

EVALUATION OF THERMAL STRESSES IN MASS CONCRETE

Dissertation submitted to THE UNIVERSITY OF MORATUWA In partial fulfillment of the Requirements for the degree of MASTER OF ENGINEERING IN STRUCTURAL ENGINEERING DESIGN By W.S.U.KUMARA

Department of Civil Engineering UNIVERSITY OF MORATUWA, SRI LANKA

2008

91258

Abstract

Development of stresses due to thermal effect with different type of restraints conditions is a major problem for mass concrete structures. This report presents two methods, which can be used for thermal stress analysis with known temperature distribution. For most thick sections, the temperature distribution across the section is parabolic. A literature survey was carried out to get general knowledge about mass concrete behavior, reasons for development of tensile strain in concrete and factors affecting the cracking of concrete due to temperature rise in concrete. It is learnt that tensile stresses that developed in two to three days after casting may be greater than tensile strain capacity of the concrete at that age and lead to crack. Usually, top surface of the concrete is in tension while middle part is in compression. There is a chance to develop tensile forces in bottom part of concrete, but this may not be critical due to low thermal conductivity of the sub grading material. Also it was confirmed by this analysis that concrete will crack ,:"hen the limiting temperature difference is between 20°C -23°C for granite aggregate Concrete used in Sri Lanka.

DECLARATION

I, here by confirm that this dissertation is submitted in partial satisfaction of the requirements for Master of Engineering in Structural Engineering Design and it is the result of my own investigation and that has not been submitted in candidature for a degree /diploma of this University or any other University.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

1.

ACKNOWLEGEMENTS

The author would like to express his sincere gratitude to Department of Civil Engineering of University of Moratuwa for the facilities provided to undertake this project.

He is also most grateful to the his supervisor. Prof S.M.A.Nanayakkara of the Department of Civil Engineering, University of Moratuwa for his valuable suggestion, guidance, encouragement and helpful advice during the elaboration of this dissertation.

The author would like to thank his organization. **CENTRAL ENGINEERING CONSULTANCY BUREAU** for the sponsorship and study leave granted to follow the course without which this work would not have been possible.

The author also like to thank Eng Wannigama for providing temperature records of Kelanithissa combing cycle power plant which are very important to this studies. Lectronic Theses & Dissertations

Finally, thanks are also due to author's wife. Niluka, and his parents for their encouragement to write this report.

CONTENTS

Declaration	I
Acknowledgements	II
Abstracts	I11
List of figures	VII
List of tables	IX
Chapter 1	
1. Introduction	01
1.1 Objectives	02
1.2 Scope of study	02
1.3 Methodology	03
Chapter 2	
2.1 Basic mechanism of early age thermal cracking	04
2.2 Heat of hydration	06
2.3 Effect of temperature on the hydration process	07
2.4 Evaluation of temperature rise	08
2.4.1 Section thickness	08
2.4.2 Formwork and insulation	08
2.4.3 Effect of ambient temperature	11
2.4.4 Concrete placing temperature	11
2.4.5 Cement type	12
2.4.6 Concrete mix proportions	14
2.5 Temperature effects in mass pours	14
2.5.1 Restraint	14
2.5.2 Internal restraint	15
2.5.3 Stress distribution and cracking	16
2.5.4 External restraint	18
2.5.6 Stress distribution	18

2.6.1 Tensile strain capacity	22
2.0.1 Tensile strain capacity	
2.6.2 Effect of aggregate and cement content	23
2.6.3 Coefficient of thermal expansion	24
2.6.4 Creep	25
2.7 thermal characteristics of concrete	26
Chapter 3	
3.1 Application of thermal analysis method	27
3.1.1 Level one analysis	27
3.1.2 Level two analysis	28
3.1.3 Level three analysis	28
3.2 Cracking analysis	29
3.2.1 General	29
3.2.2 Mass gradient restraint	29
3.2.3 Surface gradient restraint	30
3.2.4 Mass gradient cracking ses & Dissertations	30
3.2.5 Surface gradient cracking	30
3.2.6 Mass and surface gradient interaction cracking	31
3.3 Mass gradient cracking analysis	31
3.3.1 Mass gradient restraint factor	32
3.3.2 Structure restraint factor	32
3.3.3 Foundation restraint factor	33
3.4 Surface gradient cracking analysis	35
3.4.1 Internal restraint factor	36
3.4.2 Determination of temperature gradient and	
Surface gradient tension block	37
3.4.3 Restraint factor	40
3.4.4 Determination of mean temperature	41

Chapter 4

4. Calculation of surface gradient cracking in a Raft	
Foundation	43
4.1 Temperature data	43
4.2 Calculation for surface gradient cracking analysis	48
Chapter 5	
5. Conclusion	66
5.1 Further investigation	66
References	67

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

д.

