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ABSTRACT  

STRUCTURAL CONNECTIVITY OF TWO-DIMENSIONAL ASSEMBLIES 

 

The characterization of structures based only on their geometrical configuration and 

independent of loading is a novel approach for evaluating and designing structures to 

be robust against accidental damage. The concept of ‘structural connectivity’ is 

introduced to assess the connectivity of the structure at multiple hierarchical levels. 

An adaptation of the Bristol approach is tentatively suggested as providing the most 

appropriate measure for structural connectivity. Three other measures, conventional 

connectivity indices in Graph theory, Newman’s approach based on Network theory 

and Route structure analysis (originally developed to analyse road networks) are used 

to compare the results obtained from the Bristol approach. Three trusses of the same 

outer shape but differing in geometric configuration were analysed using all four 

methods to find the best connected truss. The configurations analysed are Fractal, 

Warren and Fan-type trusses. Axial rigidity of the chord members were increased to 

check its effects on structural connectivity. The different measures gave different 

results for the same structure, though there is some degree of consistency. Graph 

theory and Unweighted Newman’s approach suggest that the Fractal truss has the most 

well-connected configuration, whereas the Bristol approach favours the Fan-Type type 

truss. Weighted Newman analysis and Route structure analysis indicate that Warren 

truss to be the most wellformed configuration. All three methods indicate that truss 

ends and central regions of chord members are the least connected areas. All weighted 

analysis methods show that increasing the chord member stiffness benefits structural 

connectivity of all truss forms. Separately, a frame (4 bays x 5 floors) with different 

column elements removed was also analysed, in order to determine the column 

removal that would result in the least degree of frame connectivity. Though different 

methods indicated different column removals to cause the highest loss in structural 

connectivity, all methods agree that the middle column removals causes higher loss in 

connectivity than side column removal in the corresponding floor. An idealised “A-

Level” road network in Sri Lanka was analysed as proof that concept of structural 

connectivity can be applied to assemblies other than structures. 

Key Words: 

structural connectivity, hierarchical clustering, disproportional collapse, network connectivity, road network   
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1 INTRODUCTION 

1.1 Introduction to research 

The ultimate goal of structural engineering is to create or build structures that would 

serve and benefit society for a very long time. Safety of these engineering structures 

plays an important part in achieving this goal. The need for designing resilient and 

robust structures has become evident. The traditional design approaches such as limit 

state design and reliability theory serves well in designing structures to safety. 

However their implementation is hampered either by their own limitations or the 

complexity of calculations. It is evident that a fresh perspective in analysis of structures 

is required in addition to what is available now. 

Only limited research has been carried out in this context. Alternate path analysis, to 

find the key element in a structure, is one such research topic. In this research, it is 

sought to analyse the form of the structure. 

The theory of structural vulnerability (Lu, 1999), which also deals with the form of the 

structure, states that if any damage to the structure causes consequences that are 

disproportionate to the inflicted damage, then that structure is said to be vulnerable to 

that damage. This is reciprocal of the concept of robustness. Thus by making the 

structure less vulnerable, it can be made more robust. 

Vulnerability of a structure is identified in three parts (Figure 1.1). (1) Internal 

vulnerability, is the vulnerability in the form of the structure which is based on its 

internal configuration. (2) Specific action related vulnerability, is the vulnerability of 

a structure/system for a specific damage/action. (3) Overall vulnerability, deals with 

actions occurring over a period of time. This is basically an accumulation of several 

action related vulnerabilities in addition to the internal vulnerability. 

The factors relating to the action related and overall vulnerabilities are addressed in 

the traditional design approaches. The internal vulnerability can be reduced by 

changing the internal configuration of the structure. However the question remains as 

to how to quantify and identify a better configuration or form of the structure. It was 

decided to quantify how the structure is connected together, through measuring the 

connectivity of the structure. The concept of ‘structural connectivity for structures’ is 

introduced to measure the connectivity of the structure. 

The concept of structural connectivity for structures can be seen as self-explanatory, 

although the literature has failed to give any definition, let alone a measurement index 

for it.  This research seeks to understand ‘structural connectivity for structures’ and 

provide a definition for it. It is also attempted to propose a measurement index, that 

can be used for measuring ‘structural connectivity’ of any two dimensional system. 
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Figure 1.1 Relationship between types of vulnerability (Yu,1997) 

 

1.2 Need for the study. 

Whether a study is a philosophical one or practical one, the need for the study should 

be realised. The need to establish and measure the structural connectivity for structures 

is explained under this heading. The ability to measure the connectivity in the context 

of structural characteristics means that knowledge can be gained on how the members 

are connected together structurally as one unit and as multiple clusters locally. This 

will lead to discovery of weakly connected members - i.e. members which are most 

likely to be affected in case of any arbitrary loading. 

This feeds into the concept of robustness, which can be defined as an ability of a 

structure not to show disproportionate consequence for an experienced damage. This 

can be understood as the structure being able to resist any arbitrary force. If a structure 

is to resist any arbitrary force, then it should be wellformed or well-connected enough 

to be a stable structure irrespective of any loading. Since the analytical approaches in 

this research don’t consider the loading on the structure, it is possible to identify the 

weak links that are inherent to the form of the structure, irrespective of the loading. A 

case is made that if a structure is wellformed irrespective of the loading then it should 

perform better under any arbitrary loading - i.e. members of a structure can be 

configured in a manner that would make them well-connected enough to resist any 

disproportionate damage. This can be achieved by measuring the structural 

connectivity of that structure. 

  

Internal vulnerability 

Specific action related vulnerability 

with 

actions with 

time 

Overall vulnerability 
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1.3 Scope 

This research seeks to understand and explain the concept structural connectivity with 

respect to the structures. The scope of this research is limited to analysis of two-

dimensional systems. Two dimensional structures such as trusses and a two-

dimensional frame are analysed using different methods to determine their structural 

connectivity. Three different configurations of trusses having the same outline are 

analysed to find the most wellformed configuration. The frame is analysed as intact 

and with loss of columns in different locations to determine which column loss will 

most affect the connectivity of the structure. The selected analytical methods will yield 

indices for the structural connectivity of structures. Adaptability of such indices for a 

road network is also evaluated. 

