LB/DON/87/08

DISTRIBUTION SYSTEM RELIABILITY ASSESMENT AND TECHNIQUES FOR IMPROVEMENT.

A dissertation submitted to the Department of Electrical Engineering, University of Moratuwa in partial fulfillment of the requirements for the Degree of Master of Science

by

A.D. JANAKI RUPASINGHA

succironic theses & Dissertations

UNIVERSITY OF MORATUWA, SRI LANKA MORATUWA

Supervised by: Prof. Ranjit Perera

621.3 "08" 621.3 (093)

Department of Electrical Engineering University of Moratuwa , Sri Lanka

	9126
April 2008	
University of Moratuwa	ACCESSION
	CLASS No.
91261	

DECLARATION

The work submitted in this dissertation in the result of my own investigation, except where otherwise stated.

It has not already been accepted for any degree and is also not being concurrently submitted for any other degree

UOM Verified Signature

UOM Verified Signature

A.D.J. Rupasingha Date:08/04/2008

I endorse the declaration by the candidate. Theses & Dissertations

v.lib.mrt.ac.lk

Prof. Ranjit Perera

ABSTRACT

Although reliability indices were introduced in the past as Key Performance Indicators to gauge the activities of electricity utilities, reliability studies on electricity network are rarely carried out to determine what improvements can be made in the future. The data collected in the past has been only used for manual calculation of reliability indices in the various operating divisions with no attempts made to study & effect improvements based on them.

This study focused on the following,

- A study of the sustained failure indices such as SAIDI & SAIFI making use of the SynerGEE software package for medium voltage distribution network, as an initial computation of indices.
- Comparison of the results with values for reliability indices obtained in practice using past data from operating divisions & their system control centres in the CEB.
- Identification and selection of mitigation techniques in Kalpitiya that is a heavily salt polluted area of the North Western province of Sri Lanka.
- Analysis of the effectiveness of the selected mitigation techniques to improve the reliability level in the Kalpitiya area and a financial analysis to justify the viability of the project.
- Proposing methods for reliability improvement, such as better maintenance practices, policies, augmentation of lines and improvement of switching arrangements.

The tool available in the SynerGEE software package for reliability calculation in the distribution network has not been used effectively in the past for calculations and mitigation planning purposes due to unavailability of proper data base.

In this study the SynerGEE software package has been used to calculate the sustained failure indices such as SAIDI and SAIFI for the medium voltage distribution network of the North Western Province initially with mitigation techniques applied. Further it is recommended that similar studies are conducted in other areas of the CEB as well and techniques applied to critical regions with much benefit to be derived in the future.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

ACKNOWLEDGEMENT

First I thank very much Prof. Ranjit Perera without whose guidance, support and encouragement, beyond his role of project supervisor this achievement would not be end with this final dissertation successfully.

I take this opportunity to extend my sincere thanks to Mr. Lalith Fernando –DGM (Planning & Development)-R1, Mr. S.R.K. Gamage- CE (Planning) –R1 & Dr. Wijekoon-CE (Planning)-R3 for encouraging me to carry out this project..

I also thank Mr.A.C.S Wijethilaka- System Planning Engineer (NWP), Mr Kapila Weerasuriya-CE(Development),Mr. A.K. Dayaparendran, Mr.W.S. Silva, Mr Kamal Perera in the Distribution Planning Branch, Region 1, for facilitation me with the necessary data and the information.

It is a great pleasure to remember the kind cooperation of all colleagues in Post Graduate programme and all family members for backing me from start to end of this course.

iv

LIST OF ABBREVIATIONS

AAC- All Aluminum Alloy Conductors

ABS- Air Break Switch

ACSR-Aluminum Conductor with steel reinforcement

AR- Auto Reclosure

CAIDI-Customer Average Interruption Duration Index

CAIFI-Customer Average Interruption Frequency Index

CSC- Consumer Service Centre

DDLO- Drop Down Lift Off

DGM- Deputy General Manager

GDP- Gross Domestic Product

GSS- Grid Sub Station

HT - High Tension

LBS- Load Break Switch

LT - Low Tension GSS- Grid Power Station & Dissertations

V

NWP- North Western Province lib mrt.ac.lk

PSS- Primary Substation

SAIDI-System Average Interruption Duration Index

SAIFI-System Average Interruption Frequency Index

SIN-Substation Identification Number

SIR -Silicon Rubber

CONTENTS

Declaration	i
Abstract	ii
Acknowledgement	iii
Abbreviation	. iv
List of Figures	viii
List of tables	ix

1 Introduction

1.1	Background	1
1.2	Motivation	2
1.3	Objective	3
1.4	Scope of work	3
1.5	SynerGEE Software Package	4

2 Distribution System Reliability in NWP of Sri Lanka.

2.1	NWP ProvinceUniversity of Moratuwa Sri Lanka	6
2.2	Electricity Distribution Network of NWP	6
2.3	Reliability Assessment for NWP Province	8
2.4	Average Reliability Indices for Year 2005 & 2006	10
2.5	Causes for system outages	11
2.6	Feeder tripping details	18

