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Abstract 

The increasing of fuel price and environmental concerns, researches were pushed to 

think about more fuel-efficient and less emission vehicles. As a result of this great 

enthusiasm, researchers were able to introduce Hybrid technology to the field of 

automobile. In hybrid electric power trains, an internal combustion engine (ICE) 

together with an electric motor (EM) is used as two energy sources. Use of an 

electrical motor in place of the ICE during different stages of driving results a definite 

saving in fuel usage. 

Researches did not satisfy with this saving and these endless efforts gave the birth to 

the concept of intelligent vehicles or telematics - enabled Hybrid Electric Vehicles 

(HEV). These vehicles may use a sensor network to obtain the information about the 

degree of traffic flow in the environment which they are operating, and subsequently 

adjust their drive cycle to get the better improvement in fuel economy based on these 

information. 

In this thesis, a conventional vehicle and a HEV with different amount of traffic flow 

information are compared in terms of fuel economy over two different drive cycles. 

First simulation results for conventional vehicle was compared with simulation results 

for an HEV without traffic flow information and HEV with available of traffic flow 

information for 4 seconds & 8 seconds ahead of current time, over New European 

Drive Cycle (NEDC). Thus estimated the same for a Sri Lankan Drive Cycle named 

Colombo Drive Cycle (CDC). 

Results show that with increase of traffic flow information, the fuel economy of the 

HEV is increased. Finally two drive cycles were compared and the comparison shows 

that the improvement in fuel saving is very significant for CDC. 
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Chapter 1 

I n t r o d u c t i o n 

1.1 Literature Surveyor of Previous Work 

Massive number of research papers based on HEV power control strategy and its 

researches and developments, can be found from the research institutions and the 

highly recognized web libraries like IEEE online library. Most of the papers that 

found in my literature surveyor, describe instantaneous splitting of demand power 

between ICE and EM. 

The significance of my literature surveyor is most of the researchers used Fuzzy Logic 

for power management system of HEV. It is a good method for realizing an optimal 

tradeoff between the efficiencies of all components of the parallel HEV. Fuzzy logic 

control is tolerant to imprecise measurements and to component variability. It also 

gives a systematic methodology for the development of a rule-based energy 

management strategy [l]-[3]. 

Neural networks were also used to develop intelligent energy management systems for 

HEVs [4],[5], In this, researchers were able to build an intelligent energy management 

system for the HEV. 

But most of the researchers used only the driver demand rather than using traffic flow 

information for few seconds ahead of current time, to get the optimized power 

splitting command from their controller. But intelligent vehicle concept can be used to 

improve the fuel economy [6], In this concept, HEV energy controller can get the 

traffic flow information through on board sensors and communication equipment 

which contact with the road infrastructure. 

In my literature surveyor, it was too hard to find a single paper on 

optimization of HEV. But for theoretical studies some researchers 
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component optimization of HEV's for designing purposes [7],[8]. In general GA takes 

long time for its optimization process. Therefore it is not practicable to use real - time 

results needed problems. But this can be tackled using on - line GA [9],[10]. 

To do the computer simulations, most of them used ADvanced Vehicle SimulatOR 

(ADVISOR) software package [11]. Simulation based analysis on vehicle 

performance is crucial to the development of hybrid powertrain since design 

validation using costly prototype is impractical. Due to the inconvenience of the many 

separated modeling methods, integrated modeling tools are required to speed up the 

modeling process and to improve the accuracy. Vehicle simulation is a method for fast 

and systematic investigations of different design options (fuel choice, battery, 

transmission, fuel cell, fuel reformer, etc.) in vehicle design and development. At 

present, several simulation tools based on different modeling platforms are available, 

although none of them is sufficient to model all design options. These tools always 

focus on a specific application with focused concerns. After years of continuing 

improvements, a fast, accurate and flexible simulation tool is still under development. 

Compared to the available vehicle performance simulation tools, ADVISOR is one of 

the most user friendly and accurate tool for all kind of researchers. 

Commercially available HEVs, some reports related to HEV emissions and 

performance [11]-[16] were also added into my literature surveyor. In 1970s, many 

auto makers such as GM, Ford and Toyota started to develop electric vehicles 

powered by batteries due to the oil shortage. However, these electric vehicles powered 

solely by battery power did not go far enough. The interest in hydrogen fuel cell cars 

has arisen as a result to address the range problem associated with battery power cars. 

However, with more than 15 years of intensive development, still there are no any fuel 

cell hybrid cars on market mainly due to the high manufacturing cost. In the 

meantime, other automotive manufacturers have moved in another direction of ICE 

based HEV. In 1997, Toyota introduced the Prius (Figure 1-2), the first ICE based 

HEV to the Japanese market. Ever since, an increasing number of HEV have become 

available. The sales of HEV are growing rapidly. An estimated 187,000 hybrids were 

sold in the first six months of 2007 in US, accounting for 2.3 percent of all new 



vehicle sales according to J.D. Power. J.D. Power also forecasted a total sale of 

345,000 hybrids for 2007, a 35% increase from 2006 [11]. 

Genetic algorithm tool box user's guide of MATLAB [17] is a very good tool even for 

a beginner to learn GA. This was the foundation literature to build all genetic 

algorithms of this research work. GA assignment given in semester - I, was helped to 

understand the way that GA used in real world applications. 

Finally, my literature surveyor was extended to cover the drive cycles too [19]. These 

speed - time sequences are used to standardize the evaluation of vehicles fuel 

economy and emissions. The maximum, minimum and average speeds are considered 

as the cycle characteristics. 

This collection of literatures put forward the basement for this research work. 

1.2 Objectives of the Research 

As well as the technology changes internal to the vehicle, the telematics revolution of 

the past decade has generated the possibility for a vehicle to communicate with the 

road infrastructure and other vehicles to obtain greater information about the traffic 

environment in which it is operating [6]. Local traffic information can be provided 

completely on-board the vehicle itself through the use of radar and laser technologies. 

To obtain even greater information to the vehicle over a longer look ahead distance it 

is most likely that some form of communication between the infrastructure and the 

vehicle is required. Presently, systems such as Signal Coordination in Regional Areas 

of Melbourne (SCRAM) in Australia obtain information about traffic flows in urban 

environments automatically to use in scheduling traffic signals, hence it is conceivable 

that this information could be made available to a suitably equipped vehicle [6]. 

In this study, my objective is to find out the behavior of the fuel economy when the 

traffic flow information is available for an HEV. Obviously we cannot get the traffic 

flow information of the whole drive cycle to the vehicle. Vehicle can get to know 
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about the velocity predictions for few seconds ahead of the operating time. To get the 

velocity predictions for more and more seconds ahead of the operating time, more 

sophisticated sensors should be used. This is expensive. Therefore optimum number 

of prediction should be selected. 

The second objective is to observe the variation of the fuel economy with the 

increasing of number of velocity information for the seconds ahead of the operating 

time. 

Fuel consumption of a conventional vehicle in urban environments is up to 50% 

higher than during highway driving [6], It is obvious that the fuel consumption will 

depend on driving style, road condition, weather conditions..etc. The third and final 

objective of this research, is to study the variation of the fuel economy of the HEV 

with those velocity predictions for driving on two deferent drive cycles, NEDC and 

CDC. Driving on the NEDC can be considered as driving on a road with lesser 

number of traffic interruptions. But CDC consists of real velocity data captured in 

traffic time on "Base - Line" road of Sri Lanka. 

These studies may be useful for the researchers who are going to develop traffic 

situation awareness based energy management systems for HEVs. This will guide 

them to make decisions on selection of the length of predictions. They can measure 

the value of their research with the project cost against the theoretical saving of fuel 

usage. 

1.3 Hybrid Electric Vehicles 

In the past two decades the interest in HEV has increased all over the world mainly 

due to the environmental concerns and skyrocketing price of oil. Representing a 

revolutionary change in vehicle design philosophy, hybrid vehicles surfaced in many 

different ways. However, they share the hybrid powertrain that combines multiple 

power sources of different nature, including conventional ICE, batteries, 

ultracapacitors, or hydrogen fuel cells (FC). 
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These vehicles with onboard energy storage devices and electric drives allows braking 

power to be recovered and ensures the ICE to operate only in the most efficient mode, 

thus improving fuel economy and reducing pollutants [11], 

Resent surveys of the United Nations (UN) show, over 600 million people in urban 

area worldwide were exposed to traffic-generated air pollution [11], Therefore, traffic 

related air pollution is a vast problem anywhere in the globe. Hybrid electric vehicles 

hold the potential to considerably reduce greenhouse gas (GHG) emission and other 

gas pollution. 

ICE based hybrids, can improve the fuel economy and reduce tailpipe emission by 

more efficient engine operation. The improvements come from regenerative braking, 

shutting down the ICE while stationary and allowing a smaller, more efficient engine 

which is not required to follow the power at the wheel as closely as the engine in a 

conventional vehicle must [11], 

In an emission effect comparison of the Toyota Prius (HEV) and Toyota Corolla, it 

was reported that the Prius only produced 71% of C0 2 , 4% of CO and 0.5% of NOx 

compared with the Toyota Corolla. The Corolla is one of most efficient conventional 

vehicles on the market [11], 

1.4 Intelligent Vehicles 

The development in automobile and telematics industry will enable the power 

management systems to be more intelligent. Hybrid technology and telematics are 

combined together to create "intelligent vehicle" to make more accurate prediction 

about the possible speed trend ahead of current time and hence to make more effective 

decisions about the power split of the two power sources in order to bring the overall 

fuel economy of the vehicle close to its maximum point. 

Telematics - enabled vehicles may use a relatively cheap sensor network to develop 

information about the traffic environment in which they are operating [6]. Local 
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traffic information can be provided completely on-board the vehicle itself through the 

use of radar and laser technologies. 

To obtain even greater information to the vehicle over a longer look ahead distance it 

is most likely that some form of communication between the infrastructure and the 

vehicle is required. Presently, systems such as Signal Coordination in Regional Areas 

of Melbourne (SCRAM) in Australia obtain information about traffic flows in urban 

environments automatically to use in scheduling traffic signals, hence it is conceivable 

that this information could be made available to a suitably equipped vehicle [6]. 

1.5 ADVISOR Software 

The U.S. Department of Energy (DOE) and the National Renewable Energy 

Laboratory (NREL) have worked with industry partners to develop a sophisticated 

systems analysis tool that can answer crucial questions about specific component and 

vehicle designs. ADVISOR is a model written in the widely used MATLAB/Simulink 

software environment. It can be used to simulate and analyze conventional, advanced, 

light and heavy vehicles, HEVs and fuel cell vehicles [20], 

ADVISOR tests the effect of changes in vehicle components (such as motors, 

batteries, catalytic converters, climate control systems, and alternative fuels) or other 

modifications that might affect fuel economy, performance, or emissions. The user 

can alter simulation results by selecting vehicle component types, sizes, and 

parameters. 

ADVISOR uses basic physics calculations and measured component performance to 

model conceptual vehicles. The user defines a vehicle using overall vehicle data and 

prescribes a speed-versus-time trace, along with road grade, that the vehicle must 

follow. ADVISOR then puts the vehicle through its paces, making sure it meets the 

cycle to the best of its ability. It calculates predicted torque, speed, voltage, current, 

and power passed from one component to another. 



Chapter 2 

H E V Class i f icat ions 

There are many ways to classify HEVs. One of the most common ways to classify 

HEV is based on configuration of the vehicle drivetrain. Based on this, three major 

hybrid vehicle architectures introduced are parallel, series and series-parallel (Dual) 

In parallel configurations, both the engine and the motor provide traction power to the 

wheels, which means that the hybrid power is summed at a mechanical node to power 

the vehicle. As a result, both the engine and the motors can be downsized, making the 

parallel architecture more viable with lower costs and higher efficiency [11],[12], 

The parallel HEVs usually use the same gearboxes of the counterpart conventional 

vehicles, either in automatic or manual transmissions. Based on where the gearbox is 

introduced in the powertrain, there are two typical parallel HEV architectures, named 

pre-transmission parallel and post-transmission parallel, as shown in Figure 2.1 and 

Figure 2.2, respectively. 

In a pre-transmission parallel HEV, the gearbox is located on the main drive shaft 

after the torque coupler. Hence, gear speed ratios apply on both the engine and the 

HEVs. 

2.1 Parallel HEVs 

electric motor. The power flow is summed at the gearbox. 

On the other hand, in a post-transmission parallel hybrid, the gearbox is 

engine shaft prior to the torque coupler. The gearbox speed ratios only a] 

engine. 



Torque 

Figure 2.1 : Block Diagram of Pre - Transmission Parallel HEV 

Torque 
Coupler 

Figure 2.2 : Block Diagram of Post - Transmission Parallel HEV 

In a pre-transmission configuration, torque from the motor is added to the torque from 

the engine at the input shaft of the gearbox. In a post-transmission, the torque from the 

motor is added to the torque from the engine delivered on the output shaft of the 

gearbox. A disconnect device such as a clutch is used to disengage the gearbox while 

running the motor independently. 