Two limitations of the approach are acknowledged. The first is that these methods 

account only for the concept of connectivity. When particular structural forms are 

selected as the best on the basis of their connectivity, it may not mean that their 

structural performance such as load carrying capacity is the best too. The intention in 

this work is to highlight an aspect of structures that has been rather neglected, i.e. 

connectivity. But other aspects such as load capacity and constructability (or in the 

case of roads, motorability) will need to be taken into account too. The other limitation 

is that of validation. Although a particular index will suggest that one structure is 

“more connected” than another, how do we actually validate that? The approach used 

here is to use different methods and seek convergence in the selections made with 

respect to connectivity, with however varying degrees of success. It would also be 

difficult to validate our methods experimentally, since we define connectivity as a 

loading-independent property. The issue of validation clearly needs further study. 

 

1.4 Objectives 

In summary, the primary objectives for this study can be listed as; 

 Presenting a definition for the concept of ‘structural connectivity for 

structures’. 

 Proposing measurement systems which can assess the structural connectivity 

of the structures. 

 Applying the proposed measurement index to different types of assemblies, to 

assess the relevance of the said measurement systems. 

In order to achieve these primary objectives, a set of secondary objectives were 

derived. Those can be listed as; 

 Understanding the concept of connectivity and the structural connectivity, in 

their current application and context. 
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 Researching and analysing other concepts relating to structural connectivity. 

 Selecting two-dimensional assemblies to be analysed. 

 Finding the suitability of applying these concepts’ measures for assessing the 

structural connectivity for structures. 

 Finding networks similar to a two-dimensional structure and applying the 

proposed measurement to that system. 

 

1.5 Structure of the thesis 

‘Connectivity’ is one of the most widely used concepts that everybody interacts with 

at multiple levels on a daily basis. This is the main reason why the concept of structural 

connectivity feels intuitively familiar. The concept of (quantifiable) connectivity 

originates from the Graph theory; thus it is quite essential that the basic concepts in 

the Graph theory should be analysed in order to define the structural connectivity for 

structures. However, it should be noted that Graph theory is vast collection of concepts 

but our scope is limited to connectivity aspects of it. The connectivity with respect to 

the Graph theory is analysed in the Chapter 02. This will include analysis of the 

selected trusses using selected indices in Graph theory. 

As measuring the connectivity is important in several sectors such as networking, 

different indices have been created to do so. Though these are offshoots of the Graph 

Theory, each has its own defining characteristic due to their application. Concepts and 

relating indices which resonate with our definition of structural connectivity for 

structures were sought and identified. It should be noted that the indices found were 

modified to suit this research. Chapter 03 to Chapter 05 cover these concepts and 

measurement indices. 

The theory of structural vulnerability (Lu, 1999) is an important approach in analysing 

the form of the structure. This is the result of a series of research carried out at Bristol 

University, UK. This is an agglomerative approach which directly deals with the 

structural characteristics of the members as well as the joints. In Chapter 03, this 

approach is used to analyse the selected trusses. 

One of the main applications of the Graph theory is network analysis; this ranges from 

analysing the behavioural patterns of monkeys in a zoo to analysis of World Wide 

Web. One of the notable approaches in network analysis was proposed by M.E.J. 

Newman (2004). This is a decompositive approach that takes a network and keeps 

removing the weak links to find strong communities within it. Analysis of the selected 

trusses using this theory is presented in Chapter 04. 

In Chapter 05, the concept of Route Structure Analysis (RSA) is used to analysis the 

trusses. This was first introduced by Stephan Marshal (2003) to measure the 
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structuredness of road networks. In this approach, overall connectivity as well as the 

relative connectivity of each element can be assessed. 

It should be noted that through Chapter 03 to 05, only the trusses will be analysed. The 

analysis of the selected frame using all of the approaches is carried out in Chapter 06. 

An idealised Sri Lankan A-Level road network is analysed for structural connectivity 

in Chapter 07. Finally, Chapter 08 offers a summary of all discussions in the previous 

chapters. The conclusions of this research are given in Chapter 09. 

The nature of this study is highly derivative, thus the traditional structure of reporting, 

which includes separate sections for Literature review, Methodology and Results, is 

dropped in favour of writing all the above components together for each concept in a 

separate chapters. For example, Chapter 02 includes the following in a single chapter. 

 Introduction to Graph theory. 

 General concepts in the Graph theory. 

 General indices in the Graph theory. 

 Results of indices for the selected structures. 

 Brief discussion on the results. 

Since most of the discussed concepts are not widely known to the engineering 

community, this format will enable the reader to absorb the concept with relative ease. 

All the chapters will have a sample calculation explaining the concept. 

 

1.6 Introduction to structural connectivity 

The term structural connectivity is an intuitive one. In a layman’s terms, it can be 

explained as ‘how the structure is connected together’. However, there isn’t a 

definition for structural connectivity in the context of structures. Currently the term 

structural connectivity is used to explain the connections in the brain’s structure for 

example. 

In order to understand the term in context of structures, the term is divided and 

analysed separately (Figure 1.2). The first half of the term, structure, is self-

explanatory; some structural configurations have to be selected for the analysis. This 

is further explained in Section 1.7. The analysis of the connectivity is the crucial one 

under investigation here. Since, a firm definition for the structural connectivity of 

structures is not available, it is acceptable to use measures of similar concepts to 

understand the said concept.  

Analysing Graph theory will provide the basic understanding about connectivity as it 

would introduce the terms associated with connectivity as well as most of the concepts 

relating to it. General idea of connectivity is measured by assessing how many vertices 

or edges need to be removed to separate a graph. But some measures seek to signify 



Structural Connectivity of Two-Dimensional Assemblies Chapter I 

Introduction 

 

6 

how a graph is closely connected within itself. From this analysis, a definition for the 

structural connectivity can be formulated.  