LIST OF FIGURES

Fig No.		1	Page No
Figure	2.1a	: Variation of free thermal movement and measured	
		Strain with time	04
Figure	2.1b	: Variation of restrained strain with time	05
Figure	2.1c	: Variation of measured strain with time	05
Figure	2.2	: The influence of ground conductivity on	
C		Temperature differentials	10
Figure	2.3	: Temperature profiles for different surface condition	ns 10
Figure	2.4	: Temperature dependence of rate of heat liberation	of
e		OPC	13
Figure	2.5	: Rate of heat liberation curves for commercially	
C		Available cement	13
Figure	2.6	: Internal restraint	15
Figure	2.7	: Internal restraint and stress distribution	17
Figure	2.8	: External restraint	18
Figure	2.9	: Degree of restraint at center line	. 19
Figure	2.10	: Adiabatic temperature records for	
		Concrete with different cement (400kg/m3)	21
Figure	2.11	: Adiabatic temperature after 4 days recorded	
		For concrete with different Cement contents	22
Figure	e 2.12	: Tensile strain Capacity at early age	22
Figure	e 3.1	: External restraint model used in mass	
		Gradient analysis	32
Figure	e 3.2	: Internal restraint model used in surface	
		Gradient analysis	35
Figu	re 3.3	: Temperature difference distribution across	
		Mass concrete foundation	38

Figure	3.4	: Balance temperature difference distribution	
		Across mass foundation	39
Figure	3.5	: Temperature distribution across mass foundation	41
Figure	4.1	: Plan view of Raft foundation	43
Figure	4.2	: Sectional view of Raft foundation	44
Figure	4.3	: Temperature variation across depth with	
		Age of concrete	47
Figure	4.4	: Variation of temperature difference distribution	
		Across the section	49
Figure	4.5	: Variation of temperature distribution	
		Across the section	55
Figure	4.6	: Variation of tensile stain with time (at Surface)	64
Figure	4.7	: Variation of tensile stain with time (at 150mm below)	64
Figure	4.8	: Variation of tensile stain with time (at 300mm below)	65
Figure	4.9	: Variation of tensile stain with time (at 450mm below)	65

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

14.

LIST OF TABLES

Table	No		Page No
Table	2.1	: Heat of hydration of pure compounds	06
Table	2.2	: Heat of hydration of each of main components of	
		OPC compounds	12
Table	2.3	: Reduction in creep factor by inclusion	
		of PFA oSLAG	20
Table	2.4	: Coefficient of thermal expansion and tensile	
		Strain capacity for concrete of different	
		Aggregate types	24
Table	3.1	: Multipliers for foundation rigidity	34
Table	3.2	: Creep factor for concrete with different Cements	42
Table	3.3	: Properties of concrete using different aggregate	42
Table Table	4.1 4.2	 Temperature records of points at mid section Measured temperature at different locations 	44 a .
		With time www.lib.mrt.ac.lk	46
Table	4.3	: Mix proportions of Concrete	47.
Table	4.4	: Variation of internal restraint factor	
		With depth (Method-1)	51
Table	4.5	: Variation of temperature difference	
		Distribution with depth (Method-1)	51
Table	4.6	: Variation of tensile with depth (Method-1)	52
Table	4.7	: Variation of internal restraint factors and effective	
		Temperature differences with age of Concrete (Meth	od-1) 53
Table	4.8	: Variation of tensile strains at different locations	
		With age of concrete (Method-1)	54
Table	4.9	: Temperature records at different locations	
		With age of concrete	56

Table	4.10: Variation of restraint factor across	
	Mass foundation (Method-2)	58
Table	4.11: Variation of restraint factors at different locations	
	With age of concrete (Method-2)	59
Table	4.12: Variation of tensile strain across	
	Mass foundation (Method -2)	60
Table	4.13: Variation of tensile strains at different locations	
	With time (Method-2)	61
Table	4.14: Comparison of results	62
Table	4.15: Tensile strain capacity at time	63

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

3.