

MODELLING OF CRUDE OIL IMPORT SCHEDULE IN ORDER TO MINIMIZE REFINERY LOSSES

By

A.S.PREMAKANTHI

THIS THESIS WAS SUBMITTED TO THE

DEPARTMENT OF CHEMICAL AND PROCESS ENGINEERING OF THE UNIVERSITY OF MORATUWA IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE

> LIBRARY UNIVERSITY OF MORATUMA, SRI LANERA MONATUMA

DEPARTMENT OF CHEMICAL AND PROCESS ENGINEERING UNIVERSITY OF MORATUWA MORATUWA SRI LANKA

FEBRUARY 2009

University of Moratuwa 92380

66. "09" 66(043 TH

92380

1991 C.

92330

DECLARATION

"I certify that this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any university and to the best of my knowledge and belief it does not contain any material previously published, written or orally communicated by another person except, where due reference is made in the text."

UOM Verified Signature

Signature of the candidate (A. S.Premakanthi)

"To the best of my knowledge, the above particulars are correct"

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Supervisor

Dr. A.D.U.S. Amarasinghe

Co-Supervisor

UOM Verified Signature

Eng. E.A.S. Edirisinghe Chartered Engineer

Acting Operation Manager C.P.C Oil Refinery Sapugaskanda - Kelaniya

Senior Lecturer Department of Chemical and Process Engineering University of Moratuwa. February 2009

ABSTRACT

In a refinery the choice of a suitable crude oil slate is probably one of the most difficult problem that refiners have to resolve. The process of making the best choice includes the whole series of successive decisions to purchase different crud oils that refinery will process and globally which will generate the best economic results.

There are mainly three types of crude oil which are being imported to the country. They are Iranian light (from Iran), Arabian light (from Saudi Arabia) and Miri light (from Malaysia). Two types of crude were considered in this study for estimation of the product key properties and the refinery margin (Economical evaluation). University of Moratuwa, Sri Lanka. Estimation of the yield and key properties were done using standard data and actual data used in the Refinery. Also the standard assay data from crude assay books were used.

This study was carried out in two types of analysis first an economic evaluation which was done by comparing value of selected crude mixes against the value of the products and Crude. Average product prices were obtained from daily Platt's Singapore price data available in the refinery and Crude prices were actual. Crude mix having Iranian Light crude oil and Miri Light crude in different wt % were analyzed. The study showed that with the increase of Miri Light crude, net profit or the margin decreases. As the second part of the study, the evaluation of the properties of the products which were obtained from same crude mixes were analyzed and checked for the standard specifications. However with this study, it was found out that some specifications are going off while increasing the Miri crude percentage over 27 percent.

The study carried out indicated that it would be able to produce required quality products by blending Miri light crude up to 27 percent in the mixture meeting the required specifications but never profitable. It was concluded that Miri crude oil should not be processed in the refinery due to high price and also limiting the specification at certain percentage. Finally the methodology was developed to a model which can be used to evaluate any crude oil for properties and profit provided the assay data given. The evaluation model should be developed to a Linear Programming model (LP Model) or simulation module for evaluating crude oil as university of Moratuwa, Sri Lanka. in world Refineries. Electronic Theses & Dissertations www.lib.mrt.ac.lk

ACKNOWLEDGEMENT

From the very beginning I would like to offer my grateful thanks Dr. A.D.U.S. Amarasingha, Senior Lecturer, Department of Chemical and Process Engineering University of Moratuwa, Who guided and supervised me as my supervisor an excellent way throughout research. When making the project proposal he gave tremendous support and he has been so kind sacrifice his valuable time for this project. It was great pleasure to be able to work under him to make this project success. Then I would like to offer my special and sincere thanks to Eng. Mr. E.A.S. Edirisinghe Charted Engineer, Acting Operation Manager Department of Manufacturing and Operations Ceylon Electronic Theses & Dissertations Petroleum opportation (Refinery) who guided me in all respect been my co supervisor giving valuable comments and suggestions for selecting ,writing and greate assistant in completion of this project.