 

Figure 1.2 Decomposition of the term Structural Connectivity 

Analysis of the form of the structure is the main aspect of the theory of structural 

vulnerability. In this approach structural members are to from clusters that will be most 

tightly connected among themselves than the members outside it. Then the clusters are 

expanded by adding more members to form bigger clusters that would result in the 

structure itself. This analysis takes the structural characteristics of the members as well 

as the joints into account in determining the ‘wellformedness’ of the structure. Due to 

this, a slightly modified version of this Bristol Approach is proposed as the index for 

the structural connectivity for structures. However, this can be validated by comparing 

the analysis results with some other methods. For this Newman’s Method and Route 

Structure Analysis (RSA) are used. 

Newman’s Method is a network analysis tool that is used to find the strong 

communities in a given network. This analysis finds the most in-between link in the 

network by calculating the shortest paths in the network. A new quantification of the 

removal of the identified weak link is proposed in the research. This index is used to 

measure the form of the network. 

The Route Structure Analysis, which was developed by Stephan Marshall, tries to find 

the structuredness of a road network. This approach has little to do with Graph theory, 

which makes it an important tool of comparison in this research. 

1.7 The Structure 

The scope of this study is limited to two dimensional systems. The main two 

dimensional structural systems considered in this research are; 

 Trusses 

 Frames 

Structural 
Connectivity

Structure Connectivity
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Three types of trusses are selected for comparative analysis. These have the same 

outline and only differs in the internal configuration of the members. The general 

arrangements of the structures is given in Figure 1.3. 

 

Figure 1.3 General Footprint of the truss 

The different configuration of the trusses and their name IDs are given in Figures 1.4 

to 1.6. The number of joints and number of members are kept same for all three 

configurations. Here all the members are assumed to have axial rigidity of unity. But, 

in real life, the chord members usually will have higher axial rigidity than the internal 

members. In order to account for that, a separate analysis is performed on similar 

trusses with chord members having double and four times the axial rigidity of internal 

members.  

 

Figure 1.4 T1-Fractal Truss 
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Figure 1.5 T2- Warren Truss 

 

 

Figure 1.6 T3-Fan-Type Truss 

The concept of a fractal can be explained as a repeating pattern that is self-similar 

across different scales. The truss T1 is created by using this concept. The other two 

trusses, Warren and Fan, are basic forms of most commonly used trusses. 

The frame selected has four bays and five floors. The columns are of 400mm*400mm 

and beams are of 300mm*400mm (width x depth) and both are made of C30 concrete. 

The configuration of the structure is given in Figure 1.7. The member damage 

scenarios considered for the analysis are as follows; 

 Ground floor- Side column removal  (GSR) 

 Ground floor- Middle column removal (GMR) 

 Middle floor- Side column removal  (MSR) 



Structural Connectivity of Two-Dimensional Assemblies Chapter I 

Introduction 

 

9 

 Middle floor- Middle column removal (MMR) 

 Top floor- Side column removal  (TSR) 

 Top floor- Middle column removal  (TMR) 

 

Figure 1.7 Frame object 

Analysis of the selected structures along with the selected methods can be tabulated as 

shown in Table 1.1. The road network is described in Chapter 07. 

Table 1.1 Summary of Analysis 

Structure 
Method Graph 

theory 

Bristol 

Approach 

Newman’s Method RSA 

(Unweighted) Unweighted Weighted 

T1 ✔ ✔ ✔ ✔ ✔ 

T2 ✔ ✔ ✔ ✔ ✔ 

T3 ✔ ✔ ✔ ✔ ✔ 

Frame ✖ ✔ ✔ ✖ ✔ 

Road ✖ ✖ ✔ ✖ ✔ 
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2 Graph Theory 

2.1 Introduction to Graph theory 

In this chapter, the concepts of Graph theory relevant to this study are introduced and 

then the analysis for the structures is carried out. In order to analyse the structure as a 

graph, it has to be first converted in to a graph model. The process called ‘Object 

oriented modelling’ is used for this process. This is basically idealising the structure 

in to a skeletal form of itself. The joints and members of the structure will be converted 

in to vertices and edges respectively. Since this research focuses on two dimensional 

structures, this process is very straightforward. The structural information of the 

members are converted as the weight of the edge. The structural information of the 

joints are stored as the type of the vertices. Summary of the objected oriented 

modelling is given in Table 2.1. The terminology is explained in Section 2.2 & 2.3. 

The concept of weighted analysis is presented in Section 2.4. Results from Graph 

theory indices are given in Section 2.5 followed by the discussion in Section 2.6. 

Table 2.1 Comparison of terminology 

Structural terminology Mathematical (Graph) terminology 

Structural system Graph model  

Joint Vertex 

Member Edge 

Structural Cluster Subgraph 

 

2.2 Terms in Graph theory 

The terms in the Graph theory can be found in many text books and online resources 

such as Handbook of Graph theory by Gross J.L (2003), Wikipedia-Graph theory, 

2020 and many more. 

A Graph, “G=(V,E), consists of two sets, where, V is a set of vertices and E is a set of 

pairs of distinct vertices called edges. The graph is finite if sets V, E are both finite.”  

“If all edges of the graph can be represented by ordered pairs of vertices then the 

graph can be classified as a directed graph”, otherwise the graph is identified as an 

undirected graph. An undirected graph can be treated as a two way directed graph. 

In this research, all the graphs are finite and undirected. 

Adjacency matrix: One of the major inputs of our analysis and the easiest 

representation of a graph is an adjacency matrix. For a graph having n number of 
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vertices, the adjacency matrix, A, will be of nxn size and can be given as shown in 

equation 2.1. 

𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦 𝑚𝑎𝑡𝑟𝑖𝑥, 𝐴 = {
𝑎𝑖𝑖 = 0
𝑎𝑖𝑗 = 1
𝑎𝑖𝑗 = 0

; 𝑖𝑓 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑
; 𝑜𝑡ℎ𝑒𝑟  𝑤𝑖𝑠𝑒                         

}   equation 2.1 

 

An example is given in Figure 2.1, 

  

Figure 2.1 Example for simple adjacency matrix 

If aii=1, there exists a self-loop in the joint i. In this study self-loops won’t be analysed. 

If aij>1, there exists more than one edge parallel to each other connecting same pair of 

vertices i, j. This concept, which is called as multigraph, is used in analysing the 

weighted graph. 

  

Figure 2.2 Example for multi-graph 

Subgraph: “A graph G’=(V’,E’) is a subgraph of G=(V,E) if V’ and E’ are 

respectively subsets of V,E such that an edge (vi,vj) is in E’ only if vi,vj are in V’.” 

A path in graph is defined as “a finite alternating sequence of vertices and edges”. 

This can be also represented by sequence of vertices as well.  

“The first and last vertices will be named as the terminal vertices and the rest shall be 

identified as the interior vertices. All the vertices shall be distinct” (Wu, 1991).  
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Length of the path: “Number of links in the path is the length of the path”. 

Degree of a vertex: “Degree of the vertex is the number of edges incident in the 

particular vertex”. 

Degree matrix: “Degree matrix is a diagonal matrix which stores the information of 

number of edges connected to each vertex (degree of vertex).” 

For a graph with n vertices, degree matrix would be nxn size can be given by equation 

2.2. 

𝐷𝑒𝑔𝑟𝑒𝑒 𝑚𝑎𝑡𝑟𝑖𝑥, 𝐷 = {
𝐷𝑖𝑖 = 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑒𝑥 𝑖
𝐷𝑖𝑗 = 0                                          

}    equation 2.2 

The connectivity in Graph theory is defined as “The minimum number of elements 

(vertices or edges) that need to be removed to disconnect the remaining nodes from 

each other”.  

Basically this is a decompositive measure, we start to remove elements and check at 

what point the graph is broken into its subgraphs. The Figure 2.3 shows two graphs 

which ban be broken in to their subgraphs by removing the highlighted elements. 

    

(a) Edge removal     (b) Vertex removal 

Figure 2.3 Graph connectivity through removed elements 

Connected Graph: “A graph G (V,E) is said to be connected if for every pair of 

vertices u,v (є V), there exists a path from u to v.” 

Connected Component: “A connected component of an undirected graph is a sub 

graph in which any two vertices are connected to each other by paths, and which is 

connected to no additional vertices in the super graph” (Figure 2.4). 
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Figure 2.4 Graph of three connected components 

 

One of the main theorems in the Graph theory with respect to the connectivity is the 

Menger’s theorem (1927). The definition of Edge connectivity and Vertex 

connectivity are given as follows; 

Edge Connectivity: “Let G be a finite undirected graph and x and y two distinct 

vertices. Then the size of the minimum edge cut for x and y (the minimum number of 

edges whose removal disconnects x and y) is equal to the maximum number of pairwise 

edge-independent paths from x to y.” 

Vertex Connectivity: “Let G be a finite undirected graph and x and y two nonadjacent 

vertices. Then the size of the minimum vertex cut for x and y (the minimum number of 

vertices whose removal disconnects x and y) is equal to the maximum number of 

pairwise vertex-independent paths from x to y.” 

Cluster analysis is defined as “the methodology which optimizes intra-group 

homogeneity in a given population.”  

In simple terms, the cluster analysis seeks to create groups within the given population, 

in such way that population contained in a group will have more in common within 

the group rather than the population of other groups. In other words, intra-group 

connections will be very high compared to inter-group connections. 

Because of the nature of this analysis, it is used in various fields such as engineering 

networks, environmental analysis, big data analysis, artificial intelligence and many 

more. There are several techniques in the clustering analysis, such as; 

 Hierarchical techniques 

 Optimisation partitioning techniques 

 Density or mode seeking techniques 

 Clumping techniques 
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Though there are several techniques, the basic idea of clustering analysis is simple. It 

can be broken down like following; 

“A set of N individuals, all having an attribute set, will be grouped into n classes 

depending on their attribute set” 

The connections between the individuals is the main attribute of this analysis, thus 

Clustering analysis is one of the tools that will be employed in this study. Here we are 

mainly concerned with hierarchical clustering analysis. This can be broken in to two 

major types based on the clustering method. They are; 

 Agglomerative method: Creates many tightly connected clusters and then 

adds them together to make bigger clusters. 

 Decompositive method: Removes weakly connected members/ intra-group 

connections to create big clusters, then keeps breaking them down into small 

tightly connected clusters. 

Both of these methods are used in this study.  

Clusters: “A sub-division in a population/ sub-graph in a graph which has more 

connections within the cluster than outside it.”  

This can be regarded as the subgraphs within a structure that is represented as a graph. 

 

2.3 Graph connectivity measures 

Based on the connectivity concepts and theorems discussed above, several 

connectivity measures have been developed. 

Strength of a Graph: “The strength of an undirected graph corresponds to the 

minimum ratio edges removed/components created in a decomposition of the graph in 

question.” 

An example of this is given in Figure 2.5, 

 

Figure 2.5 Example for Strength of Graph 
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Based on Figure 2.5, 

Number of edges removed   =4 

Number of total components after removal =3 

Components created    =3-1 

      =2 

Strength of the graph    =4/2 

      =2 

Graph Toughness: “A graph G is said to be t-tough for a given real number t if, for 

every integer k > 1, G cannot be split into k different connected components by the 

removal of fewer than tk vertices.” 

An example is given in Figure 2.6 

 

Figure 2.6 Example for Graph Toughness 

From Figure 2.6, it can be noted that when the highlighted vertices are removed four 

different connected components are created. 

Number of components, k  =4 

Number of removed vertices, tk =4 

Graph toughness, t   =1 

Clustering coefficient: 

Clustering coefficient is measured in two contexts, as global clustering coefficient 

(equation 2.3) and average local clustering coefficient (equation 2.5). The global 

clustering coefficient is based on triplets of nodes. A triplet is a structure of three 

connected nodes. 

𝑇ℎ𝑒 𝑔𝑙𝑜𝑏𝑎𝑙 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡, 𝐶 =
3∗𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑠 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠
 

         equation 2.3 
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A triangle would have three connected triplets. This measures checks the scenario of 

whether X and Z are connected given that both are connected to Y. The local clustering 

coefficient (equation 2.4) is measured for each vertex in the graph and then the average 

of those clustering coefficient can be used to measure the connectivity of the graph. 

𝑇ℎ𝑒 𝑙𝑜𝑐𝑎𝑙 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡, 𝐶𝑖 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑣𝑒𝑟𝑡𝑒𝑥 𝑖

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑣𝑒𝑟𝑡𝑒𝑥 𝑖
 

         equation 2.4 

𝑇ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑖, 𝐶 =
1

𝑛
∗ ∑ 𝐶𝑖𝑛

𝑖=1       equation 2.5 

where n is the number of vertices in the graph 

Algebraic connectivity: This is the value of the second smallest eigen value of the 

Laplacian matrix of a graph, G. Laplacian matrix is the matrix representation of a graph 

created by equation 2.6.  

𝐿 = 𝐷 − 𝐴        equation 2.6 

where, L =Laplacian matrix 

 D =Degree matrix 

 A = Adjacency matrix. 

Geodesic path/ Shortest path: “The path between two vertices which has the 

minimum length.” 

As stated in Section 2.2, the distance is measured as the number of edges in that path. 

Eccentricity of a vertex: “The maximum geodesic distance between a given vertex 

and all other vertices in the graph.” 

Diameter of a Graph: “The maximum distance between any pair of vertices in the 

graph. This can be also given as the maximum eccentricity of any vertex.” 

Radius of a Graph: “The minimum eccentricity of any vertex in graph.” 

Centrality measures: The set of analysis methods used to identify most important 

vertices in a graph. The type of centrality measures are; 

 Closeness centrality 

 Betweenness centrality 

 Eigenvector centrality 

 Degree centrality 

 Katz centrality 

 Harmonic centrality 
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The Closeness centrality: This measures how much the nodes are central in a 

connected graph. This is done by calculating average of the lengths of geodesic paths 

to all other vertices in the graph. Equation to calculate the closeness centrality of a 

vertex is given in equation 2.7. Average of every vertex’s closeness centrality should 

give an idea of how much the graph is tightly connected (equation 2.8). 

𝐶(𝑥) = 𝑁/∑ 𝑑(𝑦, 𝑥)𝑦       equation 2.7 

where, C(x)  = closeness centrality of vertex x 

 N = number of vertex in a graph 

 d(y,x) =distance between the vertices x and y 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶 =
∑ 𝐶(𝑥)𝑥

𝑁
⁄       equation 2.8 

 

The Betweenness centrality: This measures how much a vertex is in between 

different groups of vertices. This is quantified by measuring how many shortest paths 

are passing through that specific vertex, when the shortest paths from all nodes to all 

nodes are calculated. This is further explained in Newman’s Method in Chapter 4. 

2.4 Weighted Analysis 

The weight is a numerical value assigned as a label to a vertex or edge of a graph. This 

can be made to represent the structural characteristics of the member. Normally, the 

weighted analysis only considers the length of the edge. However, to present the 

measures in the context of structural terms, member’s local stiffness can be used as the 

weight.  

The weighted adjacency matrix is defined as shown in equation 2.9; 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦 𝑚𝑎𝑡𝑟𝑖𝑥, 𝐴 =

{
𝑎𝑖𝑖 = 0
𝑎𝑖𝑗 = 𝑤
𝑎𝑖𝑗 = 0

; 𝑖𝑓 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑
; 𝑜𝑡ℎ𝑒𝑟  𝑤𝑖𝑠𝑒                         

 𝑏𝑦 𝑒𝑑𝑔𝑒 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡 𝑤}  equation 2.9 
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Figure 2.7 Example for weighted graph 

It can be observed that multigraph from Figure 2.3 and weighted graph from Figure 

2.7 has same adjacency matrix. This means that weight of an edge can be represented 

as multiple parallel edges connecting the same vertices. This is used in the analysis of 

networks in Newman’s method. 

How the assigned weights affects the analysis and the results, depends on the analysis 

method. Weighted closeness centrality calculates the shortest paths considering the 

summation of weights as the length of each paths. However, The Newman method 

calculates the shortest paths as in unweighted method and uses the weights in the later 

part of the analysis (see Chapter 04). In the closeness centrality measure, the stiffness 

should be given a reciprocal relationship with the weight in order to make sure 

members of high stiffness (edges representing them) is given a higher priority in 

clustering. 
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2.5 Results 

Section 2.5.1 shows the truss forms as represented in the software used for the analysis. 

The unweighted analysis results are given in Section 2.5.2 followed by the weighted 

analysis results in Section 2.5.3. 

2.5.1 Truss forms 

The analysis is carried out in the software package “MATLAB”. The vertical scale of 

the results are modified to showcase the trusses as equilateral triangles for easier 

presentation. The truss forms given as the output of the programme are given in Figure 

2.8. 

 

(a) Fractal truss 

 

(b) Warren truss 
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(c) Fan type truss 

Figure 2.8 MATLAB representation of trusses 
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2.5.2 Unweighted Analysis 

The closeness centrality results from the unweighted analysis are given in Figure 2.9 

and the betweenness centrality results are presented in Figure 2.10. 

 

(a) Fractal truss 

 

(b) Warren truss 

 

(c) Fan type truss 

Figure 2.9 Results of unweighted closeness centrality analysis 
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(a) Fractal truss 

 

(b) Warren truss 

 

(c) Fan type truss 

Figure 2.10 Results of unweighted betweenness centrality analysis 
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2.5.3 Weighted Analysis 

Results from the weighted closeness centrality measures are given in Figure 2.11 and 

Figure 2.12. Figure 2.11 shows the case where all member axial rigidity equals unity. 