There are attempts from different perspectives to improve the operation of a parallel 

HEV. One possibility is to run the vehicle on electric machine alone in city driving 

while running engine power alone on highways. Most contemporary parallel vehicles 

use a complex control system and special algorithms to optimize both vehicle 

performance and range. 

One unique implementation of the parallel hybrid technology is on an all wheel drive 

vehicle as shown in Figure 2.3. The design is most beneficial if the ICE powers the 

rear wheels while the electric motor powers the front wheels. The more weight borne 

by the front wheels during braking will result in more power captured during 
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regenerative braking. The design is also effective on slippery surfaces by providing 

vehicle longitudinal stability control that is not as easy with other types of hybrid 

designs. The power to each axle is manipulated by a single controller, although this 

requires a fast data communication. 

Figure 2.3 : Block Diagram of all wheel drive Parallel HEV 

The flexibility in powertrain design, in addition to the elimination of the need for a 

large motor, of parallel hybrids has attracted more interest in HEV development than 

the series hybrids. 

2.2 Series HEVs 

One of the basic types of HEVs is series hybrid. In this configuration, as shown in 

Figure 2.4, the ICE is used to generate electricity in a generator. Electric power 

produced by the generator goes to either the motor or Battery. The hybrid power is 

summed at an electrical node, the motor [11],[12]. 

Despite the early research and prototypes, the possibility for series hybrids to be 

commonly used in vehicular applications seems to be remote. The series hybrid 

configuration tends to have a high efficiency at its engine operation. However, the 

summed electrical mode has tied up the size of every component. The weight and cost 

of the vehicle is increased due to the large size of the engine and the two electric 

machines needed. The size of the power electronic unit is also excessive. 



Figure 2.4 : Block Diagram Series HEV 

2.3 Parallel - Series ( Dual ) HEVs 

This system combines the series hybrid system with the parallel hybrid system in 

order to maximize the benefits of both systems [11],[12]. In the series-parallel 

configurations, the vehicle can be operated as a series hybrid, a parallel hybrid, or a 

combination of both. This design depends on the presence of two motors/generators 

and the connections between them, which can be both electrical and mechanical. One 

advantage of a series-parallel configuration is that the engine speed can be decoupled 

from the vehicle speed. This advantage is partially offset by the additional losses in 

the conversion between mechanical power from engine and electrical energy. 

Table 2.1 : Comparison of Hybrid Systems ( Toyota Hybrid System - THS II ,[12]). 

Hybrid System Comparison 

Fuel Economy Improvement Driving Performance 

Idling 

Stop 

Energy 

Recovery 

H i g h -

Efficiency 

Operation 

Control 

Total 

Efficiency 
Acceleration 

Continues 

High 

Output 

Series A • A A 

Parallel A A A A 

Dual • • • • A A 

* - Excellent A - Superior 4- - Somewhat unfavorable 
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2.4 Basic HEV Components 

Following additional components w.r.t conventional vehicals, can be found in HEVs. 

2.4.1 Electric Motor 

The heart of a Hybrid system can be considered as the Electric propulsion system. 

Recently, technological developments have pushed EMs to a new era, leading to 

advantages of higher efficiency, higher power density, lower operating cost, more 

reliability, and lower maintenance. Motors for HEVs can be induction motors, 

permanent magnet (PM) motors, or switched reluctance motors. Induction motors and 

PM motors are the most prominent for HEV applications [25], 

Although a PM motor is desirable for a HEV, its high cost for large rare earth magnets 

is a deterrent [25]. 

The advanced technology IGBT (Insulated Gate Bipolar Transistors) based motor 

controller is actually a bidirectional converter/inverter, which means it is 

multifunction — during normal operation it provides AC power to the motor from the 

batteries DC voltage, while during regenerative braking it acts as charge converter to 

convert AC to DC, so that the batteries can be recharged. 

2.4.2 Energy Storage System ( ESS ) • 

The performance, life cycle, and safety of HEVs strongly depend on the vehicle's 

ESS. Based on modern technologies, chemical batteries predominate in HEVs as 

energy storage. Ultracapacitors and flywheel systems have not replaced batteries 

because batteries offer mature technology, easy maintenance, high energy density and 

low cost [26]. Commercial batteries in the market for the HEV include Lead-Acid, 

NiCd, NiMH, and Li-ion types. Some of their important parameters are compared in 

Table 2.2 [26], 
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Table 2.2 : Comparison of Batteries 

Lead-

Acid 
NiCd NiMH Li-ion 

Specific Energy (Wh/kg) - 3 0 40-60 60-70 90-130 

Energy Density (Wh/dm3) - 9 0 80-110 130-170 220-260 

Specific Power (W/kg) -200 150-350 150-300 2 5 0 ^ 5 0 

Cycle Lifeb (Cycles) -200 600- 600-1200 800-

1200 1200 

Toxic Materials Yes Yes No No 

Maintenance Yes Yes No No 

Individual Cell Voltage (V) 2 1.25 1.25 3.6 

Self Discharge (per month) NA 20% 30% 10% 

On the basis of the above comparison, the nickel metal hybrid (NiMH) or lithium ion 

(Li-ion) batteries are preferred to traditional lead-acid and nickel cadmium (NiCd) 

batteries for reasons of energy density, power density, and power output at low state 

of charge. NiMH and Li-ion batteries are able to accept the high peak power levels 

associated with regenerative braking and are easier to package in the vehicle. 

Currently, Li-ion batteries are more expensive than NiMH batteries. In addition, 

NiMH batteries are more desirable from the standpoint of their inherent internal 

charge balancing and low temperature performance [26]. 

In sizing the battery for an HEV, the required peak power of the battery is of great 

concern. It must be able to handle regenerative braking and peak power demands from 

the traction motor. A higher voltage battery pack can lower the power consumption of 

wires, connectors and loads due to the lower current required. 
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2.4.3 Power Splitter 

A power controller is needed to manage the flow of energy between all components, 

while taking the energy available in the battery into account. The power controller 

adds the capability for the components to work together in harmony, while at the same 

time optimizes the operating points of the individual components. This is clearly an 

added complexity which is not found in conventional vehicles. 

In particular, management of energy and distribution of torque (power) are two of the 

key issues in the development of hybrid electric vehicles. These issues can be 

summarily stated as follows. 

• How to meet the driver's torque demand while achieving satisfactory fuel 

consumption and emissions. 

• How to maintain the battery state of charge (SOC) at a satisfactory level to 

enable effective delivery of torque to the vehicle over a wide range of driving 

In order to achieve these goals, it is very important to optimize the architecture and 

components of the hybrid vehicle, but as important is the energy management strategy 

that is used to control the complete system. The energy management strategy is 

implemented by a power controller. It .controls the energy flow between all 

components, and optimizes power generation and conversion in the individual 

Hybrid systems possess the following characteristics: 

i. Energy Loss Reduction 

The system automatically stops the idling of the engine (idling stop), thus 

reducing the energy that would normally be wasted. 

situations. 

components. 

4 

2.5 Characteristics of Hybrid Systems 
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ii. Energy Recovery and Reuse 

The energy that would normally wastes as heat during deceleration and 

braking is recovered as electrical energy, which is then used to powe.r the 

starter and the electric motor. 

iii. Motor Assist 

The electric motor assists the engine during acceleration. 

iv. High efficiency operation control 

The system maximizes the vehicle's overall efficiency by using the electric 

motor to run the vehicle under operating conditions in which the engine's 

efficiency is low and by generating electricity under operating conditions in 

which the engine's efficiency is high. 

2.6 Advantages & Disadvantages of HEVs 

Following advantages can be identified for HEVs, 

• Decreasing of fuel consumption and of exhaust emissions 

• Possibility of braking energy regeneration 

• Possibility of using ICE in the hybrid vehicles with decreased volume 

preserving dynamic characteristics 

• Possibility of simple organization of all wheels drive using hub motors 

The disadvantages of hybrid drive are: 

• Rise in the cost of vehicle 

• Complexity of recovered energy estimation 
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Chapter 3 

Drive Cycles 

Drive cycles are defined as the test cycles used to standardize the evaluation of 

vehicles fuel economy and emissions. Driving cycles are speed-time sequences that 

represent the traffic conditions and driving behaviour in a specific area. Driving 

patterns may vary from city to city and from area to area. Therefore the use of 

available driving cycles obtained for certain cities or countries are not necessarily 

applicable for other cities [8]. 

A driving cycle consists of a mixture of driving modes including idling, cruise, 

acceleration and deceleration. The maximum, minimum and average speeds are also 

considered as the cycle characteristics. 

There are many developed drive cycles to utilize in above purposes. Basically two 

major categories of drive cycles can be identified. They are, 

• Transient Drive cycles and 

• Model drive cycles 

Transient drive cycles 

Test drive cycles are derived by collecting actual data in the real world. Those are 

very realistic and taken using a real vehicle in actual conditions and data recorded in a 

live environment with actual disturbances. Those drive cycles are considered as very 

effective when using for simulation of certification activities. Most of the US based 

drive cycles are transient drive cycles. 

Model drive cycles 

Model drive cycles are the cycles which derived by mathematical modeling with the 

help of statistics. In those drive cycles they have included some conditions where it is 
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difficult to achieve in real world such as maximum speed and operate in a constant 

speed over time duration. Most of the European standard drive cycles and Japanese 

drive cycles belong to this category. 

3.1 New European Drive Cycle ( NEDC ) 

This is a model drive cycle shown in figure 3.1. it's X - axis represents the time in 

seconds and Y - axis represents the velocity of the vehicle in meters per second. 

From 0th second to the 800th second represents urban drive and the remain is extra 

urban drive. 
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Figure 3.1 : NEDC 

The NEDC is the basis for the homologation of cars. As for the EcoTest one specific 

car is measured the results of the NEDC measurement are compared with the 

homologation values to ensure the indisputable condition of the vehicle [24], 
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3.2 Colombo Drive Cycle ( CDC ) 

A recent drive cycle is also developed for the city of Colombo based on the 

experimental data collected from the real traffic conditions on Base - Line road of'Sri 

Lanka. This drive cycle is named as CDC and is shown in Figure 3.2. it 's axis are 

same as in the figure 3.1. 

Velocity Profile 
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Figure 3.2 : CDC 

There are lots of breakings and accelerations in this drive cycle. This shows the real 

traffic image of roads in Sri Lanka's capital, Colombo. 

This Drive Cycle was formulated very recently, after extensive road tests by the 

Department of Electrical Engineering, University of Moratuwa, as a part of this post 

graduate research project on HEV. This in fact fulfilled the need of drive cycle to 

represent the total effects of the road infrastructure, traffic pattern and driving culture 

in Sri Lanka. 
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Chapter 4 

HEV Model used for Simulations 

4.1 Specifications of the Selected HEV 

Table 4.1 : Specifications of the selected HEV 

Parameter Value 

Total weight 

Chassis weight 

Frontal area 

Coefficient of Drag 

Vehicle length 

Transmission 

Transmission efficiency 

Gear ratios 

Final drive ratio 

Gear changes 

1642 kg 

1000 kg 

1.92 m2 

0.32 

5.00 m 

Manual, 5 speed 

95% (constant throughout all gears) 

3.5:2.14:1.39:1:0.78 

3.98 

1 -> 2 and 2 1 @ 24 km/h 

2 -> 3 and 3 -» 2 @ 40 km/h 

3 4 and 4 -» 3 @ 64 km/h 

4 -> 5 and 5 -> 4 (a), 75 km/h 

Motor/Generator 

Battery 

Permanent Magnet Motor, 20kW 
continuous, 40kW peak 
Advanced Battery, 40kW, 4kWh, 
100 V 

The coefficient of rolling resistance is experimentally obtained. It is a function of 

many factors including the deformation of the tire, weight of the vehicle, tire pressure, 

roughness of the surface and radius of the wheel. It is the ratio of the rolling resistance 

force to the load on the tires. It was fairly constant for a given tire and road surface. 

