LB/DON/31/09

PERFORMANCE OF INSULATED ROOF SLABS ON BUILT ENVIRONMENTS IN TROPICAL CLIMATES

BY

R. U. HALWATURA LIBRARY ONVERITY OF MORATOWA, STILLANKA MORATUWA

THESIS SUBMITTED TO THE DEPARTMENT OF CIVIL ENGINEERING IN THE FULFILLMENT OF THE REQUIREMENT FOR THE DOCTOR OF PHILOSOPHY IN ENGINEERING

Research supervised

By

624 °08" 624 (043)

PROF. M. T. R. JAYASINGHE

DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MORATUWA SRI LANKA SEPTEMBER 2008

99924

University of Moratuwa

ABSTRACT

The countries located close to the equator generally have tropical climatic conditions, where temperatures remain relatively high with humid conditions. Thus, the climatic conditions are usually identified as warm humid. With the rapid urbanization, two different solutions are adopted to meet the housing needs. One is the construction of medium to high rise apartment buildings which has become popular in many large cities located closed to the equator. Another option have been to pursue residential developments with a large number of detached houses located on small blocks of lands.

The energy consumption for buildings is becoming higher and high energy demand and the associated green house gas emission is another critical issue that needs attention in the long run. Global warming can also become a key factor in near future due to environment and climatic changes that are associated with it. This emphasise the need to develop and promote new passive techniques to achieve thermal comfort in built environment. The use of insulated roof slabs provide an alternative that may enable the creation of green cover at roof level. This can also become an alternative solution to the traditional roofs since insulation can be effective in creating desirable indoor conditions needed by free running spaces and the flat slab on top of the building can solve many environmental and social problems arising out of high density residential developments to a certain extent. In addition, this can be an ideal alternative to traditional roofs considering the better cyclone resistance that can be offered due to the self weight.

Considering all these facts, reinforce concrete solid slabs were considered as an alternative. With detailed experimental programmes on small scale models and prototypes, it is shown that a minimum insulation thickness of 25 mm with a material having a conductivity of about 0.03 W/mK can retard the heat flow significantly. In order to ensure that roof slabs have unrestricted access, an innovative solution was proposed and used as the insulation system for the experimental programme. Since it is practically difficult to predict the effect of insulated roof slabs on built environments such as houses using actual model based experiments, simulations have been used with computer software validated for tropical climatic conditions to predict the trends. Since there are strong indications of changing climatic patterns due to global warming, the performance of insulated roof slabs under such future scenarios have also been predicted using appropriately modified climatic files.

In order to emphasise the need to rely on carefully planned micro climate in future, thermal comfort models have been developed considering the climatic acclimatization that is expected from people gradually facing the global warming scenarios over a long period of time. With all these studies, it is highlighted the importance of adopting insulated roof slabs as a solution to combat the heat island effect in built up areas by creating roof top gardens. Since these slabs can be successfully adopted in air-conditioned commercial buildings, life cycle costing approach was used to predict the desirable insulation thickness for air conditioned spaces. With this multi-disciplinary approach, the usefulness of insulated roof slabs as an alternative to traditional roofs have been highlighted.

Key words: Tropical climates, flat roof, heat island effect, global warming, thermal comfort, roof insulation, computer simulation, life cycle cost.

1

i

ACKNOWLEDGEMENT

The author is immensely grateful to the research supervisor, Professor M. T. R. Jayasinghe of the Department of Civil Engineering for his invaluable guidance and support throughout the research period.

Author wishes to extend his sincere gratitude to McBerton Polymer Ltd for funding the experimental programme for first two years of the research work.

Author wishes to thankfully acknowledge the excellent support given by Dr. A. A. D. A. J. Perera, Dr Mrs. C. Jayasinghe and Dr. L. L. Ekanayake of Department of Civil Engineering and Professor R. A. Attalage of Department of Mechanical Engineering.

Author would like to thanks Mr. R. M. J. S. B. Rathnayake and Mr. J. M. C. G. Jayasinghe, who have supported in numerous ways to complete the questionnaire surveys. Sincere gratitude is also due for all those who participated in the questionnaire survey. www.lib.mrt.ac.lk

The support given by Prof. W. P. S. Dias (Head, Department of Civil Engineering), and Prof. S. A. S. Kulathilake (Research Coordinator, Department of Civil Engineering) is acknowledged gratefully. All the other lectures and research students are thanked for the positive attitude they adopted in promoting research at Civil Engineering Department.

The technical officers of the Department of Civil Engineering, Messrs S. P. Madanayake, S. L. Kapuruge, H. P. Nandaweera, G. V. Somarathna and laboratory assistants Mr. L. Perera and Mr. H. N. Fernando assisted the detailed experimental programme very much. Mr. J. M. Gunasekara helped in many ways with the apparatus manufactured.

1

Finally, the author wishes to thank all those who contributed to the completion of this project successfully.

DECLARATION

I, Rangika Umesh Halwatura, hereby declare that the content of this thesis is the output of the original research work carried out over a period of 45 months at the Department of Civil Engineering, University of Moratuwa. Whenever any work by others is included in this thesis, it is appropriately indicated as a reference.

Eng. R U Halwatura Department of Civil Engineering University of Moratuwa Sri Lanka

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations

UOM Verified Signature

Supervisor

Prof. M T R J ayasinghe Department of Civil Engineering University of Moratuwa Sri Lanka

Contents

Abstract	i
Acknowledgement	ii
Declaration	iii
Contents	iv
List of Figures	viii
List of Tables	xii

1	INTRODUC	CTION	1
1.1	General		1
1.2	The objectives.		3
1.3	The methodolo	gy	4
1.4	The main findi	ngs	5
1.5	The arrangeme	ent of the report	5
2	LITERATI	PF PFVIFW	7
-		University of Moratuwa, Sri Lanka.	-
2.1	General	Electronic Theses & Dissertations	/
2.2	Thermal comfo	rt in tropical climates 11.	7
	2.2.1	Human body responses to environment conditions	8
	2.2.2	Thermal comfort	10
	2.2.3	The climate	11
	2.2.4	Tropical climatic conditions	11
	2.2.5	Climate in Sri Lanka	13
	2.2.6	Psychrometric chart and comfort zone	16
2.3	Energy crisis a	nd global warming	23
	2.3.1	High energy demand	23
	2.3.2	Energy demand in Sri Lanka	28
2.4	Use of passive	techniques	32
	2.4.1	Thermal comfort standard for passive buildings	32
	2.4.2	Thermal insulation	33
	2.4.3	Factors that affect the choice of insulating materials	35
	2.4.4	Natural ventilation	38
2.5	Use of roof top	garden	40
	2.5.1	Solid slab as roofs	40
	2.5.2	Vegetation and their effects on micro-climate	43
	2.5.3	Roof top vegetation	46
2.6	Need for disast	er resistance	50

	2.6.1	Tropical cyclones	. 50
	2.6.2	Earthquake	. 53
2.7	The effects of an	ticipated climate change	. 57
	2.7.1	The reasons for climate change	. 58
	2.7.2	The activities responsible for greenhouse gases	. 59
	2.7.3	The effects of climate change	. 59
	2.7.4	The global warming	. 60
	2.7.5	Heat Island effect	61
	2.7.6	Factors Contributing to the Heat Island Effect	63
2.8	Life cycle cost		. 64
	2.8.1	Service life	66
	2.8.2	Inflation	66
2.9	Summary		. 67
3	ROOF SLAB	INSULATION SYSTEM	70
3.1	General		70
3.2	The insulation sy	/stem	71
	3.2.1	The arrangement	71
	3.2.2	The reinforcement for the covering concrete	73
	3.2.3	Concrete mix.	74
	3.2.4	Effect of Silica fume on concrete SII Lanka.	76
	3.2.5	Thickness of resistive insulations sertations	77
	3.2.6	The experimental setup	77
	3.2.7	The load testing	8/
	3.2.8 3.2.0	Thermal characteristics	00
33	Results of experi	mental studies on models	
3.4	Summary		90
4	DEDEODMA	NCE OF LADCE BUILDINGS	Q1
4		ICE OF EARGE BUILDINGS	01
4.1	General		
4.2	Large model		
4.3	Thermal measur	ements	94
4.4	Possibility to use	vegetation cover	
4.5	Computer simul	ation for predicting the performance	100
4.6	Validation of sin	ulation results	106
4. 7	Temperature co	mparison with different insulation thickness	109
4.8	Insulated roof sl	abs with global warming effect	110
4.9	Thermal perform	nance with insulated roofs	115

v

4.10	Summary		119
5	A COMPAR	ISON WITH TRADITIONAL ROOFS	121
5.1	General		121
5.2	Comparison wit	h traditional roofs	121
	5.2.1	Different roofing types	121
	5.2.2	Computer simulations	122
	5.2.3	Data used for the simulations	123
	5.2.4	The computer model	126
	5.2.5	Effect of ceiling type	128
	5.2.6	Effect of roofing material without insulation	129
	5.2.7	Effect of roofing material with insulation	
	5.2.8	Findings of computer simulations	
5.3	Social acceptabl	ility	
	5.3.1	The details of the participants	136
	5.3.2	The details related to thermal comfort	
	5.3.3	Response to thermal discomfort	141
	5.3.4	The preferred type of neighbourhood	144
	5.3.5	Findings from the questionnaire survey	144
5.4	Summary	•••••••••••••••••••••••••••••••••••••••	
6	LIFE CYCL	e costructy of Moratuwa, Sri Lanka	147
6.1	General	Electronic Theses & Dissertations	147
6.2	The need for life	e cycle costing	
6.3	Life cycle cost w	vith free running buildings	148
6.4	Air conditioning	g load in multi storey buildings	149
	6.4.1	General information on questionnaire survey	150
	6.4.2	The details related to thermal comfort	151
	6.4.3	The details related to the air condition loads	154
	6.4.4	Findings from the questionnaire survey	157
6.5	Life cycle with a	air conditioning	158
	6.5.1	Initial cost	158
	6.5.2	Service life	159
	6.5.3	Discount rate	159
	6.5.4	The model used	159
	6.5.5	Life cycle cost analysis	160
6.6	Life cycle cost c	omparison with global warming	166
6.7	Disaster resista	nce	173
	6.7.1	The possibility for uplifting of roof slabs	176
	6.7.2	Other advantages	
6.8	Summary		
0.0	~~~~ J		

vi

7 CONCLUSIONS AND FUTURE WORK
7.1 The main conclusions
7.2 Future work
REFERENCES
Appendix193
Appendix A: The design calculation for the covering concrete
Appendix B: About DEROB-LTH
Appendix B: About DEROB-LTH194
Appendix C: Climatic Data Files 195
Appendix D: Detail results on computer simulations with tree shadings
Appendix E: Questionnaire survey format I
Appendix F: Detail tables of computer simulation on free running buildings 210
Appendix G: Questionnaire Survey Format II

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

List of Figure

Figure 1.1: The main climatic zone of the world	1
Figure 2.1: Body heat loss and air temperature	8
Figure 2.2: Heat exchange of the body (from Rosenlund, 2000)	9
Figure 2.3: Map of world's climate	.13
Figure 2.4: Mean monthly temperatures in different parts of Sri Lanka for January to June	.14
Figure 2.5: The Psychrometric chart	.18
Figure 2.6: Comfort Zone for low altitudes of Sri Lanka	20
Figure 2.7: Comfort Zone for Colombo, Sri Lanka	22
Figure 2.8: Population Living in Urban Areas	24
Figure 2.9: Urban and Rural Populations, 1950-2030	
Figure 2.10: Predicted electricity demand for Sri Lanka	.29
Figure 2.11: Existing and Proposed power generation capacities	29
Figure 2.12: Deferent categories of the end uses for electrical energy	30
Figure 2.13: Energy consumption for different type of applications	31
Figure 2.14: CEB load profile for small commercial and industry by end use	31
Figure 2.15: Typical houses in Indonesia	39
Figure 2.16: Sections of the different tested roofs	.41
Figure 2.17: Definitions of 'cold' and 'warm' materials	42
Figure 2.18: Usefulness of trees	.45
Figure 2.19: Greenery on buildings in the forms of rooftop garden, podium garden, balcon	У
planting, fac-ade greenery.11(http://www.nparks.gov.sg/gardeneity/skyrise.shtml)	46
Figure 2.20: Typical tropical cyclonic tracks 11.	51
Figure 2.21: The typical cyclonic belt and the usual cyclonic paths	52
Figure 2.22: Three wind zones in Sri Lanka and its comparison with values recommended	for
South India	52
Figure 2.23: Typical anchor arrangement	53
Figure 2.24: Typical roof bracing detail	53
Figure 2.25: A world map showing the tectonic plates	54
Figure 2.26: Reassembly of Sri Lanka in Gondwanaland and subdivisions in Madagascar a	ind
South	56
Figure 2.27: Global atmospheric concentration of CO ₂ with changes occurred in recent tim	es
	58
Figure 2.28: Annual temperature trends for the period 1901 to 1996	61
Figure 2.29: Urban heat island effect	61
Figure 2.30: Economic thickness of insulation	65
Figure 2.31: Inflation rate in Singapore	67
Figure 3.1: Detail arrangement of the insulation system proposed over reinforced concrete	; 72
Figure 3.2. A trangement of small scale models	78
Figure 3.2. Sample papel for strength testing	70
Figure 3.3. Sample panel for suching testing	20 20
Figure 3.4. Loading attaingement of the sample panel	.00 00
Figure 3.5: The sorpuvity testing specimen	.02
rigure 3.0: Fian view of the insulation arrangement	03

Figure 3.7: Soffit temperature distribution for different insulation thicknesses	87
Figure 3.8: Heat flow values for different insulation thicknesses	88
Figure 3.9: Surface temperatures for 25 mm insulation system	89
Figure 4.1: Large scale model	92
Figure 4.2: Laving of insulation panels	92
Figure 4.3: Resistive insulation panels with reinforcement mesh placed on cover blocks.	93
Figure 4.4 : Proposed flashing arrangement	93
Figure 4.5: Sample parapet wall	94
Figure 4.6: Temperature distribution before installation	95
Figure 4.7: Temperature distributions after installation	96
Figure 4.8: Temperature comparison for before and after insulation	96
Figure 4.9: Heat flow through the slab	97
Figure 4.10: The model with an insulated roof slab provided with isolated plants	99
Figure 4.11: The temperature measurements with and without the roof top garden	100
Figure 4.12: Plan views of the model	103
Figure 4.13: Simplified floor plans of the house used for the computer simulations	.103
Figure 4.14: Computer model of two storey houses with an insulated roof slab	105
Figure 4.15: The indoor and slab soffit temperatures for April and December	105
Figure 4.16: The outdoor and slab ton temperatures with difference levels of transmittance	e
through shading screens as indicated in brackets	
Figure 4 17. Large scale models	
Figure 4.18: Three dimensional computer models for the selected buildings	107
Figure 4.19: Temperature measurement for the model with flat slab ka	108
Figure 4.20: Temperature measurement for the model with sloping roof.	108
Figure 4.21: Slab seffit temperatures for different insulation thicknesses	109
Figure 4.22: Indoor temperature comparison for different insulation thickness	109
Figure 4.23: Volume 4 indoor temperature variation with global warming	.111
Figure 4.24: Upper floor slab soffit temperature variation with global warming	
Figure 4.25: Upper floor volume temperature variation with global warming	.112
Figure 4.26: Slab soffit temperature variation with global warming	
Figure 4.27. Slab top temperature variation with global warming	.113
Figure 4.28: Upper floor volume temperature variation with global warming for 25 mm.	38
mm and 50 mm insulation thickness	
Figure 4.29: Upper floor slab soffit temperature variation with global warming for 25 mm	n. 38
mm and 50 mm insulation thickness	
Figure 4.30. Unper floor slab top temperature variation with global warming for 25 mm.	38
mm and 50 mm insulation thickness	
Figure 4.31. Modified comfort zone for tropical low lands	.116
Figure 4.32. Modified comfort zone when the outdoor temperature increase by 2° C	.117
Figure 4.33: Modified comfort zone when the outdoor temperature increase by 4° C	119
Figure 5.1: Plan views of the model	127
Figure 5.2: Simplified floor plans of the house used for the computer simulations	.127
Figure 5.3: Three dimensional view of computer models	
Figure 5.4: Ceiling soffit temperatures for different ceiling types	129
Figure 5.5: Volume temperatures for different ceiling types	
Figure 5.6: Temperature variation in the upper floor room(Volume 4)	130
Tigure 5.6. Temperature variation in the apper recer to onic () and by	

Figure 5.8: Temperature variation in the ceiling soffit (Volume 4) Figure 5.9: Temperature variation in the slab soffit (Volume 1) Figure 5.10: Temperature variation in the upper floor room (Volume 4) with insulations. Figure 5.11: Temperature variation in the ground floor room (Volume 1) with insulation Figure 5.12: Temperature variation in the ceiling soffit (Volume 4) with insulation Figure 5.13: Temperature variation in the slab soffit (Volume 1) with insulation Figure 5.14: An indication of gender of those who participated Figure 5.15: Percentages from seven districts selected	.131 .132 .133 .133 .134 .134 .136 .136 .137 .137 .138
Figure 5.9: Temperature variation in the slab soffit (Volume 1) Figure 5.10: Temperature variation in the upper floor room (Volume 4) with insulations. Figure 5.11: Temperature variation in the ground floor room (Volume 1) with insulation Figure 5.12: Temperature variation in the ceiling soffit (Volume 4) with insulation Figure 5.13: Temperature variation in the slab soffit (Volume 1) with insulation Figure 5.14: An indication of gender of those who participated Figure 5.15: Percentages from seven districts selected Figure 5.16: Age group of the participants	.132 .133 .134 .134 .136 .136 .137 .137 .138
Figure 5.10: Temperature variation in the upper floor room (Volume 4) with insulations. Figure 5.11: Temperature variation in the ground floor room (Volume 1) with insulation Figure 5.12: Temperature variation in the ceiling soffit (Volume 4) with insulation Figure 5.13: Temperature variation in the slab soffit (Volume 1) with insulation Figure 5.14: An indication of gender of those who participated Figure 5.15: Percentages from seven districts selected	.133 133 .134 .134 .136 .136 .136 .137 .137 .138
Figure 5.11: Temperature variation in the ground floor room (Volume 1) with insulation Figure 5.12: Temperature variation in the ceiling soffit (Volume 4) with insulation Figure 5.13: Temperature variation in the slab soffit (Volume 1) with insulation Figure 5.14: An indication of gender of those who participated Figure 5.15: Percentages from seven districts selected	133 .134 .134 .136 .136 .137 .137 .138
Figure 5.12: Temperature variation in the ceiling soffit (Volume 4) with insulation Figure 5.13: Temperature variation in the slab soffit (Volume 1) with insulation Figure 5.14: An indication of gender of those who participated Figure 5.15: Percentages from seven districts selected Figure 5.16: Age group of the participants	.134 .134 .136 .136 .137 .137 .138
Figure 5.13: Temperature variation in the slab soffit (Volume 1) with insulation Figure 5.14: An indication of gender of those who participated Figure 5.15: Percentages from seven districts selected	.134 .136 .136 .137 .137 .138
Figure 5.14: An indication of gender of those who participated Figure 5.15: Percentages from seven districts selected	.136 .136 .137 .137 .137
Figure 5.15: Percentages from seven districts selected	.136 .137 .137 .138
Figure 5.16: A ga group of the participants	.137 .137 .138
	.137 .138
Figure 5.17: Occupation of the participants	.138
Figure 5.18: Type of house that they occupy at present	
Figure 5.19: Number of occupants in a house	138
Figure 5.20: Material used for wall construction	139
Figure 5.21: Colour of the external surfaces	139
Figure 5.22: Colour of the interior walls	139
Figure 5.22: Colour of the floor	140
Figure 5.23. Colour of methods.	140
Figure 5.24. Type of rooting materials used	1/1
Figure 5.25: Type of certain and a soliting facing the accuments	1/1
Figure 5.20: Colour of roof or centing facing une occupants	1/1
Figure 5.27: Colour of the root facing sun	141
Figure 5.28: Whether the house was considered too warm	.142
Figure 5.29: The response to the thermal comfortal livel, Still Latited	.142
Figure 5.30: Number of fanseisually used heses & Dissertations	.143
Figure 5.31: Type of heat barriers used over the root	.143
Figure 5.32: Availability of a roof top garden	.143
Figure 5.33: Preferred type of neighborhood	.144
Figure 5.34: Preferred type of house	.144
Figure 6.1: The selected participants from different districts	.150
Figure 6.2: Type of building	.151
Figure 6.3: Different roof types	.151
Figure 6.4: Different ceiling types	.152
Figure 6.5: External wall covering material	.152
Figure 6.6: External wall appearance	.153
Figure 6.7: Internal wall appearance	.153
Figure 6.8: Floor appearance	.153
Figure 6.9: Protection for windows	.154
Figure 6.10: Type of the air conditioning machine	.154
Figure 6.11: Availability of roof top garden	.155
Figure 6.12: View about the environmental pollution	.155
Figure 6.13: Dry bulb, wet bulb and A/C machine temperatures	.156
Figure 6.14: Psychrometric chart with extended comfort zone	.156
Figure 6.15: Computer models of three storey buildings	.160
Figure 6.16: Life cycle cost with 50% land regaining for Rs. 100,000/= per perch	.164
Figure 6.17: Life cycle cost with 50% land regaining for Rs. 200,000/= per perch	.164
Figure 6.18: Life cycle cost with 100% land regaining for Rs. 100,000/= per perch	.165

х

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

List of Tables

Table 2.1: Annual mean temperature and neutrality temperature for various towns in Sri	
Lanka	21
Table 2.2: The average occurrence of earthquakes of different magnitudes	55
Table 2.3: Earthquakes in the vicinity of Colombo (Abayakoon 1998)	57
Table 3.1: Initial mix proportions used for initial investigations	75
Table 3.2: The average compressive strength of concrete at 7 days and 28 days for deffe	rent
concrete mixes	75
Table 3.3: Concrete mixes with 5% Silica fume	76
Table 3.4: Average compressive strength of concrete with Silica fume	76
Table 3.5: Different mixes considered for sorptivity test	81
Table 3.6: Sorptivity test results of the mixes	83
Table 3.7: Thermal conductivity of material used	84
Table 3.8: Surface resistance values used for the calculation	85
Table 3.9: Thermal expansion over 10 m length for 125 mm slab with the proposed insu	lation
system	89
Table 4.1: Material Properties used for the computer simulation	101
Table 4.2: Absorptance and admittance of building elements used for the computer	
simulation	101
Table 4.3: Building elements used for the computer simulation	102
Table 4.4: Average climatic data applicable to Colombo, Sri Lanka Ka.	104
Table 5.1: Roofing materials used in houses in Sri Lanka sentations.	122
Table 5.2: Climatic data used for the computer simulation	123
Table 5.3: Material Properties used for the computer simulation	124
Table 5.4: Building elements used for the computer simulation	124
Table 5.5: Absorptance and admittance of building elements used for the computer	
simulation	125
Table 6.1: The individual cost component for different roofing arrangements	158
Table 6.2: Air conditioning load for different options	162
Table 6.3: Air conditioning cost for different options	162
Table 6.4: Life Cycle Cost per square meter the simulations	163
Table 6.5: Pay back time for all the cases expressed in years	166
Table 6.6: Pay back time for all the cases expressed in years for 2 ⁰ C increase (Case 1)	170
Table 6.7: Pay back time for all the cases expressed in years for 4 ^o C increase (Case 2)	173
Table 6.8: Maximum uplift forces for a slopping roof (kN/m²)	175
Table 6.9: Maximum uplift forces for a flat slab (kN/m ²)	176