Also I offer my thanks to Dr. Suren Wijekoon as the Project Co-ordinator and Dr.Shantha walpolage, Senior lecturer, Department of Chemical and Process Engineering University of Moratuwa, for all the encouragement given me and all the lecturers of the Department of Chemical and Process Engineering who helped me in various ways to complete this successfully.

And also I remember my beloved mother recently passed away for blessings and courage given at all times.

Contents

.

•

•

	Abstract		i
	Acknowledge	ment	ii
	Contents		iii
	List of tables		iv
	List of figures	i de la companya de l	v
1.	Chapter 1.	Introduction	
	1.1	Introduction	1
	1.2	Identification of the problem	3
	1.3	Scope	5
	1.4	University of Moratuwa, Sri Lanka. Dissertations	6
2.	Chapter 2.	Introduction to the Refinery of Ceylon Petrole	um
		Corporation	
	2.1	Brief history of the Refinery Project	7
	2.2	Refinery Process and Process units	9
	2.2.1	Crude distiller unit	10
	2.2.2	Naphtha Unifiner unit (02 unit)	11
	2.2.3	Platformer unit (03 unit)	12
	2.2.4	Visbreaker unit (05 unit)	12
	2.2.5	LPG Merox unit (06 unit)	13
	2.2.6	Gas oil hydrotreaters (04 and 07 units)	13

Ш

	2.2.7	Vacuum distillation unit (08 unit)	13
	2.2.8	Bitumen blowing unit (09 unit)	14
	2.2.9	De-propaniser unit (13 unit)	14
	2.2.10	Kero Merox unit (15 unit)	15
	2.3	Major Refinery products	15
	2.3.1	Gasoline	17
	2.3.2	Kerosene	17
	2.3.3	Liquefied Petroleum Gas (LPG)	17
	2.3.4	Diesel Fuels	18
	2.3.5	Residual Fuels	18
	2.3.6	Asphalt University of Moratuwa, Sri Lanka.	18
	2.3.7	Solvent (SBP) nic Theses & Dissertations	19
	2.3.8.	Petrochemicals	19
	2.3.9.	Lubricants	19
3.	Chapter 3.	Literature Review	
	3.1	Basic refinery process- Description and History	21
	3.2	Distillation Processes	22
	3.2.1	Thermal Cracking Processes	22
	3.2.2	Catalytic Processes	22
	3.2.3	Treatment Processes	22
	3.2	Crude oil Pricing	23

٠

-

.

٠

3.21 Introduction 23

3.2.2 Pricing methods	25
3.2.2.1 Crude oil price setting	26
3.2.2.2 Product Price Setting	
3.2.2.3 Methods of Trading on the Oil Market	28
(a) Barter Agreements	28
(b) Single Cargo sales	28
(c) Spot market (Brent, WTI, Oman/Dubai)	28
(d) Future markets	32
(e) Future contracts	34
(f) Long Term Contracts	34
3.2.3 Modeling of Pricing University of Moratuwa, Sri Lanka.	35
3.2.3.1 Introduction ronic Theses & Dissertations	35
(a) Indexing pricing	36
(b) Pricing formula applied to Arabian light,	37
Iranian Light like for Europe crude	
(c) Pricing formula applied to Arabian light,	37
Iranian Light like For far Easten crude	
(d) Product price Formular	38
3.2.3.2 Factors that affect crude pricing	38
5.2.5.2 I actors that affect crude pricing	50
3.2.3.3 Crude oil and finished product prices using CPC	41
(a) Crude price	41

\$

11	n 1 /	•
(6)	Product	nricoc
101	Product	DITUUS
(-)		r

4. Chapter 4. Basics of Crude oils

۰

.

4.1	Introduction	46
4.2	Basics of Hydrocarbon Chemistry	` 47
4.2.1	Three Principal Groups or Series of Hydrocarbon	47
	Compounds that Occur Naturally in Crude Oil	
4.2.1.	1 Paraffin	48
4.2.1.2	2 Aromatics	49
4.2.1.	3 Naphthenes	49
4.2.2	Other Hydrocarbons	50
4.2.2.	Alkenes Electronic Theses & Dissertations	50
4.2.2.	2 Dienes and Alkynes rt. ac.lk	51
4.2.3	Nonhydrocarbons	52
4.2.3.	1 Sulfur Compounds	52
4.2.3.2	2 Oxygen Compounds	53
4.2.3.3 Nitrogen Compounds		53
4.2.3.4	4 Trace metals	53
4.3.3.	5 Salts	53
4.3.3.0	6 Carbon Dioxide	54
4.3.3.2	7 Naphthenic Acids	54

	4.3	Characterization of Crude oil and petroleum fractions	54
	4.3.1	Introduction - Crude oil properties	54
	4.3.2	Gravity API	55
	4.3.3	Boiling Point Range	56
	4.3.4	Sulphur content (wt%)	57
	4.3.5	Pour point	58
	4.3.6	Salt content	58
	4.3.7	Viscosity	59
	4.3.8	Freezing Point	59
	4.3.9	Flash Point	60
	4.3.10	Octane Number University of Moratuwa, Sri Lanka.	60
	4.3.11	Cetane number nic Theses & Dissertations www.lib.mrt.ac.lk	61
5.	Chapter 5.	Methodology	
	5.1	Introduction	62
	5.2	Estimation of TBP	65
	5.3	Estimation of Yields	67
	5.3.1	Evaluation of Product Yield	69
	5.3.2	Refinery Material Balance	74
	5.3.3	Product Blending to meet critical properties	84
	5.3.3.1	Gasoline Blending	85
	5.3.3.2	Auto Diesel Blending	86
	5.3.3.3	Fuel oil Blending	88

	5.4	Estimation of Product properties	91
	5.4.1	Key properties for single Crude Oil	91
	5.4.1.	1 Specific Gravity (SG) and API Gravity	93
	5.4.1.	2 Boiling Point	95
	5.4.1.	3 Characterization Factor	95
	5.4.1.	4 Sulphur content	96
	5.4.1.	5 Aniline Point	96
	5.4.1.	6 Cetane Index	97
	5.4.1.	7 Smoke Point	98
	5.4.1.	8 Freeze Point	99
	5.4.1.	Four Point Versity of Moratuwa, Sri Lanka. Electronic Theses & Dissertations	100
	5.4.2	Specification (Standard CPC product key Properties)	103
	5.5	Estimation of profit	104
6. Cha	pter 6.	Results and discussion	
	6.1	Introduction	111
	6.2	Estimation of properties of finished products obtained	
		from different % of Miri Light Crude in the mixture	113
	6.2.1	Key Properties of Kerosene	114
	6.2.2.	Key Properties of Diesel	119
	6.2.3	Key Properties of Long residue	124
	6.3	Estimation of Profit (Economic evaluation of Refinery	

129

in feed stock)

•

7. Chapter 7.	Conclusion and Future work	135
	List of References	138
APPENDIX A	Refinery Flow Diagram	
APPENDIX B	Demand Forecast of Petroleum Products in Sri Lanka	
APPENDIX C	Crude Assay Data	
APPENDIX D	Material Balance Work Sheets	
APPENDIX E	Predicted Product Yields & Properties for Crude Mixes	
APPENDIX F	Ceylon Petroleum Corporation Product Specifications Electronic Theses & Dissertations www.lib.mrt.ac.lk	