- 1 8 -



LIBRARY 
U! "VEfiStTY §F m m i M. Ml LANK* 

M O R A T U W f l 

In the aerodynamic drag term, the drag coefficient is a dimensionless constant that 

attempted to capture the resistance caused by the relative motion of the vehicle and the 

air. This can vary from as high as 1.2 for a bicycle with an erect rider to 0.7 for a 

truck, and to 0.20 for a very aerodynamically styled sport car. Although the equation 

used to determine the drag power was a simplification, it avoided complex airflow 

simulation while preserved the general behaviors of the drag force w.r.t velocity 

4.2 Calculation of required power 

Aerodynamic equations are used to calculate the instantaneous power demand, 

Symbolic format of the calculations is presented below [11], 

m = Total mass of the vehicle ( kg ) 

cd = Drag coefficient 

A = Frontal Area ( m 2 ) 

crr = Coefficient of rolling resistance 

g = Acceleration of Gravity ( ms" ) 

P = Air density ( kgm" ) 

9 = Horizontal slop of the road 

V = Mean velocity of the vehicle ( ms"1 ) 

a = Acceleration of the vehicle ( ms"2) 

Calculation of V & a from the velocity input is carried out as follows, 

Where, t is the sample time and this is taken as 1 second for my simulations. 
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V = ( v,+ / + v, ) / 2 ( 4 . 1 ) 

a = ( v,+/ - Vj ) l t ( 4 . 2 ) 

But t= 1, 

Therefore, a = ( v,, / - v,) ( 4.3 ) 

Moving Direction 
of the HEV 

Air drag 

Rolling 
resistance 

Figure 4.2 : HEV on the Road 

Power demand against Air Drag, 

airDragP = >/2 ( p . C d . A . V 3 ) ( 4 . 4 ) 

Power demand against Rolling resistance, 

rollDragP = C r r . m . g . Cos(6). V ( 4 . 5 ) 

Power demand against Acceleration, 

accelP - m . a . V ( 4.6) 

Power demand against weight due to road slope, 

hillP = m . g . Sin (G). V ( 4.7 ) 

Total Instantaneous Power Demand at Wheels, 

Pd = airDragP + rollDragP + accelP + hillP ( 4 . 8 ) 

This research carried out simulations for a flat road. Therefore 9 = 0. 

So, hillP = 0 and 
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rollDragP = C r r . m . g. V 

This is the basic equation used to calculate the power demand for each second. 

Velocity is the input variable for the equation & output is the power demand. 

This power demand is supplied by the combination of ICE and EM. 

Let, PGB = Power demand at Gearbox 

PICE = Power contribution from ICE 

PEM = Power contribution from EM 

r)QB = Efficiency of the Gearbox 

PGB = Pd/r|GB ( 4 . 9 ) 

PGB = PICE + PEM ( 4 . 1 0 ) 

When EM acts as a generator, the power contribution of EM is considered as -P EM-

When calculated the power demand at the wheels, Wheel speed, cow ( in rad/s ) and the 

Wheel Torque ( Tw ) can be calculated as follows. 

cdw = V/Rv v (4 .11) 

Tw = Pd/cow (4 .12) 

Where. Rw is the wheel radius. 

If the final drive ratio is Rfd, speed and torque before the final drive ((QGB, TGB) can be 

calculated as follows. 

OOGB = cow x Ria (4 .13 ) 

T G B =T W /R f d ( 4 .14 ) 

Speed before gearbox and torque before gearbox (to and T) can be calculated by 

taking the gear ratio corresponding to the vehicle speed as GR;, as follows. 

(O = COGB X GRI 

T = T g b / GR, 

(4 .15) 

(4 .16) 
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4.3 Engine Model 

In my ICE model, real data of commercially available 1500 cc engine was used.-To 

find out the fuel rate, set of fuel rates available for selected engine speeds & engine 

torques. 

[ Engine Speed ] = [ coj co2 to3 W4 coj con ] ; in rad/s 

[ Engine Torque ] = [ Ti T2 T3 T4 Tj Tn ] ; in Nm 

[ Fuel Rate ] 

f Fn F12 F]3 F14 F|„ 

F21 F22 F23 F24 F2n 

Fii Fj2 Fj3 Fi4 Fjj 

v : Fnl Fn2 Fn3 Fn4 Fn 

in ml/s 

Where, Fy = Fuel rate at Speed coj and Torque Tj. 

To find out fuel rates for any speed and torque, 2 - Dimensional (2-D) interpolation 

(table lookup) method of MATLAB was used. 

Based on the fuel rate, engine efficiency was calculated for each operating second. 

Let, p. 1 111-ij 

fout-ij 

Tlij 

P 

H 

= Input power to the engine ( W ) at Speed ®i and Torque Tj. 

= Output power from the engine ( W ) at Speed CO; and Torque Tj. 

= Engine efficiency at Speed ©j and Torque Tj. 

= Density of the fuel ( g/ml) 

= Calorific value of the fuel ( J/g ) 
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Pin-ij = Fjj . p . H (4.17 ) 

OUt-lJ COi 

r|ij = eqn 4.18 -^eqn4.17 

(4 .18) 

Tj.coi 

^lij = 

Fij. p . H 

(4 .19) 

Figure 4.3 shows the fuel rate variation of the ICE with engine torque and engine 

speed, it's X - axis is the speed in radians per seconds. Y - axis is the engine torque in 

newton meters. Z - axis is the fuel rate in grams per seconds. Region bounded by 

speed 200 rad/s to 400 rad/s and torque 20 Nm to 80 Nm, shows lower fuel rate. As 

this is the maximum efficient region of the ICE. 

ICE Feul Rate Map 

ICE Torque (Nm) 0 0 , C E S p e e d ( r a d / s ) 

Figure 4.3 : Engine Fuel Rate Map 
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Figure 4.4 : Engine Efficiency Map 
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Figure 4.4 and Figure 4.5 illustrate the efficiency variation of the ICE with torque and 

speed. Figure 4.4 is the 3 - dimensional ( 3D ) map and the Figure 4.5 is the contour 

mode or 2 - dimensional ( 2D ) map. As a typical petrol engine, the maximum 

efficiency is about 36%. This can be achieved in the speed range of 250 rad/s to 425 

rad/s while the torque is in the rage of 25 Nm to 75 Nm. 
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4.3.1 Operating Regions 

In this research, three major regions of ICE operations were identified. Following 

figure illustrates the operation modes. 

Figure 4.6 : Shape of the efficiency variation curve with torque for any speed 

Let, Effmax - Maximum efficiency 

TmaxE = Torque at maximum efficiency 

Td = Torque demand 

Region 1 (R1) : 

This is the most inefficient region of ICE. In my ICE this belongs to 6 kW power 

demand operations and when the engine is operated in this region, the efficiency is 

around 20%. The most economical way is, the use of EM as much as possible v/hile 

the ICE is at rest. 
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Resion 3 (R3 ): T„> T, nuixE 

Trt ^ 

Y AT 

TmaxE J 

Figure 4.7 : ICE operated in Region 3 

When ICE is operated in this region, the torque demand is greater than TMAXE. To 

operate the ICE at its most efficient point, balance AT can be given by the EM. 

Region 2 ( R2 ) : Tti < T„wxF 

E > l < T, ^ 1 maxE 

Y AT 

l > < T d J 

Figure 4.8 : ICE operated in Region 2 

This is the most significant operating region of an HEV. In this region, the torque 

demand is less than TMAXE- Several combinations of ICE and EM can be employed in 

this region. The most important combination is, ICE operates at TMAXE and excess AT 

can be used to charge the batteries. But to do that, additional amount of fuel should be 

burnt. This additional fuel usage should be recovered with a profit, during the journey. 

- 2 6 -



Therefore this decision is the most critical decision which an HEV control system 

should make. 

4.4 Battery Model 

In this research, the charging and discharging efficiency of the battery is considered as 

90% and constant throughout the operation. To secure the battery life time, range for 

state of charge ( SOC ) of the battery should be 30% to 90% [1], 

Let, ASOC = change of SOC 

PEM = EM power in kW 

QB = Battery capacity in kJ or kWs 

r|B = Battery efficiency 

T|EM = EM efficiency. 

S O C B = S O C at the beginning of the sample time 

S O C E = S O C at the end of the sample time 

1 he SOC variation at the end of sampling period is given by; 

For motoring mode, 

A SOC = 
r p ^ 

1 EM 

V Vem x?7B J 

For generator mode, 

&SOC = (PEM x rjEM x r]B)/ Qt 

In this mode Pem < 0, 

( 4 . 2 0 ) 

( 4 . 2 1 ) 

For both modes, 

S O C H = S O C B - A S O C ( 4 . 2 2 ) 
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Chapter 5 

Genetic Algorithms 

5.1 Basics of GA 

The GA, first formulated by Prof. John Holland at the University of Michigan in 1975 

[8] and is a stochastic global search method that mimics the metaphor of natural 

biological evolution. GA usually operates offline in the sense that they can be seen as 

building a simulated application environment in which they evolve and select the best 

solution among all the generations, under the well known Darwinian principle of 

"survival of the fittest" [9], 

Much has been learned about genetics since the time of Charles Darwin. All 

information required for the creation of appearance and behavioral features of a living 

organism is contained in its chromosomes. Reproduction generally involves two 

parents, and the chromosomes of the offspring are generated from portions of 

chromosomes taken from the parents. In this way, the offspring inherit a combination 

of characteristics from their parents. 

GAs operate on a population of potential solutions applying the principle of survival 

of the fittest to produce better and better approximations to a solution. At each 

generation, a new set of approximations is created by the process of selecting 

individuals according to their level of fitness in the problem domain and breeding 

them together using operators borrowed from natural genetics. This process leads to 

the evolution of populations of individuals that are better suited to their environment 

than the individuals that they were created from, just as in natural adaptation [17]. 

GAs work with a population of "individuals"; each representing a possible solution to 

a given problem. Each individual is assigned a "fitness value" according to how good 

a solution to the problem is. The highly-fit individuals are given opportunities to 
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"reproduce", by "cross breeding" with other individuals in the population. This 

produces new individuals as "offspring", which share some features taken from each 

"parent". The least fit members of the population are less likely to get selected for 

reproduction, and so "die out". A whole new population of possible solutions is thus 

produced by selecting the best individuals from the current "generation", and mating 

them to produce a new set of individuals. This new generation contains a higher 

proportion of the characteristics possessed by the good members of the previous 

generation. In this way, over many generations, good characteristics are spread 

throughout the population. By favoring the mating of the more fit individuals, the 

most promising areas of the search space are explored. If the GA has been designed 

well, the population will converge to an optimal solution to the problem 

The evaluation function, or objective function, provides a measure of performance 

with respect to a particular set of parameters. The fitness function transforms that 

measure of performance into an allocation of reproductive opportunities. The 

evaluation of a string representing a set of parameters is independent of the evaluation 

of any other string. The fitness of that string, however, is always defined with respect 

to other members of the current population. In GA, fitness is defined by, fj/fAvg where 

fi is the evaluation associated with string i and fAvg is the average evaluation of all the 

strings in the population. 

Fitness can also be assigned based on a string's rank in the population or by sampling 

methods. The execution of GA is a two-stage process. It starts with the current 

population. Selection is applied to the current population to create an intermediate 

population. Then recombination and mutation are applied to the intermediate 

population to create the next population. The process of going from the current 

population to the next population constitutes one generation in the execution of a 

genetic algorithm. 
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The structure of a GA is composed by an iterative procedure through the following 

five main steps: 

• creating an initial population P0 

• evaluation of the performance of each individual p, of the population, by 

means of a fitness function 

• selection of individuals and reproduction of a new population 

• application of genetic operators: crossover and mutation and 

• iteration of steps 2-4 until a termination criterion is fulfilled. 

Above steps can be illustrated by the following flow chart. 

Figure 5.1 : Evolutionary algorithm mechanism 

5.1.1 Individuals 

Individuals, or current approximations, are encoded as strings, chromosomes, 

composed over some alphabet(s), so that the genotypes (chromosome values) are 

uniquely mapped onto the decision variable (phenotypic) domain. The most 
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commonly used representation in GAs is the binary alphabet {0, 1} although other 

representations can be used, e.g. ternary, integer, real-valued etc. 

5.1.2 Population 

GAs operate on a number of potential solutions, called a population, consisting of 

some encoding of the parameter set simultaneously. Typically, a population is 

composed of between 30 and 100 individuals, although, a variant called the micro GA 

uses very small populations, -10 individuals, with a restrictive reproduction and 

replacement strategy in an attempt to reach real-time execution. 

5.1.3 Objective and Fitness Functions 

The objective function is used to provide a measure of how individuals have 

performed in the problem domain. In the case of a minimization problem, the most fit 

individuals will have the lowest numerical value of the associated objective function. 

This raw measure of fitness is usually only used as an intermediate stage in 

determining the relative performance of individuals in a GA. Another function, the 

fitness function, is normally used to transform the objective function value into a 

measure of relative fitness. 

5.1.4 Selection 

Selection is the process of determining the number of times, or trials, a particular 

individual is chosen for reproduction and, thus, the number of offspring that an 

individual will produce. 

There are two major methods of selection. They are, Roulette Wheel Selection 

Method and Stochastic Universal Sampling. 

5.1.4.1 Roulette Wheel Selection 

Many selection techniques employ a "roulette wheel" mechanism to probabilistically 

select individuals based on some measure of their performance. A real-valued interval, 

Sum, is determined as either the sum of the individuals' expected selection 

probabilities or the sum of the raw fitness values over all the individuals in the current 
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population. Individuals are then mapped one-to-one into contiguous intervals in the 

range [0, Sum]. The size of each individual interval corresponds to the fitness value of 

the associated individual. For example, in Figure 5.2, the circumference of the roulette 

wheel is the sum of all six individual's fitness values. Individual 5 is the most fit 

individual and occupies the largest interval, whereas individuals 6 and 4 are the least 

tit and have correspondingly smaller intervals within the roulette wheel. To select an 

individual, a random number is generated in the interval [0, Sum] and the individual 

whose segment spans the random number is selected. This process is repeated until the 

desired number of individuals have been selected. 

Figure 5.2 : Roulette Wheel Selection 

5.1.4.2 Stochastic Universal Sampling 

Stochastic universal sampling (SUS) is a single-phase sampling algorithm with 

minimum spread and zero bias. Instead of the single selection pointer employed in 

roulette wheel methods, SUS uses N equally spaced pointers, where N is the number 

of selections required (See Figure 5.3). 

The population is shuffled randomly and a single random number in the range 

[0 Sum/N] is generated, ptr. The N individuals are then chosen by generating the N 

pointers spaced by 1, [ptr, ptr+1, ..., ptr+N-l], and selecting the individuals whose 
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fitnesses span the positions of the pointers. As individuals are selected entirely 

their position in the population, SUS has zero bias. 

5.1.5 Crossover (Recombination) 

The basic operator for producing new chromosomes in the GA is that of crossover. 

Like its counterpart in nature, crossover produces new individuals that have some 

parts of both parent's genetic material. 

Once two chromosomes are selected, the crossover operator is used to generate two 

offspring. In one - point crossover, one chromosome positions are randomly selected 

between one and (L- l ) , where L is the chromosome length and the two parents are 

crossed at this point. 

For example, in one-point crossover, the first child is identical to the first parent up to 

the crossing point and identical to the second parent after the crossing point. An 

example of one-point crossover is shown in Fig. 5.4. In uniform crossover, each 

chromosome position is crossed with some probability, typically one-half 
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Parent 1: 

Parent 2: 

Offspring 1: 

Offspring 2: 

110001011 

010010110 

Crossover point 

/ 
110010100 

100011001 

110001011 

010010110 

100011001 

110010100 

Figure 5.4 : One-point crossover 

For multi-point crossover, m crossover positions, , where k,e{ 1,2, . / - l jare the 

crossover points and / is the length of the chromosome, are chosen at random with no 

duplicates and sorted into ascending order. Then, the bits between successive 

crossover points are exchanged between the two parents to produce two new 

offspring. The section between the first allele position and the first crossover point is 

not exchanged between individuals. This process is illustrated in Figure 5.5. 

3 n^L 

0 
i r i i 

J c i i i i 

Figure 5.5: Multi-point crossover, m=4 

The amount of crossover is controlled by the crossover probability, which is defined 

as the ratio of the number of offspring produced in each generation to the population 

size. A higher crossover probability allows exploration of more of the solution space 

and reduces the chances of settling for a false optimum. A lower crossover probability 
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enables exploitation of existing individuals in the population that have relatively high 
fitness. 

5.1.6 Mutation 

In natural evolution, mutation is a random process where one allele of a gene is 

replaced by another to produce a new genetic structure. In GAs, mutation is randomly 

applied with low probability, typically in the range 0.001 and 0.01, and modifies 

elements in the chromosomes. 

Usually considered as a background operator, the role of mutation is often seen as 

providing a guarantee that the probability of searching any given string will never be 

zero and acting as a safety net to recover good genetic material that may be lost 

through the action of selection and crossover. 

In the GA, mutation serves the crucial role of replacing the gene values lost from the 

population during the selection process so that they can be tried in a new context, or of 

providing the gene values that were not present in the initial population. 

Before Mutation: 1 1 0 

After Mutation: 1 1 0 

0 0 0 1 0 0 1 1 

0 0 0 1 0 0 1 1 

Figure 5.6 : Mutation Operator 

For example, say a particular bit position, bit 10, has the same value, say 0, for all 

individuals in the population. In such a case, crossover alone will not help, because it 

is only an inheritance mechanism for existing gene values. That is, crossover cannot 

create an individual with a value of 1 for bit 10, since it is 0 in all parents. If a value of 

0 for bit 10 turns out to be suboptimal, then, without the mutation operator, the 

algorithm will have no chance of finding the best solution. The mutation operator, by 

producing random changes, provides a small probability that a 1 will be reintroduced 

in bit 10 of some chromosome. If this results in an improvement in fitness, then the 

selection algorithm will multiply this chromosome, and the crossover operator will 
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distribute the 1 to other offspring. Thus, mutation makes the entire search space 

reachable, despite a finite population size. Although the crossover operator is the most 

efficient search mechanism, by itself, it does not guarantee the reachability of the 

entire search space with a finite population size. Mutation fills in this gap. 

The probability of mutation is defined as the probability of mutating each gene. It 

controls the rate at which new gene values are introduced into the population. If it is 

too low, many gene values that would have been useful are never tried out. If it is too 

high, too much random perturbation will occur, and the offspring will lose their 

resemblance to the parents. The ability of the algorithm to learn from the history of the 

search will therefore be lost. 

5.1.7 Termination of the GA 

Thus the GA is a stochastic search method, it is difficult to specify convergence 

criteria formally. As the fitness of a population may remain static for a number of 

generations before a superior individual is found, the application of conventional 

termination criteria becomes problematic. A common practice is to terminate the GA 

after a pre-specified number of generations and then test the quality of the best 

members of the population against the problem definition. If no acceptable solutions 

are found, the GA may be restarted or a fresh search should be initiated. 

5.2 Inherent features of G A 

The four most significant differences are: 

• GAs search a population of points in parallel, not a single point. 

• GAs do not require derivative information or other auxiliary knowledge; 

• only the objective function and corresponding fitness levels influence the 

directions of search. 

• GAs use probabilistic transition rules, not deterministic ones. 

• GAs work on an encoding of the parameter set rather than the parameter set 
itself (except in where real-valued individuals are used). 
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Chapter 6 

GA Based Approach 

6.1 Problem mapped in GA Domain 

6.1.1 Objective Function 

Objective function is defined in order to minimize the fuel consumption. 

Objective function J(x), 

J( x ) = ]T FQj 
i=1 

(6.1 ) 

Where FC,, is fuel consumption at ith second of jth time slot and n is the number of 

seconds of the time slot 

Fitness of the individuals is found to Minimize J(x). 

6.1.2 Chromosome 

In this problem, the variable is EM power in kW. 

Following figure describes the time slot. 

(n-1) Predicted Seconds 
(seconds ahead of the operating instant) 

FC, FC2 
V, v2 
Xj 

FC, 
V, 
X, 

FCn 
Vn 
xn 

Figure 6.1: n second Time Slot 

Where F Q is the fuel consumption of ith second; V, is the velocity of ith second and X, 

is the EM power of ith second. 
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When variables mapped in chromosome, length of a variable is selected as 5 bit binary 

number. 

Therefore the word length = 5n 

J 
Xi X2 

•4— <— 
Xn 

— • 

Figure 6.2 : Chromosome 

6.2 GA Parameters 

No of individuals per generation = 20 

No of Generations = 5 0 

• No of variables = No of predictions + 1 

Length of one variable = 5 bits 

Selection method = Roulette Wheel 

Limits of selection of chromosomes are based on the ICE operating regions explained 

in section 4.3.1. 

Let, Td = Torque Demand at ith second, 

Td in Region 1, 

Lower limit of X, = 0 

Upper limit of Xi = 6 

Td in Region 2, 

Lower limit of Xj = - 1 0 

Upper limit of X| = 2 0 

Td in Region 3, 

Lower limit of Xj = 0 

Upper limit of Xi = 20 
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When Td = 0, 

Lower limit of Xj = 0 

Upper limit of X, = 0 

When Td < 0. 

Lower limit of Xj = -15 

Upper limit of Xj = 0 

6.3 Optimization Process 

Let consider n second time slot. GA will do the optimization for this time slot based 

on the fitness function defined in the section 5.2.1. From this process EM power 

contribution values ('EMj) can be obtained for each second in the time slot. 

Operating 
Instant 

(n-1) Predicted Seconds 
(seconds ahead of the operating instant) 

'em, 'EM, EM; EMn 

Figure 6.3 : Optimized EM Power contribution for n second Time Slot 

Then for the operating instant, power contribution of the EM is 'EMj. 

Let, 1 Pd = Power demand for the operating instant 

Therefore, ICE power contribution = 'P j - 'EMi 

Then next second becomes the operating instant. One more velocity prediction is 

added to the end by the sensor system. Again there is an n second time slot is formed. 

As explained earlier, do the optimization process again. This process is illustrated by 

the Figure 6.4. 
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Operating 
Instant 

(n-1) Predicted Seconds 
(seconds ahead of the operating instant) 

1st Second em, | >em2 EM, EMn 

Operating 
Instant 

Newly added 
Second 

Past Second 
(n-1) Predicted Seconds ! 

(seconds ahead of the operating instant) 

,nd 

\ 1 / 

1 
— r 

'em, 2em, 2EM, 2EMn 

Operating 
Instant 

Past Seconds 
\ 

Newly added 
Second 
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Figure 6.4 : Optimization Process 

From the optimization for the 2nd second, EM power contribution for the operating 

instant is2EMi. 
2 

Let, "Pd = Power demand for the operating instant 

Therefore, ICE power contribution = 2Pd - 2EMi 

Similar process is employed for the third second and so on. 

From the optimization for the 3 rd second, EM power contribution for the operating 

instant is 3EMi. 
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Let, ' Pd = Power demand for the operating instant 

Therefore, ICE power contribution = 3Pd - 3EM, 

From the optimization for the ith second, EM power contribution for the operating 

instant is 'EMi. 

Let, 'Pd = Power demand for the operating instant 

Therefore, ICE power contribution = 'Pd - 'EMi 
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Chapter 7 

Results and Analysis 

7.1 Results for NEDC 

7.1.1 Velocity profile and relevant power demand 

Velocity Profile 

200 800 400 600 
Time (s) 

Figure 7.1: NEDC 

1000 1200 

This is the same plot explained in section 3.1 of chapter 3. 
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Figure 7.2 : Power demand for NEDC 

This is the plot of power demand in kilo watt against the time in seconds in order to 

achieve the velocity at the wheels shown in Figure 7.1. 
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7.1.2 Operating points of ICE 

ICE Efficiency Contours 
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Figure 7.3 : ICE Operating points for Conventional Vehicle - NEDC 

This is the plot of engine operating points on the ICE contour map explained in 

section 4.3 of chapter 4. In conventional vehicle, there is no EM to assist the engine. 

Therefore all the points laid on the contour map as the power demand. They did not 

concentrate on to more efficient regions. Because ICE should provide the whole 

power demand to achieve the velocity. It is clear that points in the efficiency region 

between 0.25 and 0.3 are high torque and hence ICE gives high power to the wheel at 

high fuel rate according to the map explained in Figure 4.3 of chapter 4. 
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Figure 7.4 : ICE Operating points for HEV Without Predictions - NEDC 
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Figure 7.5 : ICE Operating points for HEV With 4 Seconds Predictions - NEDC 
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Figure 7.6 : ICE Operating points for HEV With 8 Seconds Predictions - NEDC 

Figure 7.4, 7.5 and 7.6 are the same plot of Figure 7.3 but for HEV without velocity 

predictions, 4 second predictions and 8 second predictions respectively. In these cases 

EM comes to assist the ICE to achieve the power demand. Hence ICE can be operated 

in more efficient and relatively low power region. With the velocity predictions, HEV 

controller can manage battery SOC in very economical manner and Figure 7.5 and 

Figure 7.6 show most of the points come in to 0.3 ~ 0.35 efficiency region. Points in 

low efficiency regions represent low power demand. This also one of strategies to 

reduce fuel consumption. 
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Figure 7.8 : EM Contribution for HEV With 4 Seconds Predictions - NEDC 

Figure 7.7, 7.8 and 7.9 show the EM power contribution of HEV without predictions, 

HEV with 4 second predictions and HEV with 8 second predictions respectively. The 

X - axis of the graph is time in seconds and the Y - axis is EM power contribution in 

watts. With predictions, controller used EM to supply higher power demands to get 

down the ICE operating points in to the more efficient and economical region. 
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Figure 7.9 : EM Contribution for HEV With 8 Seconds Predictions 
NEDC 

7.1.4 SOC Variation 
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Figure 7.10 : SOC Variation for HEV Without Predictions - NEDC 

SOC is the deciding factor for switching between ICE and EM. Figure 7 10 7 11 and 

7-12 represent the SOC variation of the battery through the journey. The independent 

axis of the graph is time in seconds and the dependant axis is the SOC as a fraction of 
full charge state taken as 1. 
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Figure 7.11 : SOC Variation for HEV With 4 Seconds Predictions - NEDC 
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Figure 7.12 : SOC Variation for HEV With 8 Seconds Predictions - NEDC 

In these simulations, simple controlling method was used. Therefore the charging of 

the battery is not sufficient and controller should be modified to overcome this 

problem. With increasing number of predictions, battery was used in its allowable full 

range. 
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7.2 Results for CDC 

7.2.1 Velocity profile and relevant power demand 

Velocity Profile 
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Figure 7.13 : CDC 
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Figure 7.14 : Power demand for CDC 
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.2 Operating points of ICE 
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Figure 7.15 : ICE Operating points for Conventional Vehicle - CDC 
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Figure 7.16 : ICE Operating points for HEV Without Predictions - CDC 

- 4 9 -



ICE Efficiency Contours 

CD 
13 O" 
o I -
LU O 

110 V) 
o 

CV o' 

100 

90 

80 

70 P'" 
p-

60 L - / 

50 
t 

40 o 
30 

N> CJl 

& O' 

0.3 
0.3 

0-3 

- _X 

> ' ' • - XK T* 
o cA 

20 

10: 

'•3 

100 150 200 250 300 350 400 450 500 
ICE Speed (rad/s) 

Figure 7 .17: ICE Operating points for HEV With 4 Seconds Predictions - CDC 
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Figure 7 .18: ICE Operating points for HEV With 8 Seconds Predictions - CDC 
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7.2.3 EM Contribution 
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Figure 7.19 : EM Contribution for HEV Without Predictions CDC 
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Figure 7.20 : EM Contribution for HEV With 4 Seconds Predictions - CDC 
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Figure 7.21 : EM Contribution for HEV With 8 Seconds Predictions - CDC 

7.2.4 SOC Variation 
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Figure 7.22 : SOC Variation for HEV Without Predictions - CDC 
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Figure 7.23 : SOC Variation for HEV With 4 Seconds Predictions - CDC 
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Figure 7.24 : SOC Variation for HEV With 8 Seconds Predictions - CDC 



7.3 Analysis of Results 

Table 7.1 : Comparison of Fuel Usage 

NEDC (1200 Sec.) CDC (800 Sec.) 

Vehicle Type 
Fuel Usage 

( m l ) 

Saving w.r.t 

conventional 

vehicle (%) 

Fuel Usage 

( m l ) 

Saving w.r.t 

conventional 

vehicle (%) 

Conventional 

Vehicle 
835.95 516.70 

HEV without 

Predictions 
780.47 6.61 475.83 7.91 

HEV with 4 

Seconds 

Predictions 

747.76 10.53 449.06 13.09 

HEV with 8 

Seconds 

Predictions 

734.77 12.08 375.56 27.32 

It is very clear that the availability of velocity predictions for few seconds ahead of the 

operating instant of HEV, is a key factor to improve the fuel economy or the fuel 

saving of the vehicle. The other observed important factor is, increasing of predictions 

cause more improvements in fuel economy. 

It is estimated the same for two drive cycles, NEDC and CDC. Even HEV itself shows 

more effective for CDC than NEDC. With more predictions CDC shows huge positive 

gradient for improvement of fuel economy (Figure 7.25). 
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Figure 7.25 : Comparison of Fuel Usage 

Figure 7.25 shows that huge fuel saving for the HEV with 8 second predictions. With 

more predictions, controller keeps battery SOC to release in more economical way 

I h , S S a Y i n g i s m o r e s i 8 n i f i c a n t for CDC. The reasons for the above saving are 
analyzed below. 

Let compare the operating points of ICE for NEDC. 

Below comparisons clearly show that higher torques concentrated on to the 0.3 & 0.35 

efficiency contours with the increase of number of velocity predictions. More number 

of predictions force the ICE to operate inside the 0.35 contour ring. That means ICE is 

operated in its maximum efficiency range with saving of. 

- 5 5 -



110' jo 
o 

100. 

90 

80 

70̂  
60 

5 0 ' 

40 • 
r 

30 \- ' 

201-

1 0 L 

O 

ICE Efficiency Contours 

" J-

150 200 250 300 350 
ICE Speed (rad/s) 

ICE Efficiency Contours 

ICE Speed (rad/s) 

Conventional Vehicle 

ICE Efficiency Contours 

HEV without Predictions 

ICE Efficiency Contours 

100 150 200 250 300 350 400 450 500 
ICE Speed (rad/s) 100 150 200 250 300 " 350 400 450 500 

ICE Speed (rad/s) 

HEV with 4 Sec. Predictions HEV with 8 Sec. Predictions 

Figure 7.26 : Comparison of ICE Operating points for NEDC 

Similar comparison can be done for the CDC. Same scenario can be observed but 

higher number of operating points laid in the maximum efficiency region than drive in 

NEDC. That is one reason for more fuel saving resulted in CDC than NEDC. 

- 5 6 -



ICE Efficiency Contours 
1 1 0 ' 

100 ° 

90 

80 

70 » 

60 
50 

40 

30 

20 K 
C 

1 0 • . 

ICE Efficiency Contours 

V _ C.25 
100 150 200 250 300 350 

ICE Speed (rad/s) 200 250 300 350 
ICE Speed (rad/s) 

HEV with 4 Sec. Predictions-NEDC HEV with 4 Sec. Predictions-

Figure 7.27 : Comparison of ICE Operating points for NEDC with CDC 
CDC 

One reason for laying more points of CDC in maximum efficiency region than NEDC 

is, compared to NEDC, CDC is a low power demand drive cycle. The maximum 

velocity of CDC is 11 ms"1 ( * 40 km/h) and power demand for that is 25 kW. But for 

the NEDC, maximum velocity is 34 ms"1 ( * 122 km/h ) and power demand for that is 

45 kW. Therefore by giving lesser amount of motor torque, ICE can be operated at its 

maximum efficiency range when the HEV drives on CDC. This is the one of major 

facts that HEV more effective on CDC than NEDC. 

Let consider the EM contribution and the SOC variation. 

First analysis can be done for NEDC. 

Significant variation of EM contribution with increase of velocity predictions can be 

observed for extra urban drive part of NEDC than urban part. In the extra urban 

region, it is very clear that with increasing number of velocity predictions, EM 

released big power slots at once instead of releasing small - small power contributions. 
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This scenario can be explained as a pro-active behavior of the EM. It saves battery 

energy to release at the most efficient moment rather spending energy continually. 

This is the major reason for improving of fuel economy of HEV with increasing 

number of velocity predictions. 

For the CDC, same can be observed but motor contribution is very high due to CDC* is 

a low power demand drive cycle. * 

SOC variation for NEDC with CDC can be compared as follows. 

There are lots of charging areas can be observed in CDC than NEDC. This is because, 

CDC having lot of traffic conjunctions and therefore it has lot of breakings and 

decelerations. These regenerative breakings cause the above observation and save 

more fuel. 

There are lesser number of breakings and decelerations available in NEDC. But still it 

allows battery to get charged while ICE operated in the operation region 3. 
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Figure 7.29 : Comparison of SOC Variation for NEDC with CDC 

It is very clear, for all operations, battery keeps it SOC level between 0.35 and 0.85 

for its safety and long life. 
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Chapter 8 

Conclusions 

8.1 Conclusions, Remarks and Discussion 

The Table 7.1, clearly shows that the availability of accurate predictions about the 

possible speed trend ahead of current time, saves fuel in HEVs significantly. With the 

increasing number of velocity predictions, percentage saving in fuel is increased. But 

the getable number of velocity predictions cannot be increased infinitely due to the 

available limitations in technology and increase of cost for sensors with the increase 

of predictions. 

HEV with 4 second predictions and 8 second predictions were simulated in this 

research. The results show even HEV with 4 second predictions can save fuel up to 

10.53 % and 13.09 % with respect to the conventional vehicle for NEDC and CDC 

respectively. Therefore the availability of those predictions is worthy and money spent 

for this kind of prediction systems, is highly valuable. 

This research results show that the HEVs driven on road conditions of countries like 

Sri Lanka is more effective. HEV even without velocity predictions, simulation results 

for CDC, shows more than 1% saving in fuel than NEDC. With prediction the saving 

of fuel is dramatically high for Sri Lankan roads than smooth drives like NEDC. That 

means HEVs with or without velocity predictions, are more effective and suitable for 

roads of countries like Sri Lanka. 

Almost all simulations are done for drive cycles of developed countries. As they need 

to find out suitable vehicle and driving conditions for their own countries. The 

importance of doing simulations for the local drive cycles like CDC is highlighted in 

this research. It is true that still Sri Lanka is in the early stages of manufacturing of 

automobiles, but this kind of simulations and research results can be used to find out 

suitable vehicles to be imported. 
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8-2 Recommendations for Future Research 

This research was done using OA. As a future researeh. it is better to carry out a 

research tor the same. based on Fuzzy - l o g i c . B e c a u s e ^ „ , o ( Q f ^ ^ 

he found for HEV energy management systems using Fuzzy - l o g i c . T h e n t h e r e s u „ s 

can be compared witb OA resuit, That wil, be a great opportunity for everybody to 

develop a more reliable aud efficient "driving s i t u a t i o n a w a r e n e s s „ . b a s e d ' 

management system for HEV. 

These results show the predictions to save fuel successfully. Therefore the money 

spem for a project to develop a sensor network or even an on-board sensor system for 

, 0 get speed trends, can be more rewarded. 

I" this research, the thermal effects on the efficiency of the ICE and the switching 

limitations of the EM were not taken into account in f o l i a t i o n of the models 

Therefore th.s research cau be further developed. With ADVISOR software more 

accurate simulations can be done and the above mentioned s.mulation difficulties can 

be overcome. I would like to forward my suggestion to the University of Moratuwa to 

have an advanced simulation software like ADVISOR, as it will be a great help for 

researchers who are going to do their researches on vehicle simulations 
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Abstract— This paper describes a methodological approach to 

investigate the maximum fuel economy that could be achieved by 

a hybrid vehicle with parallel configuration for a known drive 

cycle. A backward looking hybrid vehicle model is used for 

computation of fuel economies. The optimization process 

represents a constrained, multi-domain and time-varying 

problem, which is highly nonlinear. Here, genetic algorithm (GA) 

based approach was used to find out optimum power split 

between two power sources over their driving cycles that make 

maximum possible overall fuel economy for the given drive cycle 

by the vehicle. In this approach using Parallel Hybrid Electric 

Vehicle (PHEV) configuration, optimization problem is 

formulated so as to minimize the overall fuel consumption. The 

whole set of electric motor power contribution along the drive 

cycle is then coded as the chromosomes. These results represent 

the maximum fuel economy that could be ever achieved by any 

power management system of a Hybrid Electric Vehicle, with the 

iestcd HEV configuration and shall allow setting a benchmark 

against which the fuel economy is measured. 

Keywords— Hybrid Electric Vehicles, Optimization, Genetic 

Algorithm 

I. INTRODUCTION 

As a result of the endless interest of the society for 

improved fuel economy & reduced emission without 

sacrificing vehicle performance, safety, reliability, cost of 

ownership and other conventional vehicle attributes, Hybrid 

Technology came in to the world of automobiles, leaving lot 

of research topics to the researchers living all over the globe. 

The pressing environmental concerns and skyrocketing price 

of fuel oils are highly responsible factors for the rapid 

development of this technology within the past two decades. 

Hybrid Electric Vehicles (HEV) have a great potential as 

new alternative means of transportation. The specific benefits 

of HEVs, compared to conventional vehicles, include 

improved fuel economy and reduced emissions. 

Hybrid systems involving a combination of an Internal 

| Combustion Engine (ICE) and electric motors (EM) have the 

potential of improving fuel economy, by operating the Internal 

Combustion Engine in the optimum operating range while 

making use of regenerative braking during deceleration. 

An extensive set of studies have been conducted over the 

past two decades. In particular, several logic-based control 

strategies and fuzzy logic-based energy management strategies 

for distributing power demand have been suggested [1], [2] & 

[3], These approaches have been adopted mainly due to their 

effectiveness in dealing with the problems appear in the 

complexity of hybrid drive train via both heuristics (human 

expertise) and mathematical models. 

Recent changes in the technology of modern vehicles and 

revolutionary development in telematics industry have created 

the possibility for a vehicle to gather online information about 

the road infrastructure and the traffic environment in which it 

is in operation. Several algorithms have been proposed to 

predict the future speed trends, with the use of preview 

information provided by the telematics. Two technologies, 

hybrid and telematics are combined together to create 

"intelligent vehicle" which provides improved fuel economy 

with traffic preview [4], 

The aim of this study is to find out the maximum fuel 

economy that a PHEV can achieve with any type of HEV 

energy management system. Here, genetic algorithm (GA) has 

been used as the technique for optimization which will lead to 

find a global optimum. In fact, though it is needed to find the 

maximum possible theoretical best, in actual practice it might 

not be reachable. However, knowing the maximum possible 

best fuel economy, it can be used as a benchmark value which 

might be useful in setting the standards of HEV. 

Rest of the paper has been organized as follows; In Section 

II, it explains the vehicle model used in this study and briefly 

describes the driving cycle used. Evolutionary computational 

algorithm to find out the maximum fuel economy has been 

presented in Section III, followed by the analysis of the results 

of this study in Section IV. Finally, the Conclusion is 

presented in Section V. 
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II. VEHICLE MODEL AND DRIVE CYCLE 

I A. Modeling the hybrid vehicle 

I A parallel hybrid configuration has been taken in Fig. 1 to 

account for modeling the hybrid electric vehicle in this study. 

This configuration consists of an electric motor and internal 

combustion engine that can simultaneously or individually 

drive the transmission (and subsequently propel the vehicle). 

The split, is determined by the vehicle's hybrid control strategy 

[subject to constraints on the battery state of charge (SOC)]. 

Normally, the EM is used to assists the engine for peak 

acceleration, hill climbing, and extremely fast highway driving 

conditions. Furthermore, the EM can act in reverse mode to 

become a generator during regenerative braking and 

consequently used to recharge the batteries. 

l-ig 1 Block diagram of the parallel hybrid vehicle 

The city driving test standard starts from ambient initial 

conditions (known as "cold starts"). However, in this analysis, 

the engine has been assumed to be warm. 

Another constraint during the optimization process is the 

change in.state of battery charge at the beginning and end of 

the cycle in order to prevent misleading fuel economy results, 

arising from excessive use of the electric motor (this would 

result increased fuel usage during the next vehicle run, for 

battery replenishment). 

The baseline vehicle chosen for this study has been a 4 - 1 

production family sedan with a specific Parallel Hybrid 

Electric Vehicle (PHEV) configuration, which has been used 

throughout the study. Following table gives details of its' 

specifications; 

TABLE 1 

VEHICLE MODEL SPECIFICATIONS 

Parameter Value 

Total weight 

Chassis weight 

Frontal area 

Coefficient of Drag 

Vehicle length 

Transmission 

1642 kg 

1000 kg 

1.92 m2 

0.32 

5.00 m 

Manual, 5 speed 

Transmission efficiency 

Gear ratios 

Final drive ratio 

Gear changes 

95% (all gears) 

3.5:2.14:1.39:1:0.78 

3.98 

1-2 and 2-1 @ 24 km/h 

2- 3 and 3 -2 @ 40 km/h 

3- 4 and 4 -3 @ 64 km/h 

4- 5 and 5 -4 @ 75 km/h 

(Permanent Magnet Motor 20kW continuous, 40kW peak. 

Advanced Battery 40kW, 4kWh, 100V) 

It is important to note that the simulation essentially works 

in a reverse direction to what happens in the real scenario - i.e. 

the drive cycle is the input to the vehicle model, and the 

required changes to the vehicle speed are calculated based on 

the drive cycle. This change in vehicle speed is then converted 

in to engine speed and torque requirements by taking into 

account the current gear ratio (a shifting map is given for the 

model) and the efficiencies of the transmission. The fuel 

consumed is then calculated from a look-up table of fuel rate 

against engine operating point (defined by engine speed and 

torque). The fuel usage map as a function of operating point 

has been evolved from steady state maps and is illustrated in 

Fig. 2. 

Torque (Nm) 0 0 
Eng Speed (rpm) 

Fig. 2. Fuel consumption map of the ICE of tested HEV 

B. Drive cycles 

Driving cycles are defined as the test cycle used to 

standardize the evaluation of vehicle fuel economy and 

emissions. Driving cycles are speed time sequences' that 

represent the traffic conditions and driving behavior in a 

specific area. 

In this optimization study, New European Driving Cycle 

(NEDC), which is commonly used in regulatory work has 

been used and is shown in Fig-3. 

1 
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Fig. 3 New European Drive Cycle 

The optimization process now represents a constrained 

| multi-dimensional problem that could not be easily solved. In 

[ order to find a solution to the problem and to optimize fuel 

; economy of the Parallel HEV configuration indicated in 

Figure I. the Genetic Algorithm approach could be employed 

over the above drive cycle as mentioned below; 

III. OPTIMISATION USING GA 

In this section an Evolutionary Computational algorithm has 

been developed to find out the optimum fuel trajectory for a 

known drive cycle using Genetic Algorithm (GA). The GA is 

a stochastic global search method that mimics the metaphor of 

natural biological evolution. GAs operate on a population of 

potential solutions, applying the principle of survival of the 

fittest to produce (hopefully) better and better approximations 

to a solution [5], In the following sub-section, the architecture 

o fGA applied to the fuel economical operation of PHEV is 

presented. 

A. Domain and Constraints 

Fig. I presents a block diagram of a PHV with an EM and 

an ICE. For this particular configuration the ICE and EM 

power are combined downstream of the transmission. 

Alternatively the power could also be combined upstream of 

the transmission. There are five different ways to operate the 

system depending on the flow of energy: I) provides power to 

the wheel with only ICE, 2) provides power to the wheel with 

only EM or, 3) provides power to the wheel with both ICE and 

EM simultaneously, 4) charges the battery, using part of the 

ICE power and generated power by EM running as a generator 

5) slow down the vehicle by letting the wheel to drive the EM 

as a generator. 

In this analysis, since the drive cycle is known, 

corresponding power demand to achieve the speed trajectory is 

calculated using dynamic equations [6], taking sampling 

period as one second. 

The power at the wheel is given by, 

Kheel = X f 0 ^ XV = (Facc + Kctine + F„ + ) * V 

= (mxa + mg sin Crr cos A + 1 / 2pairC DAfv2) x v 

where m is the total mass, a is the vehicle acceleration, v is the 

vehicle velocity, A is the angle of slope, Crr is the coefficient 

of tire rolling resistance, CD is the drag coefficient, p is the 

density of air and A f is the frontal cross section area of the 

vehicle. 

Power demand corresponding to each sampling period is 

split between two power sources. Here, it is also assumed that 

the ICE is in continuous operation throughout the drive cycle, 

even when the motor is providing the total power requirement 

for moving of the vehicle and also when the vehicle is at stand 

still. 

The SOC of the battery pack decides whether the required 

power contribution of the EM is possible or not. If the 

batteries are completely charged EM cannot be allowed to 

operate as a generator and on the other hand if the batteries are 

completely discharged, positive power contribution from EM 

is not possible. It is also required to keep the SOC within a 

certain upper and lower limit in order to avoid damage to the 

battery pack. In this analysis initial SOC is considered as 50%. 

In order to have meaningful result (fuel economy), SOC at the 

end of the cycle should not vary much from the initial value 

and at any time of operation, the battery SOC should not go 

outside the specified minimum and maximum limits (40% & 

80%). 

B. Population and Individuals 

There are variables equivalent to the total number of 

operating seconds of the drive cycle and each variable 

represents the power contribution from EM during the 

corresponding sampling period. The individuals which 

composes the population of the current generation consists of 

contribution from EM at each second. EM power can have any 

value between maximum motor power and maximum 

generator power (generation is represented by negative sign). 

C. Chromosomes 

Chromosome composes of string of binary numbers 

corresponding to EM power at each second. 
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I a penalty which represents the amount by which the 

• constraints are violated by the chromosome is added to the 

I fitness value, in order to reduce the probability of selecting it 

I to form the next generation. Therefore, considerable amount of 

I chromosomes in each generation will subject to this constraint 

and it will also be one of the reasons for slowing down of 

I convergence. As each generation composes of 500 

individuals, evaluation of fitness function including the 

objective function and constraints for one generation may take 

an average of about 20 minutes for a 3.0 GHz Pentium 

| computer. 

In Table 11, the optimum fuel economy for the selected drive 

cycle is compared with that of a conventional vehicle. This 

indicates that a maximum of about 30% improvement can be 

achieved by a Parallel HEV, compared to a conventional 

vehicle. It is obvious that fuel economy varies with the driving 

cycle and hence the results obtained through this study are 

valid only for the selected drive cycle. 

The Power demand to achieve the given speed profile and 

the optimum contribution from the EM are indicated in figures 

6 and 7 below. 

Fig. 8 shows the battery SOC variation throughout the drive 

cycle. It could be observed that, the SOC at any instant is 

within the upper and lower limits and the SOC difference at 

the beginning and the end of the cycle is just 2%. 

TABLE II 

FUEL ECONOMIES FOR CONVENTIONAL A N D OPTIMISED H Y B R I D 

VEHICLE 

Drive Cycle NEDC 

Fuel Economy 

(L/ 100km) 

Conventional 

Vehicle 
10.3 

Fuel Economy 

(L/ 100km) 

Parallel HEV 7.23 

Improvement 

with HEV (%) 

30 

Fig. 5. History of genetic algorithm optimization process. 

Fig. 6. Power demand to achieve the speed profile. 

Fig. 7. Contribution from EM over the drive cycle. 

0.461 » » ' --
0 200 400 600 800 1000 1200 

Time (sec) 

Fig. 8. Battery SOC variation over the drive cycle 



V. CONCLUSIONS AND REMARKS 

In this paper, the methodological approach to find out 

maximum.. fuel economy of a PHEV for a known cycle is 

presented. In this approach, an optimization problem is 

formulated in order to employ genetic algorithm for the best 

solution. Variables are defined to find out optimum power 

contribution from EM and ICE. The objective function is 

defined in order to minimize fuel economy and to keep the 

battery SOC within the desired range throughout the drive 

cycle. In this study we do not consider the limitations in 

switching of electric motor between motor mode and generator 

mode. The result from the GA optimization is the maximum 

fuel economy that can be achieved by an HEV with selected 

configuration for the selected drive cycle. 

The results of this GA optimization are usefiil to measure 

the effectiveness of a power management system of an HEV. 

The development in automobile and telematics industry has 

enabled the power management systems to be more intelligent. 

Hybrid technology and telematics have combined together to 

create •"intelligent vehicle" to make more accurate predictions 

about the possible speed trends well ahead of the current 

times, enabling more effective decisions on the power split of 

the two power sources, in order to bring the overall fuel 

economy of the vehicle close to its' maximum point. 

In future, authors wish to research and investigate the 

possibility of employing real time genetic algorithm with less 

number of chromosomes and optimum code lengths. This will 

enable applications to optimize such situations online, to 

achieve the theoretical maximum possible fuel economy 

through optimally employed telematics. 
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Codlings of MATLAB Programs 



D a t a i n p u t p r o g r a m 

- D r i v e C y c l e , SOCE - I n i t i a l S O C , S - 1 + N u m b e r o f p r e d i c t i o n s 

f u n c t i o n [ W M , T M M , T E M , S O C n M , T D M ] = c y c l e ( V , S O C E , S ) 

% c a l c u l a t e t h e p o w e r d e m a n d , P a n d t h e T o r q u e , T d 

P , W , T d ] = d r i v e r d e m a n d ( V ) ; 

n , m ] = s i z e ( V ) ; 

% S O C n ^ - S O C r i X 6 S ' ™ M " M O t ° r T ° r q U e ' T E M " E n g i n e T ° r q U e 

TMM = z e r o s ( n , 1 ) ; 
TEM = z e r o s ( n , 1 ) ; 
SOCnM = z e r o s ( n , 1 ) ; 

f o r i = l : n 

i f i < ( n + 2 - S ) 

I N O P = z e r o s ( S , 1 ) ; 
INOW = z e r o s ( S , 1 ) ; 
I N O T d = z e r o s ( S , 1 ) ; 

f o r j = l : S 
I N O P ( j ) = P ( i + j - 1 ) ; 
INOW ( j ) = w ( i + j - 1 ) ; 
I N O T d ( j ) = T d ( i + j - 1 ) ; 

e n d 

P M O = G A ( I N O P , I N O W , I N O T d , S O C E ) ; % C a l l GA i n p u t s P , W , T 

P M M = P M O ' ; 
i f W ( i ) = = 0 

T M M ( i ) = 0 ; 
e l s e 

T M M ( i ) = P M M ( 1 ) * 1 0 0 0 / W ( i ) ; 
e n d 
i f T d ( i ) > 0 

T E M ( i ) = T d ( i ) - T M M ( i ) ; 
i f T E M ( i ) > 0 
T E M ( i j = T E M ( i ) ; 
e l s e 

T E M ( i ) = 0 ; 
e n d 

e l s e 
T E M ( i ) = 0 ; 

e n d 

S O C E = s o c ( S O C E , P M M ( 1 ) ) ; 
S O C n M ( i ) = S O C E ; 

e l s e 

- 7 4 -



i f w ( i ) = = o 

T M M ( i ) = 0 ; 

e l s e 

T M M ( i ) = P M M ( S - n + i ) * 1 0 0 0 / W ( i 

e n d 

i f T d { i ) > 0 

T E M ( i ) = T d ( i ) - T M M ( i ) ; 

i f T E M ( i ) > 0 

T E M ( i ) = T E M ( i ) ; 

e l s e 

T E M ( i ) = 0 ; 

e n d 

e l s e 

T E M ( i ) = 0 ; 

e n d 

S O C E = s o c ( S O C E , P M M ( S - n + i ) ) ; 

S O C n M ( i ) = S O C E ; 

e n d 

e n d 

WM=W; 

