 microns (μ m) in diameter- fine
PMV	Predicted Mean Vote
POPs	Persistent Organic Pollutants
ppb	parts per billion

٧

xii

RPM	Respirable Particulate Matter
S	Sulfur
Si	Silica
SLAQI	Sri Lanka Air Quality Index
SO2	Sulfur Dioxide
SS	Sum of squares
Ti	Titanium
TSP	Total Suspended Particulates
UNEP	United Nations Environmental Programme
UOM	University of Moratuwa
USEPA	United States Environmental Protection Agency
VET	Vehicle Emission Testing
WHO	World Health Organization
XRF	X-Ray Fluorescence
Zn	Zinc

1

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

ABSTRACT

Human exposure to street level air pollutants in Colombo and exploration of mitigation potions using CFD modeling was studied. To fulfill the requirement, present study was designed to gather baseline air pollution data, health risk assessment data and computer modeling was subsequently applied to a selected urban area and urban school to minimize the air pollution. For the purpose of estimating the air quality effects of land use and planning variables, a free-ware model named ENVImet was used. ENVI-met is a numerical, 4 dimensional (three spatial plus the time dimension) microclimate free ware model which can simulate the microclimate within street canyons through the solution of the physical basic equations for the wind current, the thermodynamics and the radiation balance of surfaces. In order to estimate the effect of land use and urban planning variables, several ENVI-met simulations were run: change of street vegetation, change of soil conditions and www.lib.mrt.ac.lk building geometry. Measured Respirable Particulate Matter (RPM) values were used to calibrate the simulation cases. It was found that the high risk urban location had RPM of 437µg/m³ whereas low risk village had 212µg/m³. Total Suspended

particulate mater (TSP) levels during peak hours (7.30am-8.30am and 2.00pm-3.00pm) exceeded the Sri Lankan standard (>538 μ g/m³ against 500 μ g/m³). The data also revealed that apart from the number of vehicles, meteorological factors such as high temperature and low relative humidity increased the Respirable Particulate Matter. A significant different in aerosol exposure levels was resulted in urban and rural dwellers for SO₂ and NO₂. Similarly exposure levels of urban & rural school children were resulted for SO₂ and NO₂. Simulations carried out at the urban area and school area clearly showed that the increasing greenery and banning of vehicles from busy sub roads with paving resulted the decreasing of particulate matter concentration. On the other hand, high rising buildings resulted the increase of particulate matter concentration heavily in the urban area and urban school respectively. Compared to the Base Case, results have shown that marked decrease of PM concentration has occurred by the suggested Best Case and for the Worst Case considerable increase of PM_{10} concentration in the urban area and urban school respectively. Best city design with minimum air pollution can be modeled using the ENVI-met computer modeling software with minimum cost. Therefore possibility of using this model in planning stage of new cities as well as redesigning of cities is highlighted.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk