1B/DON/53/09

DETERMINATION OF MAXIMUM POSSIBLE FUEL ECONOMY OF HEV FOR KNOWN DRIVE CYCLE: GA BASED APPROACH

A dissertation submitted to the Department of Electrical Engineering, University of Moratuwa In partial fulfillment of the requirements for the Degree of Master of Science

By

RANDOMBAGE SUDATH WIMALENDRA

Supervised by Dr. Lanka Udawatta

LIBRARY UNIVERSITY OF MORATEWA, SAI LANKA MORATUWA

Department of Electrical Engineering

University of Moratuwa

January 2009

32962

621.3°09 621.3(043)

ТH

92962

DECLARATION

I certify that this dissertation does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any University to the best of my knowledge and believe it does not contain any material previously published, written or orally communicated by another person or myself except where due reference is made in the text. I also hereby give consent for my dissertation if accepted, to be made available for photocopying and for interlibrary loans, and for the title and summary to be made available to outside organizations.

UOM Verified Signature

R.S.Wimalendra

Date: 31/01/2009

We/I endorse the declaration by the candidate.

UOM Verified Signature

Dr. Lanka Udawatta Supervisor

Date: 31.01.200

CONTENTS

			PAGE
DECL	ARATIC)N	ii
CONT	ENTS		iii
ABSTRACT			vi
		DGEMENT	vii
	OF FIGU		viii
LIST	OF TABI	LES	ix
СНА	PTER	- 1	
1	Intro	duction	01
1	1.1	HEV Evolution	01
	1.1		
		Motivation for HEV	02
	1.3	Literature Review	02
	1.4	Objectives	04
СНА	PTER	-2	
2	Hybı	rid Electric Vehicles	06
	2.1	The need of HEV	06
		2.1.1 Environmental Concern	07
		2.1.2 Energy Consumption	07
	2.2.	Clarification of HEV	08
		2.2.1. Series Hybrid Vehicles	08
		2.2.2 Parallel Hybrid vehicles	09
		2.2.3 Series – Parellel Hybrid vehicle	10
	2.3	Characteristics of Hybrid Systems	11
	2.4.	HEV components	12
		2.4.1 Electric Motors	12
		2.4.2 Battery	13
		2.4.3 Transmission	14
	2.5	Energy Management Systems of HEVs	14

CHAPTER – 3

3	Mode	eling and Simulation of HEV	16
	3.1	Modeling of Drivetrain	16
	3.2.	Modeling of Engine	20
	3.3	Modeling of Motor	21
	3.4	Modeling of Energy Storage System	21
	3.5	Specifications of Selected Vehicle	22
	3.6	Advanced Vehicle Simulation Tools	26
		3.6.1 ADVISOR	27
		3.6.2 Dymola	27
		3.6.3 SAT	28

CHAPTER – 4

4	Drive	e Cycles	29
	4.1	Transient Drive Cycle	30
	4.2	Model Drive Cycle	30
	4.3	Drive Cycles Used in The Study	30
		4.3.1 NEDC	30
		4.3.2 CDC	31

CHAPTER – 5

5	Over	view of Genetic Algorithm	33
	5.1	Introduction & Background	33
	5.2	Overview	34
	5.3	Coding	35
	5.4	Genetic Operators	36
		5.4.1 Selection	36
		5.4.2 Crossover	37
		5.4.3 Mutation	38

CHAPTER - 6

6	Optimiza	tion using GA	40
	6.1 Po	wer Split in HEV	40
	6.2 Op	timization problem formulation	41
	6.2.1	Domain and Constrain	41
	6.2.2	Population and Individuals	43
	6.2.3	Chromosome	43
	6.2.4	Fitness Function	45