TDM=Td ; 



% T h i s s c r i p t i m p l e m e n t s t h e S i m p l e G e n e t i c A l g o r i t h m 

f u n c t i o n [ P M o t ] = G A ( D P , W i n , T i n , S O C i n ) 

d r i v e r D e m a n d = D P / 1 0 0 0 ; 

% kW 

[m, n] = s i z e ( D P ) ; 

L i m i t U p p e r = z e r o s ( l , m ) ; 

L i m i t L o w e r = z e r o s ( l , m ) ; 

% Numbe r o f i n d i v i d u a l s p e r p o p u l a t i o n s 

% max imum Number o f g e n e r a t i o n s 

% G e n e r a t i o n g a p , how m a n y new i n d i v i d u a l s c r e a t e d 

% Number o f v a r i a b l e s 

% P r e c i s i o n o f b i n a r y r e p r e s e n t a t i o n 

% L i m i t s e l e c t i o n 

f o r i = l : m 

i f W i n ( i ) > 5 0 0 

TOP=4 4 ; 

e l s e i f W i n ( i ) > 60 

T O P = T o p ( W i n ( i ) ) ; 

e l s e 

TOP=4 4 ; 

e n d 

NIND = 2 0 ; 

MAXGEN = 5 0 ; 

GGAP = . 9 0 ; 

NVAR = m; 

PRECI = 5 ; 

i f d r i v e r D e m a n d ( i ) > 0 

i f d r i v e r D e m a n d ( i ) < 6 

L i m i t U p p e r ( i ) = d r i v e r D e m a n d ( i ) ; 

L i m i t L o w e r ( i ) = 0 ; 

e l s e 

i f d r i v e r D e m a n d ( i ) > T O P * W i n ( i ) / 1 0 0 0 

L i m i t U p p e r ( i ) = d r i v e r D e m a n d ( i ) - T O P * W i n ( i ) / 1 0 0 0 ; 

L i m i t L o w e r ( i ) = 0 ; 

e l s e 

i f d r i v e r D e m a n d ( i ) > ( T O P * W i n ( i ) / 1 0 0 0 ) * . 75 

L i m i t U p p e r ( i ) = 0 ; 

L i m i t L o w e r ( i ) = - 1 0 ; 

e l s e 

L i m i t U p p e r ( i ) = 2 0 ; 

L i m i t L o w e r ( i ) = 0 ; 

e n d 

e n d 

e n d 

e n d 

i f d r i v e r D e m a n d ( i ) = = 0 
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L i m i t U p p e r ( i ) = 0 ; 

L i m i t L o w e r ( i ) = 0 ; 

e n d 

i f d r i v e r D e m a n d ( i ) < 0 

L i m i t U p p e r ( i ) = 0 ; 

L i m i t L o w e r ( i ) = - 1 5 ; 

e n d 

e n d 

* L i m i t s e l e c t i o n e n d 

% L i m i t U p p e r 

% L i m i t L o w e r 

% B u i l d f i e l d d e s c r i p t o r 

F i e l d D = [ r e p ( [ P R E C I ] , [ 1 , N V A R ] ) ; 

L i m i t U p p e r ; L i m i t L o w e r ; r e p ( [ 0 ; 0 ; 1 ; 1 ] , [1 , N V A R ] ) ] ; 

% I n i t i a l i s e p o p u l a t i o n 

Ch r om = c r t b p ( N I N D , N V A R * P R E C I ) ; 

% R e s e t c o u n t e r s 

B e s t = N a N * o n e s ( M A X G E N , 1 ) ; % b e s t i n c u r r e n t p o p u l a t i o n 

g e n = 0 ; % g e n e r a t i o n a l c o u n t e r 

% E v a l u a t e i n i t i a l p o p u l a t i o n 

O b j V = o b j f u n ( b s 2 r v ( C h r o m , F i e l d D ) , S O C i n , W i n , T i n ) ; 

% G e n e r a t i o n a l l o o p 

w h i l e g e n < MAXGEN, 

% A s s i g n f i t n e s s - v a l u e t o e n t i r e p o p u l a t i o n 

F i t n V = r a n k i n g ( O b j V ) ; 

% S e l e c t i n d i v i d u a l s f o r b r e e d i n g 

S e l C h = s e l e c t ( ' r w s ' , C h r o m , F i t n V , G G A P ) ; 

% R e c o m b i n e s e l e c t e d i n d i v i d u a l s ( c r o s s o v e r ) 

S e l C h = r e c o m b i n ( ' x o v s p ' , S e l C h , 0 . 7 ) ; 

% P e r f o r m m u t a t i o n on o f f s p r i n g 

S e l C h = m u t ( S e l C h , 0 . 0 6 ) ; 

% E v a l u a t e o f f s p r i n g , c a l l o b j e c t i v e f u n c t i o n 

O b j V S e l = o b j f u n ( b s 2 r v ( S e l C h , F i e l d D ) , S O C i n , W i n , T i n ) ; 

% R e i n s e r t o f f s p r i n g i n t o c u r r e n t p o p u l a t i o n 

[Chrom O b j V ] = r e i n s ( C h r o m , S e l C h , 1 , 1 , O b j V , O b j V S e l ) ; 

% I n c r e m e n t g e n e r a t i o n a l c o u n t e r 

g e n = g e n + 1 ; 

e n d 

% E n d o f GA 

O P T I M U M _ V A L U E S = g e t o p v ( C h r o m , O b j V , F i e l d D ) ; 

PMot = OPTIMUM VALUES; 



% O b j e c t i v e f u n c t i o n 

f u n c t i o n O b j V a l = o b j f u n ( C h r o m , S O C i n , W i n , T i n ) 

E n g T = z e r o s ( s i z e ( C h r o m ) ) ; 

[n, m ] = s i z e ( C h r o m ) ; 

- c r e a t i o n o f M o t o r T o r q u e M e t r i x 

f o r i = l : n 

f o r j = l : m 

i f T i n ( j ) > 0 ; 

i f T i n ( j ) - C h r o m ( i , j ) * 1 0 0 0 / W i n ( j ) > 0 

E n g T ( i , j ) - T i n ( j ) - C h r o m ( i , j ) * 1 0 0 0 / W i n 

e l s e 

E n g T ( i , j ) = 0 ; 

e n d 

e l s e 

E n g T ( i , j ) = 0 ; 

e n d 

e n d 

e n d 

% C r e a t i o n o f F u e l C o n s u m p t i o n m e t r i x 

F u e l = z e r o s ( s i z e ( C h r o m ) ) ; 

f o r i = l : n 

f o r j = l : m 

[ T E , W E , E F , e n g E f f ] = f u e l C o n E ( E n g T ( i , j ) , W i n ( j ) ) 

F u e l ( i , j ) = E F ; 

e n d 

e n d 

i C r e a t i o n o f O b j e c t i v e F u n c t i o n 

S O C l = S O C i n ; 

[Kk] = c h a r g e ( S O C 1 , C h r o m , W i n ) ; 

O b j V a l = z e r o s ( n , 1 ) ; 

f o r i = l : n 

f o r j = l : m 

O b j V a l ( i ) = O b j V a l ( i ) + F u e l ( i , j ) ; 

e n d 

e n d 

O b j V a l = O b j V a l . * K k ; 



% SOC C h e c k p r o g r a m 

f u n c t i o n [ k ] = c h a r g e ( S O C 1 , C h r o m , W ) 

[nn ,mmj = s i z e ( C h r o m ) ; 

E f f 3 = . 9 ; % B a t t e r y e f f i c i e n c y 

Qm=4 * 3 6 0 0 ; %kWsec 

k = z e r o s ( n n , 1 ) ; % c r e a t e m e t r i x i n w h i c h e a c h e l e m e n t i s 0 

f o r i = l : n n 

S 0 C E = S 0 C 1 ; 

p = z e r o s ( m m , 1 ) ; 

f o r j = l : m m 

S O C E = S O C E - C h r o m ( i , j ) / ( E f f B * Q m ) ; 

i f S O C E > . 8 

p ( j ) = 1 0 0 0 0 ; 

e l s e i f S O C E > . 4 

P ( j ) = P ( j ) ; 

e l s e 

p ( j ) = 1 0 0 0 0 ; 

e n d 

e n d 

k ( i ) = ( p ' * p ) + 1 ; 

e n d 
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% Power Demand c a l c u l a t o r 

f u n c t i o n 

[ P D , s p e d _ b e f o r e G e a r b o x , t o r q _ b e f o r e G e a r b o x ] = d r i v e r d e m a n d ( d r i 

i 1 . v e h i c l e m o d e l 

% t o t a l m a s s 

m=164 2 ; 

CdA = v e n _ c h a r s . C d A ; 

d r a g c o e i f i c i e n t * a r e a 

C r r = v e h _ c h a r s . C r r ; 

r o l l i n g r e s i s t a n c e 

g = 9 . 8 ; 

g r a v i t y [ m / s e c A 2 ] 

r h o = d r i v e _ c h a r s . r h o ; 

a i r d e n s i t y 

h = d r i v e _ c h a r s . s l o p e ; 

s l o p o f t h e r o a d 

% 2 . d r i v e c y c l e a n d e n e r g y v a r i a t i o n 

% m e l b _ p e a k _ c y c ; 

% f t p _ 7 5 ; 

%NEDC; 

v = d r i v e e y e ; 

v— v * 1 0 0 0 / 3 6 0 0 ; 

T = l e n g t h ( v ) ; 

o 
o 

Q, O 
O. 
O 

% _ v 2 
i 
I 

9- 1 « I 

% v l | 

% 1 2 

s k i n e t i c e n e r g y c h a n g e 

% m * v 2 " 2 / 2 - m * v l A 2 / 2 

% = m ( v 2 - v l ) * ( v 2 + v l ) / 2 
i = m a s s * a c c l e r a t i o n * mean v e l o c i t y 

% c a l c u l a t e t h e a c c e l e r a t i o n a n d 

v d o t = z e r o s ( s i z e ( v ) ) ; 

vmean = z e r o s ( s i z e ( v ) ) ; 

for i=l:(T-1) 
v d o t ( i ) = v ( i + l ) - v ( i ) ; 

vmean ( i ) = ( v ( i + 1 ) + v ( i ) ) / 2 ; 

e n d 

a i r D r a g P 

% l o a d t h e d r i v e c y c l e 

% f e d e r a l t r a n s p o t a t i o n p r o c e d u r e 

% new e u r o p e a n d r i v e c y c l e 

% c o n v e r t t o m / s 

% l e n g t h o f t h e d r i v e c y c l e 

v 3 

3 

mean v e l o c i t y 

% a c c e l e r a t i o n 

% mean v e l o c i t y 

= 0 . 5 . * r h o . * C d A . * v m e a n . A 3 ; % a i r d r a g p o w e r 
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r o l l D r a g P = m * g * C r r * v m e a n ; . 

a c c e l P = m * v d o t . * v m e a n - ° r o l l i n g r e s i s t a n c e 

r e q u i r e d % a c c e l e r a t i o n p o w e r 

h i l l P = m * g * h * v m e a n ; » h n i , . 
o m i l c l i m b i n g p o w e r 

% t o t a l d r i v e p o w e r 

d r i v e r D e m a n d = a i r D r a g P + r o l l D r a g P + h i l l P + a c c e l P -
P D = d r i v e r D e m a n d ; 

E p s = 0 . 5 ; 

0 

w h e e l _ r a d i u s = 0 . 2 9 ; 

s m a l l v a l u e i n s t e a d o f 

•s c o n v e r t t o 

i n i t i a l z e t h e w h e e l 

w h e e l S p e e d = v m e a n / w h e e l _ r a d i u s ; 

r o t a t i o n a l s p e e d [ r a d / s e c ] 

w h e e l T o r q = z e r o s ( s i z e ( d r i v e r D e m a n d ) ) ; 

t o r q u e 

f o r i = l : l e n g t h ( d r i v e r D e m a n d ) - 1 

i f v m e a n ( i ) > E p s 

» , h h w h e e l T o r q ( i ) = d r i v e r D e m a n d ( i ) / w h e e l S p e e d ( i ) + 1 4 5 * v d o t ( i ) / 0 29-
•s a d d e n g i n e i n e r t i a a l s o ^ m i i / u . ^ s , 

e n d 

e n d 

" " t o r q u e & s p e e d b e f o r e t h e f i n a l d r i v e 
R r = 3 . 9 8 ; 

f o r i = l : l e n g t h ( v ) 

% t o r q u e b e f o r e f i n a l d r i v e . 

e n d 

f i n a l d r i v e r a t i o 

f i n _ D r i . W ( i , - w h e e l S p e e d ( i , * R r ; % ^ e T ^ l ^ ^ l ^ 

% VMax = m a x ( f i n _ D r i . W ) ; 

% s c a l e = 3 0 0 / V M a x * 0 . 6 / 1 . 2 ; 

