USE OF GLASS FIBERS IN STONE MASTIC ASPHALT FOR THIN ASPHALT SURFACING

P.M.A.K Udayakantha (168342T)

Degree of Master of Engineering in Highway & Traffic Engineering

Transport Division, Department of Civil Engineering University of Moratuwa Sri Lanka

July 2020

DECLARATION

I declare that this is my own work and this thesis/dissertation does not incorporate without acknowledgment any material previously submitted for a degree or diploma in any other university or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgment is made in the context.

Also, I hereby grant to University of Moratuwa the non – exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print electronic or other medium. I retain the right to use this content in whole or part in future work.

Signature:

Date:

Date:

The above candidate has carried out research for the Masters/MPhil/PhD thesis/ Dissertation under my supervision.

Name of the Supervisor: Prof. W.K. Mampearachchi Signature of the supervisor:

Abstract

Sri Lankan road construction sector is dealing with ever depleting construction material problems, especially finding good quality aggregate has become more difficult for projects over the past few years. The accelerated development demands a lot of natural resources and the extraction of resources like aggregate on a mass scale pose a significant threat to the environment. Using the available resources sparingly and optimally is the way forward to brace the scarcity of construction material we are about to face.

There are many projects in progress to upgrade low volume roads. But the designs are done using a 50mm asphalt wearing course, which is a very conservative approach given the traffic movements of the roads are very much limited. For the traffic levels in such roads, by using a thin asphalt layer which is between 25mm-35mm the same function could be achieved while cutting down construction costs for the pavement significantly. The aim is to adopt a mix that can be laid in thin layers, which performs well in Sri Lankan conditions.

Therefore a Stone Mastic Asphalt(SMA) mix design was adopted, and using 60-70 bitumen and added glass fiber laboratory trials were carried out to find the optimum bitumen contents, optimum fiber contents and fiber lengths . Glass fiber was selected as the fiber due to good bitumen coating ability and availability locally. Then indirect tensile strength test was carried out for Marshalls casted in order to observe the structural properties behavior when fibers are incorporated

By analyzing the results, it is concluded that a successful mix which complies with the standard can be achieved with a mix with 6.5% bitumen to weight and by adding 1.6% to 2% of glass fiber to the mix.

Keywords: Thin Asphalt Pavements, Low Volume

Acknowledgment

I would like to express my sincere gratitude to my supervisor Prof. W.K. Mampearachchi for the guidance provided throughout this research. The Road Development Authority, Director Research and Development Dr Mrs. H.L.D.M.A Judith and staff should be mentioned for the support given in conducting laboratory testing

Table of Contents

Declaration	on	i
Abstract		ii
Acknowle	edgment	iii
Table of Contents		iv
List of figures		v
List of Tables		vi
List of	Abbrevaitions	vii
1 Intro	duction	1
1.1	Background	4
2 Liter	ature review	5
2.1	Stone Mastic Asphalt(SMA)	8
3 Prob	lem Statement	10
4 Obje	ctive	11
5 Rese	arch Scope	12
6 Meth	odology.	13
6.1	Mix Selecting Criteria	13
6.2	Incorporation of fibers	19
6.3	Indirect tensile strength	20
7 Resu	lts	21
7.1	With Fiber	24
8 Disc	ussion	31
9 Conclusion		34
10 Re	ferences	35

List of figures

Figure 1.1:A low volume road which is selected to be upgraded	1
Figure 1.2:Gravel road in the rainy season	2
Figure 2.1:Strcture of Dense grades asphalt concrete and SMA	9
Figure 6.1: SMA 10N Graddation	14
Figure 6.2:SMA 10H Graddation	15
Figure 6.3:SMA 7N Graddation	15
Figure 6.4:Classified aggregate	16
Figure 6.5:The average passing percentage	17
Figure 6.6:Mixed Aggregate	
Figure 6.7:Mixing with bitumen	
Figure 6.8:Compaction of the Marshalls	
Figure 6.9: The glass fibers which were cut and prepared for mixing	19
Figure 6.10:Indirect tensile test	
Figure 7.1:Stability vs Bitumen Content Variation	21
Figure 7.2: Air Voids Content vs Binder Content	
Figure 7.3:Flow vs Binder Content Variation	23
Figure 7.4:Vma vs Binnder Content	23
Figure 7.5:Air Voids vs Fiber Content	25
Figure 7.6:Flow vs Fiber Content	26
Figure 7.7:Vma vs Fiber Content	26
Figure 7.8:Stability vs Fiber Content	
Figure 7.9: Air Voids Content vs Fiber content	
Figure 7.10:Vma vs Fiber content	
Figure 7.11: indirecrt tensile strength variation with fiber content	

List of Tables

Table 6.1:Grading specification requirement	13
Table 6.2:Passing and retaining a percentage of aggregate	17
Table 7.1:Marshall test results	21
Table 7.2: The specification limits	24
Table 7.3:Marshall test results	25
Table 7.4:Marshall properties of 5mm fiber mixes	27
Table 7.5: Marshall properties of 10mm fiber mixes	27
Table 7.6:Indirect tensile strength of fiber mixed Marshalls	30
Table 8.1:Cellulose fiber vs Glass fiber	32

List of Abbreviations

Abbreviations	Description
AC	Asphalt Concrete
ESA	Estimated Number of Standard Axels
SMA	Stone Mastic Asphalt
VA	Air Void
VMA	Voids in Mineral Aggregate