3 Methodology

3.1	Updating the map of MV distribution network	22
3.2	Data collection	23
3.3	Data analysis and Calculation	25
3.4	Modelling the network in SynerGEE	28
3.5	Assigning in put data to the digitized model	29
3.6	Reliability analysis	30

vi

4	Calculation Exposure zone reliability and	
	Effectiveness of the mitigation techniques	
4.1	Exposure Zone Reliability estimation	32
4.2	Quantification of the effectiveness of the mitigation	38
	techniques	
5	Frequently Repeated Breakdowns in MV Distribution	
	network and Solutions for them	
5.1	DDLO without having minimum clearance	41
5.2	MV Breakdowns due to way-leaves	41
5.3	Improper connection of HT jumpers	42
5.4	Jumper connection without allowable clearance	43
5.5	Corrosion of concrete poles in coastal areas	43
5.6	Sagged MV line touching LT poles.MonatuwaSri Lanka	44
5.7	Improper Electrical Connections	45
5.8	HT or LT conductors are not tensioned properly	45
5.9	Insulator pollution	45
5.10	Usage of incorrect fuse size	45
5.11	High earth impedance at substations	47
5.12	Two HT circuits are drawn on the some poles	47
6	Result and Analysis	
61	Analysis of the Result obtained from the SynerGEE reliability	50

0.1	inalysis of the Result obtained nom the SynerCEE reliability	50
	tool	
6.2	Case Study (Selected Mitigation Technique)	55

7 Conclusion and Recommendation

7.1	Conclusion and discussion	64
7.2	Proposals for Improvement of the network	65

vii

References	 74

Annexure

Annexure 2.1	The map of Electricity Distribution Network of NWP	75
Annexure 2.2	The definitions of the reliability indices	76
Annexure 3.1	A performance report about daily functions of each CSC	77
Annexure 3.2	Daily report on 33kV feeder trippings	79
Annexure 3.3	Summery report of failures	80
Annexure 3.4-	HT breakdowns/failures recorded at the DCC	84
Annexure 3.5	Sin numbers and the number of customers assigned	87
	to sub stations	
Annexure 4.1	Questionnaire prepared to distribute among the consumers. Iniversity, of Moratuwa, Sri Lanka,	90
Annexure 6.1	Co-relation between rainfall and operation frequency of HT DDLO	91
Annexure 6.2	Puttalam- Kalpitiya Feeder	92

viii

List of Figures

Figure 2.1	Analysis of recorded outages	9
Figure 2.2	Percentage of effected consumers due to different outage categories	9
Figure 2.3	Percentage of consumer hours lost due to different outage categories	10
Figure 2.4	Analysis of LT faults	12
Figure 2.5	Identified reasons for LT failures reported to each CSC	14
Figure 2.6	Restoring time vs. percentage of LT faults reported	15
Figure 2.7	HT faults reported in 2005	15
Figure 2.8	Identified reasons for HT failures reported each CSC	17
Figure 2.9	Restoring time vs. percentage of HT faults reported	18
Figure 2.10	Fault rate vs. percentage of total circuits	21
Figure 4.1	Frequency Distribution of MV power failure of the selected area	35
Figure 4.2	Frequency Distribution of MV power failure of the selected area	36
Figure 5.1	Incorrectly fixed DDLOs	41
Figure 5.2	Tree branches touching MV conductors	42
Figure 5.3	Improper electrical connections	42
Figure 5.4	Jumper connections without allowable clearance with cross arms	43
Figure 5.5	Corroded concrete poles at coastal areas	44
Figure 5.6	Sagged MV Line touch on LT pole	44
Figure 5.7	Improper Electrical connections	45
Figure 5.8	Damaged DDLO fuse bases	46
Figure 5.9	Untidy connections of transformer tail wires	48
Figure 5.10	Damaged LT fuse bases	48

ix

List of Tables

4

.

.

Table 2.1	MV distribution facilities at the end of 2006	7
Table 2.2	Network details of each area at the end of year 2006	8
Table 2.3	Summary of the annual average event – 2005 & 2006	8
Table 2.4	Reliability indices of NWP network for year 2005 & 2006	11
Table 2.5	Contribution from the transmission & distribution network to reliability indices	11
Table 2.6	Summary of Average LT breakdown details for year 2005 & 2006	12
Table 2.7	Summary of HT breakdown details	16
Table 2.8	Summary of feeder tripping details	18
Table 2.9	Fault rate of each feeder	19
Table 3.1	Breakdown categories University of Moratuwa, Sri Lanka.	25
Table 3.2	Equipment failure rates and repair time assigned for the model	27
Table 3.3	Letter allocation of sin number for the areas & CSCs	30
Table 4.1	Summarize result of the survey	34
Table 4.2	Cut set of average time taken to restore the power supply	36
Table 4.3	Reliability indices for Exposure Zones	38
Table 4.4	Mitigation zones and their effectiveness	39
Table 6.1	Result from SynerGEE Software package	50
Table 6.2	Table of comparison between the feeders of NWP	53
Table 6.3	SAIDI & SAIFI comparison Table	54
Table 6.4	Comparison of general capabilities of Insulators	57
Table 6.5	SAIDI & SAIFI comparison with both type of insulators	58

х