% u s e t h e s p e e d d e p e n d e n t g e a r s h i f t s 

t o r q _ b e f o r e G e a r b o x = z e r o s ( l e n g t h ( v ) , 1 ) ; 

s p e d _ b e f o r e G e a r b o x = z e r o s ( l e n g t h ( v ) , 1) • 

% g e a r N o = [ 3 . 8 , 2 . 1 4 , 1 . 2 5 , 0 . 9 , 0 . 6 4 ] ; % * s c a l e ; %%%%gear r a t i o 

g e a r N o = [ 3 . 8 , 2 . 2 , 1 . 6 , 1 . 2 5 , 0 . 9 ] ; 

% g e a r N o = [ 3 . 8 , 1 . 8 1 , 1 . 2 1 , 0 . 8 6 , 0 . 6 4 ] ; 

% t h e v e l o c i t y a t w h i c h t h e g e a r p o s i t i o n s a r e c h a n g e d 

g e a r _ l _ s p e e d = 2 4 * 1 0 0 0 / 3 6 0 0 / w h e e l _ r a d i u s * R r ; 

g e a r _ 2 _ s p e e d = 4 0 * 1 0 0 0 / 3 6 0 0 / w h e e l _ r a d i u s * R r ; 

g e a r _ 3 _ s p e e d = 6 4 * 1 0 0 0 / 3 6 0 0 / w h e e l _ r a d i u s * R r '• 

g e a r _ 4 _ s p e e d = 7 5 * 1 0 0 0 / 3 6 0 0 / w h e e l r a d i u s * R r ' 

g e a r R a = z e r o s ( s i z e ( v ) ) ; 

g e a r N N O = z e r o s ( s i z e ( v ) ) ; 

f o r i = l : l e n g t h ( v ) - 1 

i f f i n _ D r i . T ( i ) > = e p s 
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i f f i n _ D r i . W ( i ) < g e a r _ l _ s p e e d 

g e a r R a ( i ) = g e a r N o ( l ) ; 

e l s e i f f i n _ _ D r i . W ( i ) < g e a r _ 2 _ s p e e d 

g e a r R a ( i ) = g e a r N o ( 2 ) ; 

e l s e i f f i n _ D r i . W ( i ) < g e a r _ 3 _ s p e e d 

g e a r R a ( i ) = g e a r N o ( 3 ) ; 

e l s e i f f i n _ D r i . W ( i ) < g e a r _ 4 _ s p e e d 

g e a r R a ( i ) = g e a r N o ( 4 ) ; 

e l s e 

g e a r R a ( i ) = g e a r N o ( 5 ) ; 

e n d 

e l s e 

i f f i n _ D r i . W ( i ) > = g e a r _ 4 _ s p e e d 

g e a r R a ( i ) = g e a r N o ( 5 ) ; 

e l s e i f f i n _ D r i . W ( i ) > = g e a r _ 3 _ s p e e d 

g e a r R a ( i ) = g e a r N o ( 4 ) ; 

e l s e i f f i n _ D r i . W ( i ) > = g e a r _ 2 _ s p e e d 

g e a r R a ( i ) = g e a r N o ( 3 ) ; 

e l s e i f f i n _ D r i . W ( i ) > = g e a r _ l _ s p e e d 

g e a r R a ( i ) = g e a r N o ( 2 ) ; 

e l s e 

g e a r R a ( i ) = g e a r N o ( 1 ) ; 

e n d 

g e a r N N O ( i ) = 1 

g e a r N N O ( i ) = 2 

g e a r N N O ( i ) = 3 

g e a r N N O ( i ) = 4 

g e a r N N O ( i ) = 5 

g e a r N N O ( i ) = 5 ; 

g e a r N N O ( i ) = 4 

g e a r N N O ( i ) = 3 

g e a r N N O ( i ) = 2 

g e a r N N O ( i ) = 1 

e n d 

t o r q _ b e f o r e G e a r b o x ( i ) = f i n _ D r i . T ( i ) / g e a r R a ( i ) ; % t o r q u e a f t e r 
g e a r b o x 

b o x 

s p e d _ b e f o r e G e a r b o x ( i ) = f i n _ D r i . W ( i ) * g e a r R a ( i ) ; % s p e e d a f t 
e r g e a r 

e n d 
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% E n g i n e P r o g r a m 

% e n g i n e Map 

% 1 . 5 L P r i u s _ j p n ( A t k i n s o n c y c l e ) e n g i n e 

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 

% SPEED & TORQUE RANGES o v e r w h i c h d a t a i s d e f i n e d 

% ( r a d / s ) , s p e e d r a n g e o f t h e e n g i n e 

^ o ^ i / e o n " , . 1 7 " 2 2 1 8 2 6 9 1 3 1 6 4 3 6 3 6 4 1 0 9 4 5 8 2 5 0 5 5 

l b f t 2 N m = l . 3 5 6 ; ^ c o n v e r s i o n f r o m l b f t t o Nm 

% (N*m) , t o r q u e r a n g e o f t h e e n g i n e 
e n g _ t r q = [ 5 . 6 1 1 . 2 1 6 . 8 2 2 . 3 2 7 . 9 3 3 . 5 3 9 . 1 4 4 . 7 50 3 55 8 6] 4 
7 0 . 0 ] * l b f t 2 N m / s c a l e f a c * l . 2 ; 4 

c l e a r l b f t 2 N m 

I h n ^ S ) ' T m a p i n d e x e d v e r t i c a l l y b y f c map s p d a n d 
« h o r i z o n t a l l y b y f c _ m a p _ t r q ~ 

% f u e l u s e f r o m Feng A n • s m o d e l c a l i b r a t e d w i t h a c t u a l d a t a f o r 
P r i u s j p n ( A t k i n s o n c y c l e ) e n g i n e 
e n g _ f u e l _ c o n = [ 

0 . 0 9 6 2 0 . 1 2 6 9 0 . 1 5 7 6 0 . 1 8 8 3 0 . 2 1 9 1 0 . 2 4 9 8 0 2805 0 3112 
0 . 3 6 1 0 0 . 4 5 6 6 0 . 4 6 4 1 0 . 4 6 4 1 0 . 3 1 1 2 

o ° ; 3 8 3 8 O ° ; 2 8 3 7 ° - 3 3 7 5 ° ' 3 8 M ° - 4 3 5 3 ° - 4 8 4 2 

O 0 ^ 1 O ^ e " ^ ^ o 3 8 8 2 ° ' 4 5 5 2 ° ' 5 2 2 3 0 - « « 3 

0 ° j l i l l 1 ° 2 2 2
9

2 3 X ? ^ , " ! ° 3 4 O T ° ' 5 7 7 9 ° ' 6 6 3 0 ° ' 7 4 8 2 ° ' 8 3 3 4 

0 . 2 9 5 3 0 . 3 9 8 7 0 . 5 0 2 0 0 . 6 0 5 3 0 . 7 0 8 7 0 . 8 1 2 0 0 9154 1 0187 
1 . 1 5 9 1 1 . 5 0 1 2 1 . 6 2 7 8 1 . 6 3 9 9 

0 . 3 6 5 6 0 . 4 8 7 1 0 . 6 0 8 6 0 . 7 3 0 1 0 . 8 5 1 6 0 . 9 7 3 1 1 . 0 9 4 6 1 2160 
1 . 3 7 7 7 1 . 7 8 7 5 1 . 9 3 6 3 1 . 9 8 3 9 

0 . 4 5 2 1 0 . 5 9 1 8 0 . 7 3 1 4 0 . 8 7 1 1 1 . 0 1 0 7 1 . 1 5 0 4 1 . 2 9 0 0 1 4297 
1 . 6 1 2 4 2 . 0 9 3 6 2 . 2 6 4 7 2 . 3 5 7 7 ' 

0 . 5 5 9 1 0 . 7 1 6 9 0 . 8 7 4 7 1 . 0 3 2 5 1 . 1 9 0 3 1 . 3 4 8 1 1 . 5 0 5 9 1 6637 
2 . 0 3 0 4 2 . 4 2 4 9 2 . 6 1 8 2 2 . 7 6 6 6 

0 . 7 0 3 8 0 . 8 9 9 3 1 . 1 0 1 4 1 . 3 1 0 2 1 . 5 2 5 5 1 . 7 4 7 5 1 . 9 7 6 0 2 2112 

2 . 4 5 3 0 2 . 7 0 1 4 2 . 9 5 6 3 3 . 2 1 5 6 

0 . 8 6 8 0 1 . 0 8 6 3 1 . 3 1 2 3 1 . 5 4 5 8 1 . 7 8 6 9 2 . 0 3 5 6 2 . 2 9 1 9 2 5558 

2 . 8 2 7 2 3 . 1 0 6 3 3 . 3 9 3 0 3 . 5 4 3 3 ^ - 5 5 5 8 

1 . 0 6 6 3 1 . 3 0 8 7 1 . 5 5 9 6 1 . 8 1 9 3 2 . 0 8 7 7 2 . 3 6 4 7 2 . 6 5 0 4 2 9448 
3 . 2 4 7 9 3 . 5 5 9 6 3 . 8 8 0 1 3 . 8 8 3 0 

1 . 3 0 3 2 1 . 5 7 0 9 1 . 8 4 8 4 2 . 1 3 5 7 2 . 4 3 3 0 2 . 7 4 0 2 3 . 0 5 7 2 3 3841 

3 . 7 2 0 8 4 . 0 6 7 5 4 . 2 4 5 9 4 . 2 4 5 9 ] / 0 . 7 4 9 / s c a l e f a c ; 

[ S p e e d _ e n g , T o r q u e _ e n g ] = m e s h g r i d ( e n g _ s p d , e n g _ t r q ) ; 
e n - p o w = T o r q u e _ e n g . * S p e e d _ e n g / 1 0 0 0 ; 

e n _ f u e l _ c o n _ g p k W h = e n g _ f u e l c o n * 0 . 7 4 9 . / e n p o w * 3 6 0 0 -

E n g _ e f f i c = 

( T o r q u e _ e n g . * S p e e d _ e n g ) . / ( e n g _ f u e l _ c o n * 0 . 7 4 9 * 4 2 * 1 0 0 0 ) ; 
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% L I M I T S 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

l b f t 2 N m = l . 3 5 6 ; ^ c o n v e r s i o n f r o m l b f t t o Nm 

e n g _ m a x _ t r q = [ 5 6 . 9 5 8 . 2 5 9 . 5 6 0 . 7 6 2 . 0 6 3 . 2 6 4 . 5 6 5 . 7 67 0 64 3 6 

5 8 . 6 ] * l b f t 2 N m / s c a l e f a c * 1 . 2 ; % N-m 

c l e a r l b f t 2 N m 

f u n c t i o n [ T E , W E , E F , e n g E f f ] = f u e l C o n E ( T , W ) 

%FUELCON c o m p u t e s t h e f u e l c o n s u m p t i o n a t e n g i n e t o r q u e T 

%and e n g i n e s p e e d W 

e n g i n e _ m a p _ i n s ; 

% i f t h e s p e e d i s l e s s t h a n t h e m i n i m u m e n g i n e s p e e d 

i f W < m i n ( e n g _ s p d ) 

W = 1 . 0 1 * m i n ( e n g _ s p d ) ; 

e l s e i f W > m a x ( e n g _ s p d ) 

W = 0 . 9 9 * m a x ( e n g _ s p d ) ; 

e n d 

% i f t h e t o r q u e i s l e s s t h a n m i n i m u m t o r q u e o r g r e a t e r t h a n 
t o r q u e 

i f TCmin ( e n g _ _ t r q ) 

T = 1 . 0 1 * m i n ( e n g _ t r q ) ; 

e l s e i f T > m a x ( e n g _ t r q ) 

T = 0 . 9 9 * m a x ( e n g _ t r q ) ; 

e n d 

% c h e c k t h e t o r q u e e x c e e d t h e max imum t o r q u e 

T m a x = i n t e r p l ( e n g _ s p d , e n g _ m a x _ t r q , W) ; 

J 
i f T>Tmax ^ 

T = 0 . 9 9 * T m a x ; * \ 
e n d J t " 

\ 
% t h e n f i n d t h e f u e l c o n s u m p t i o n a t (W,T) p o i n t -

f u e l = i n t e r p 2 ( S p e e d _ e n g , T o r q u e _ e n g , e n g _ f u e l _ c o n , W , T , ' l i n e a r ' ) ; 

e n g T o r =T ; 

e n g S p e =W; 

W E = e n g S p e ; 

T E = e n g T o r ; 

E F = f u e l ; 

e n g E f f = ( e n g T o r * e n g S p e ) / ( f u e l * 0 . 7 4 9 * 4 2 * 1 0 0 0 ) ; 

c •>• 


	92961 pre-text
	92961  Chap 1
	92961 Chap 2
	92961 Chap 3
	92961 Chap 4
	92961 Chap 5
	92961 Chap 6
	92961 Chap 7
	92961 Chap 8
	92961 post-text
	Untitled