LIST OF TABLES

Table	2.1	Various products and their number of carbon atoms	16
Table	2.2	Major Refinery Products and the quantity of production	17
		for past 5 years	
Table	3.1	Platt's Product and crude oil prices used in the study	44
		(Average prices of May 2006)	
Table	3.2	Platt,s average crude prices and product prices for 10 years	44
Table	5.1	Standard TBP cut points	67
Table	5.2	Actual TBR cut points Moratuwa, Sri Lanka.	67
Table	5.3	Electronic Theses & Dissertations Grude assay data WWW.lib.mrt.ac.lk	73
Table	5.4	CDU Product Yields for three types of crude oil	72
Table	5.5	Yield pattern of Miri light Iranian light Crude mix	72
Table	5.6	Intermediate Product Yields of Down Stream Units	75
Table	5.7	Key properties and the Units	92
Table	5.8	Predicted product yield and actual TBP cuts	101
Table	5.9	Predicted product yield and actual TBP cuts (Mix)	102
Table	5.10	CPC required Product Key Properties	103
Table	5.11	Calculation of landed cost used in product evaluation.	108
Table	5.12	Estimated product value for finished products obtained	
		for 75% IL and 25% Miri Light Crude mix.	109

IV

Table 5.13	Finished products, product value, total cost and Net margin for	
	75% IL 25% Miri crude mix	110
Table 6.1	Key Properties of Kerosene resulting from various % of Miri	114
	in the crude mix.	
Table 6.2	Key Properties of Diesel resulting various percentages	119
	of Miri in the crude mix.	
Table 6.3	Key Properties of Long residue resulting various % of Miri	
	in the crude mix.	124
Table 6.4	Finished products, product value, total cost and net margin	
Table 6.5	for various crude mixes. University of Moratuwa, Sri Lanka. Economic evaluation of Refinery Products with different	130
	percentages of Mirilight Crude in feed stock	132

LIST OF FIGURES

Figure 3.2.1	Medium-Term Oil Prices, 1994-2007 (not adjusted for inflation).	33
Figure 3.2.2	Short-Term Oil Prices, 2005-2007 (not adjusted for inflation)	33
Figure 3.2.3	Long-Term Oil Prices, 1861-2006 (top line adjusted for inflation)	35
	Oil consumption per capita (darker colors represent more consumption).
Figure 3.2.4	Yearly average product and crud oil prices of	
	platt's Singapore market	45
Figure 3.2.5	Monthly average product and crud oil prices of	
	platt's Singapore market	45
Figure 4.2.1.	Typical Paraffins.	49
Figure 4.22	Aromatics versity of Moratuwa, Sri Lanka.	50
Figure 4.2.2	Electronic Theses & Dissertations Typical Aromatics (Naphthalene C ₁₀ H ₅)	51
Figure 4.2.3	Typical Naphthens. (Methyyl Cyclopentane C ₆ H1 ₁₂ }	51
Figure 4.2.4	Typical Alkynes.	51
Figure 4.2.5	Typical Diolefins and Alkynes.	52
Figure 5.1	TBP curve for Iranian light crude oil	66
Figure 5.2	Material Balance for 100 % IL	
Figure 5.3	Material Balance for 75 % IL and 25 % Miri mix	

Figure 6.1 Variation of Specific Gravity of Kerosene with Miri wt% in Crude Mix 115

Figure 6.2 Variation of Sulphur content of Kerosene with Miri wt% in Crude Mix 116

Figure 6.3 Variation of Smoke Point of Kerosene with Miri wt% in Crude Mix. 117

Figure 6.4	Variation of Freezing Point of Kerosene with Miri wt% in Crude Mix.	118
Figure 6.6	Variation of Specific Gravity of Diesel with Miri wt% in Crude Mix.	120
Figure 6.7	Variation of Sulphur content of Diesel with Miri wt% in Crude Mix	121
Figure 6.8	Variation of Cetane Index of Diesel with Miri wt% in Crude Mix	122
Figure 6.9	Variation of Pour Point of Diesel with Miri wt% in Crude Mix	123
Figure 6.10	Variation of Specific Gravity of Long Residue with	125
	Miri wt% in Crude Mix	
Figure 6.11	Variation of Sulphur Content of Long Residue with	125
	Miri wt% in Crude Mix	
Figure 6.12	Variation of Pour point of Long Residue with Miri wt% in	126
Figure 6.13	Crude Mix University of Moratuwa, Sri Lanka. The net Margin (realization) for different % of Miri crude www.lib.mrt.ac.lk in the feed stock mix.	133