CHAPTER – 7

Appendix A

7 Results & Analysis	49
CHAPTER – 8	
8 Conclusion and Remarks	57
References	59

v

63

ABSTRACT

Hybrid electric vehicles (HEVs) have great potential as new alternative means of transportation. The specific benefits of HEVs, compared to conventional vehicles, include improved fuel economy and reduced emissions. Hybrid systems using a combination of an internal combustion engine and Electric motor (EM) have the potential of improving fuel economy by operating Internal Combustion Engine (ICE) in the optimum operating range and by making use of regenerative braking during deceleration This paper described a methodological approach to find out the maximum fuel economy that can be achieved by a hybrid vehicle with parallel configuration for a known drive cycle. A backward looking hybrid vehicle model is used for computation of fuel consumption. The optimization process represents a constrained nonlinear and time-varying problem that is not easily solved. Here GA approach was used to find out optimum power split between two power sources over a driving cycles that make maximum possible overall fuel economy for the given drive cycle by the vehicle. In this approach using parallel Hybrid Electric Vehicle (HEV) configuration optimization problem is formulated so as to minimize the overall fuel consumption. The whole set of Electric Motor power contribution along the drive cycle is then coded as the chromosomes. Variables are defined to find out optimum power contribution from EM and ICE. The objective function is defined to minimize weighted sum of the fuel economy and to keep the battery SOC within the desired range throughout the drive cycle. These results represent the maximum fuel economy any power management system of a Hybrid Electric Vehicle with the selected HEV configuration can ever achieve and does allow a benchmark to be set against which the fuel economy is measured. It is obvious that fuel economy varies with the driving cycle and hence the result obtained from this study is valid only for the selected drive cycle. The optimum fuel economy for the selected drive cycle is compared with that of conventional vehicle

.

ACKNOWLEDGEMENT

I would like to first acknowledge and express my sincere thank to my supervisor Dr Lanka Udawatta for the opportunity that he gave me to work on this highly promising and exciting research area. I am also grateful to Prof. Saman Halgamuge and Sunil Adikari, School of Engineering, University of Melbourne, Australia, for providing the necessary research materials and information of HEVs for this study.

I would like to thank all reviewers who have attended in the progress review presentations for their precious comments and guidance.

Without the help and support given by my colleagues R Karunaratna and C.P.M. Edirisingha, who have also done researches on HEVs, I would not have been able to complete this research project in time and I am very thankful to them for their support.

Finally, a special thank goes to my wife, two sons, the daughter and my mother for their moral support during the busy period.

R.S. Wimalendra
Department of Electrical Engineering,
University of Moratuwa,
31st January 2009.

.

LIST OF FIGURES

Figure	Description	Page
Figure 2.1	Globe Oil Consumption Perspectives	0,7
Figure 2.1:	Series Hybrid Electric Vehicle	09
Figure 2.2:	Parallel Hybrid Electric Vehicle	10
Figure 2.3:	Series-Parallel Hybrid Electric Vehicle	11
Figure 3.1	HEV Model Schematic Diagram	17
Figure 3.2	Free body diagram of a vehicle	18
Figure 3.3:	Sample Drive Cycle	19
Figure 3.4	Engine Model Schematic Diagram	20
Figure 3.5	Motor Model Power Flow	21
Figure 3.6	Energy Storage System Model	22
Figure 3.7	Fuel consumption map of the ICE of tested HEV	24
Figure 3.8	Engine fuel efficiency map	25
Figure 3.9	Engine fuel efficiency contours	25
Figure 3.10	Motor Efficiency Map	26
Figure 4.1:	New European Drive Cycle Theses & Dissertations	31
	Colombo Drive Cycle _{w,1ib} .mrt.ac.lk	32
Figure 5.1:	Segment decoding	35
Figure 5.2:	Proportionate Selection Schemes	36
Figure 5.3:	One-point crossover	37
Figure 5.4:	Multi point Crossover	37
Figure 5.5:	Mutation Operator ·	38
Figure 6.1:	Block Diagram of Energy Flow	40
Figure 6.2:	Block diagram of the parallel hybrid vehicle	41
Figure 6.3:	Example of EM contribution (Top), Chromosome (Bottom)	44
Figure 6.4	Flow chart of calculation of Objective function	47
Figure 6.4	Flow chart of GA	48
Figure 6.5	Evolutionary Algorithm	48
Figure 7.1	History of genetic algorithm optimization process for NEDC	51
Figure 7.2	History of genetic algorithm optimization process for CDC	51
Figure 7.3	Power demand to achieve the NEDC speed profile	52
Figure 7.4	Power demand to achieve CDC	53

Figure 7.5: Contribution from EM over NEDC	54
Figure 7.6: Contribution from EM over CDC	54
Figure 7.7: Battery SOC variation over NEDC	55
Figure 7.8: Battery SOC variation over CDC	56

LIST OF TABLES

Table	Description	Page
Table 2.1:	Parameters of HEV Batteries	13
Table 3.1:	Vehicle model specifications	23
Table 3.2:	Engine Torque map	24
Table 4.1:	CDC parameters	32
Table 6.1:	Upper and Lower limits for decision variables	45
Table 7.1:	Fuel Economies for conventional and optimized HE	V 50

University of Moratuwa, Sri Lanka Electronic Theses & Dissertations www.lib.mrt.ac.lk

.