Figure 2.12 shows the case where chord member axial rigidity is twice the web 

member axial rigidity. 

 

(a) Fractal truss 

 

(b) Warren truss 

 

(c) Fan type truss 

Figure 2.11 Results of weighted closeness centrality analysis for AE=1 
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(a) Fractal truss 

 

(b) Warren truss 

 

(c) Fan type truss 

Figure 2.12 Results of weighted closeness centrality analysis for chord AE=2 
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A summary of all the results is given in Table 2.2. 

Table 2.2 Summary of results 

Indices T1 T2 T3 

Algebraic connectivity  0.5703 0.2158 0.3352 

Diameter 4 7 5 

Graph radius 3 4 3 

Average shortest path 2.3429 2.9333 2.4857 

Graph toughness 1 1 1 

Strength of the graph 4 3 3 

Clustering coefficient, C 0.2353 0.2708 0.2308 

Average Ci, clustering coefficient 0.5667 0.5889 0.5644 

Closeness centrality- unweighted 0.0309 0.0253 0.0295 

Closeness centrality- weighted (AE) 0.0251 0.0248 0.0249 

Closeness centrality- weighted (2AE) 0.0382 0.0429 0.0410 

 

2.6 Discussion 

In this chapter the selected truss forms were analysed using the indices for connectivity 

found in Graph theory. Though weighted analysis was carried out, the most important 

insight from this chapter should be the unweighted analysis. The unweighted analysis 

sees the structure just as a graph in its skeletal form. This gives us some idea what 

would be the best form of the truss without even considering the properties of the 

members, and the main purpose of the chapter is to introduce basic concepts of Graph 

theory, which are used in the following chapters. The betweenness centrality measure, 

which was introduced in this chapter serves as the introduction to Newman’s Method, 

and discussed in the appropriate chapter. 

The best configuration of the truss depending on the Graph theory indices is 

highlighted in the Table 2.3, which is a modified version of Table 2.2. 

Table 2.3 Selecting truss configuration 

Indices T1 T2 T3 Selected 

truss 

Algebraic connectivity  0.5703 0.2158 0.3352 T1 

Diameter 4 7 5 T1 

Graph radius 3 4 3 T1& T3 

Average shortest path 2.3429 2.9333 2.4857 T1 

Graph toughness 1 1 1 T1, T2 & T3 

Strength of the graph 4 3 3 T1 

Clustering coefficient, C 0.2353 0.2708 0.2308 T2 

Average Ci, clustering coefficient 0.5667 0.5889 0.5644 T2 

Closeness centrality- unweighted 0.0309 0.0253 0.0295 T1 

Closeness centrality- weighted (AE) 0.0251 0.0248 0.0249 T1 

Closeness centrality- weighted (2AE) 0.0382 0.0429 0.0410 T2 
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It can be said that for a closely knitted graph, the indices like diameter of graph, radius 

and the average shortest paths will be less, as they show how a graph is closely formed. 

From these indices, it can be seen that Truss T1 is closely formed. This is also reflected 

in the closeness centrality measure as shortest paths are used in calculation of the 

centrality measures. But the other trusses also have very similar values of closeness 

centrality. The higher Algebraic connectivity relates to higher connectivity within the 

truss and truss T1 is selected by this criterion.  

Having a higher value for the strength of the graph means that higher number of edges 

needs to be removed to separate the graph; and truss T1 is selected in this category as 

well. But the truss T2 is selected in both clustering coefficient scenarios by having 

higher values for them. It can be clearly observed that, most of the selected Graph 

theory measures indicate that the fractal truss configuration (truss T1) has better 

connectivity. The results also show that the Warren truss (truss T2) is more 

triangulated than the other two trusses.  

The change in weighted centrality measures as the chord member axial rigidity are 

doubled, should be given special consideration. The important thing is that all of the 

truss closeness centrality measures increases with the increased axial rigidity, 

indicating that weighted analysis can actually represent some structural sense. It can 

be deduced that T2 benefits most from this scenario. This will be further explored in 

the following chapters. 

Analysing the theoretical background and the results of the Graph theory gives a clear 

understanding about structural connectivity. At its core, connectivity always relates to 

the member/vertex whose removal disconnects the graph. This can be translated 

directly in to the structural terms. However, it should also be understood that that there 

can be strong formations of members within the structure, usually connected by a 

member/vertex that would define the connectivity of the structure-i.e. weakly 

connected member. From this we can define structural connectivity in terms of 

structure as; 

“In a field of a finite number of joints/nodes/points of interests connected by finite 

number of members/paths/connections, ‘structural connectivity’ seeks to not only 

assess how strongly the members are connected at a given joint but also how strongly 

the groups of members are connected to each other.” 
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3 Bristol Approach 

3.1 Introduction 

The Bristol approach was developed at Bristol University, UK. One of the major 

components of this approach is the Theory of structural vulnerability (Lu, 1999). This 

theory tries to quantify the vulnerability of a structural system only with respect to its 

structural form and connectivity using the characteristics of members and joints. Many 

new concepts were defined in the process of deriving of this theory. These concepts 

are also based on the Graph theory. Comparison between the terms of Graph theory 

and the Bristol Approach is shown in the Table 3.1. 

Table 3.1 Comparison of Terms 

Graph theory Terms in Bristol Approach 

A graph A structure 

Sub-graph Sub-structures/ Clusters 

Edges Members 

Vertices Joints 

Adjacency matrix Association matrix 

Paths Structural paths 

Cycles Structural loops 

Degree of vertices Degree of joints 

 

These terminology and the basic concepts of the Bristol approach are explained in the 

Section 3.2. The modifications made to the original approach to suit this research are 

also discussed after introducing the concepts. The clustering process is explained in 

Section 3.3. Section 3.4 & 3.5 details on measurement indices used in the Bristol 

approach. The results of the analysis is given in Section 3.6. Section 3.7 presents the 

discussion on results. 

3.2 Basic Concepts  

3.2.1 Introduction to the concepts 

These basic concepts are taken from the researchers that defined the Bristol approach 

(Wu 1991, Yu 1997). 

“A structural cluster is a subset of the graph model in which the objects are in some 

sense more tightly connected to each other than to other objects outside of the cluster.”  

“A structural ring is a sequence of a maximum of three connected clusters which can 

resist an arbitrary set of applied forces. It is the basic unit of a two-dimensional 

structure.”  
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The concepts of structural cluster and structural ring are the most important part of this 

research, which reflects the concept of clusters in the Graph theory. 

“A leaf cluster (or a primitive cluster) contains a single structural member and 

adjacent joints.” 

“A branch cluster is a cluster that contains more than one structural member. A 

structural ring is a branch cluster.” 

In this study the structural rings are taken as the leaf cluster and the combination of 

clusters are treated as the branch clusters. This is further explained in the Section 3.3 

of this chapter. 

“Reference cluster is normally the ground. It is the cluster from which the structure 

has to be separated for the total failure scenario to occur.”  

The Bristol Approach deals with the damage demand (i.e. effort needed to cause 

failure) of every failure scenario leading to the complete failure. However, this 

research is mainly concerned with the initial failure, thus this concept is not explored 

in this research. 

“Root cluster contains the entire structure including the ground.” 

In this research, the concept of root cluster is not explored in detail as reference 

clustering is not considered for the analysis. 

3.2.2 Wellformedness 

“Wellformedness of a cluster Q is a measure of the form of a structure, which is closely 

related to the principal stiffness coefficients of the joints, the type of joint, the stiffness 

of the members and the configuration of the members in the structure” (Yu 1997) 

For example, let’s look at the three different triangles having the same height as shown 

in Figure 3.1. From intuition, it can be said that the equilateral triangle is more 

wellformed than the other two isosceles triangles. The procedure given in the Bristol 

approach can be followed to quantify this intuition. Initially, the stiffness of the joints 

needs to be found. 

 

(a) Equilateral triangle 
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(b) Isosceles triangle with side angle of 45⁰   

 

(c) Isosceles triangle with side angle of 30⁰ 

Figure 3.1 Triangles differing in side angle with same height 

3.2.3 Joint Stiffness (qi) 

In order to understand the joint stiffness, the stiffness matrix of a joint have to be 

derived with respect to a member. The derivation of this is explained in detail below. 

The coordinate system used for this derivation is given in Figure 3.2 and the 

displacement and force vectors along this coordinate system in Figure 3.4 and 3.5 

respectively. The local coordinate system with respect to the member orientation is 

denoted by X’, Y’ and the global coordinate system is denoted by X, Y. The 

displacement vectors along the local coordinate system are given by u’, v’ whereas the 

displacement vectors along the global coordinate system are given by u, v. Similarly 

the force vectors along the local and global coordinate system are given by f’and f 

respectively. 

 

Figure 3.2 Coordinate system for the member 
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Figure 3.3 Displacement vectors for the joint i 

The displacement along the local coordinates (x', y’) is given by equation 3.1 and 3.2. 

𝒖′ =  𝒖 𝒄𝒐𝒔(Ɵ) +  𝒗 𝒔𝒊𝒏(Ɵ)       equation 3.1 

 𝒗′ =  −𝒖 𝒔𝒊𝒏(Ɵ) +  𝒗 𝒄𝒐𝒔(Ɵ)      equation 3.2 

The equations 3.1 & 3.2 can be combined in to the matrix form as shown in equation 

3.3. 

{
𝒖′

𝒗′
} = [

𝐜𝐨𝐬(Ɵ)     𝐬𝐢𝐧(Ɵ)

− 𝐬𝐢𝐧(Ɵ)    𝐜𝐨𝐬 (Ɵ)
] {
𝒖
𝒗
}      equation 3.3 

But since the truss members have only axial forces, the v' component is always zero. 

Thus the matrix can be rewritten as shown in equation 3.4. 

{𝒖′} = [𝐜𝐨𝐬(Ɵ)     𝐬𝐢𝐧(Ɵ)] {
𝒖
𝒗
}      equation 3.4 

The deformation/elongation of the member due to the load is given by e’ and e in the 

local and global coordinate systems respectively. The matrix e’ and e are related by 

matrix [C] which is the transformation matrix. 

{𝒆′} = [𝑪]{𝒆}        equation 3.5 

 

Figure 3.4 Force vectors for joint i 

Similarly force in the member along its local axis can be written as shown in equation 

3.6. Here the forces along global coordinates are denoted by fu & fv. 
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{𝒇𝒖′} = [𝐜𝐨𝐬(Ɵ)     𝐬𝐢𝐧(Ɵ)] {
𝒇𝒖
𝒇𝒗
}      equation 3.6 

We can simplify the equation 3.6 into equation 3.7 by substituting the transformation 

matrix. 

{𝒇′} = [𝑪]{𝒇}        equation 3.7 

By Hook's law given in equation 3.8; [k] is the stiffness matrix relating the axial 

deformation of the truss member to force in the member. For the truss member, 

stiffness depends on the axial rigidity and the length of the member as shown in 

equation 3.9. 

{𝒇 } =  [𝒌]{𝒆}        equation 3.8 

In local coordinates, for a member j 

{𝒇′} =  [
𝑬𝑨

𝑳
] {𝒆′}       equation 3.9 

Substituting with equation 3.7 and 3.5, we can get equation 3.10. 

[C ]{ f }=[EA

L ]
j

[C ]{e}
      equation 3.10 

We can multiply both side of the equation 3.10 by [C]-1 to arrive at the equation 3.11.  

{ f }= [C ]− 1[EA

L ]
j

[C ]{e}
      equation 3.11 

We can simplify this equation into equation 3.12 by substituting equation 3.13;where 

[K]ij is the component stiffness matrix of member j w.r.t the joint i.  

{ f }= [K ]ij {e}         equation 3.12 

[K ]ij= [C ]
− 1[EA

L ]
j

[C ]
      equation 3.13 

[K ]ij=[cos(Ɵ)
sin(Ɵ)][EA

L ]
j

[cos(Ɵ) sin(Ɵ)]
 

[K ]ij=[EA

L ]
j
[cos(Ɵ)
sin(Ɵ)][cos(Ɵ) sin(Ɵ)]

 

This can be solved as equation 3.14. 
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[K ]ij=[EA

L ]
j
[ cos

2
(Ɵ) cos(Ɵ)sin(Ɵ)

cos(Ɵ)sin(Ɵ) sin
2
(Ɵ) ]

   equation 3.14 

After finding this component of the stiffness matrix, we can find the joint stiffness of 

joint i. The computation of the joint stiffness for joint ‘i’ is given in equation 3.15 

where n is the number of joints connected at the joint i. 

𝒒𝒊 = |∑ [𝑲]𝒊𝒋
𝒋=𝒏
𝒋=𝟏 |       equation 3.15 

Wellformedness of the structural ring/cluster is calculated by averaging the joint 

stiffness of the joints connected to that structural ring. The wellformedness of a 

structural ring/cluster can be calculated as shown in equation 3.15, where N is the 

number of members connected in the structural ring / cluster. 

𝑸𝒊 =
∑ 𝒒𝒊
𝒊=𝑵
𝒊=𝟏

𝑵
        equation 3.16 

Let's take the examples that were presented above and calculate the wellformedness of 

each triangle. Here the axial rigidity (AE) of the members is taken as unity, and the 

equation for the joint stiffness can be written as 

𝑸𝒊 =
Ʃ 𝐬𝐢𝐧𝟐(Ɵ)

𝑳
∗
Ʃ𝒄𝒐𝒔𝟐(Ɵ)

𝑳
− Ʃ(

𝒔𝒊𝒏(Ɵ)∗𝒄𝒐𝒔(Ɵ)

𝑳
 )
𝟐

    equation 3.17 

The calculation of wellformedness of the selected triangles is shown in Tables 3.2 to 

3.4. 

 

Case (1): Equilateral triangle 

Table 3.2 Wellformedness calculation for equilateral triangle 

Joint Member 

Angle from 

global axis 

(Ɵ) 

Length of 

member 

(L) sin(Ɵ)^2 cos(Ɵ)^2 

sin(Ɵ)* 

cos(Ɵ) 

Joint 

Stiffness 

A AB 0 2.31 0.00 0.43 0.00   

  AC 60 2.31 0.32 0.11 0.19 0.14 

                

B BA 180 2.31 0.00 0.43 0.00   

  BC 120 2.31 0.32 0.11 -0.19 0.14 

                

C CA 240 2.31 0.32 0.11 0.19   

  CB 300 2.31 0.32 0.11 -0.19 0.14 

Wellformedness 0.14 
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Case (2): Isosceles triangle (45' side angle) 

Table 3.3 Wellformedness calculation for isosceles triangle (45⁰ side angle) 

Joint Member 

Angle from 

global axis 

(Ɵ) 

Length of 

member 

(L) 

sin(Ɵ)^

2 cos(Ɵ)^2 

sin(Ɵ)* 

cos(Ɵ) 

Joint 

Stiffness 

A AB 0 4.00 0.00 0.25 0.00   

  AC 45 2.83 0.18 0.18 0.18 0.04 

                

B BA 180 4.00 0.00 0.25 0.00   

  BC 135 2.83 0.18 0.18 -0.18 0.04 

                

C CA 225 2.83 0.18 0.18 0.18   

  CB 315 2.83 0.18 0.18 -0.18 0.13 

Wellformedness 0.07 

 

Case (3): Isosceles triangle (30' side angle) 

Table 3.4 Wellformedness calculation for isosceles triangle (30⁰ side angle) 

Joint Member 

Angle from 

global axis 

(Ɵ) 

Length of 

member 

(L) sin(Ɵ)^2 cos(Ɵ)^2 

sin(Ɵ)* 

cos(Ɵ) 

Joint 

Stiffness 

A AB 0 6.93 0.00 0.14 0.00   

  AC 30 4.00 0.06 0.19 0.11 0.01 

                

B BA 180 6.93 0.00 0.14 0.00   

  BC 150 4.00 0.06 0.19 -0.11 0.01 

                

C CA 210 4.00 0.06 0.19 0.11   

  CB 330 4.00 0.06 0.19 -0.11 0.05 

Wellformedness 0.02 

 

The wellformedness of the triangles from the above calculation are tabulated in Table 

3.5. 
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Table 3.5 Wellformedness of different triangles with changing side angles 

Side angle of the 

triangle in degrees 

Wellformedness 

of the triangle 

60 0.14 

45 0.07 

30 0.02 

 

As judged intuitively, the equilateral triangle is shown to be the most wellformed of 

three triangles.  

 

3.3 Clustering 

3.3.1 Introduction 

In a Truss, the triangle can be regarded as the basic form of the cluster (structural ring). 

In the original Bristol Approach, the clustering process is divided into three different 

stages. The first stage which is identified as ‘structural clustering stage I (initial 

clustering stage)’is where we do the clustering in a manner that the wellformedness of 

the resultant cluster always increases without the addition of the reference cluster. In 

the ‘structural clustering stage II (secondary clustering stage)’, the wellformedness of 

the resultant cluster is allowed to decrease, but addition of reference cluster is not 

permitted at this stage. In the third and final stage, the reference cluster is added to the 

resultant cluster from stage II, and this is identified as the reference clustering stage. 

In Wu’s work (1991), the wellformedness of all the basic units (a triangle) are 

calculated prior to initiating the clustering process. Later researchers initiated the 

clustering from the most wellformed basic units and allowed addition of members to 

that cluster. However, this will showcase behaviour similar to prestige attachment 

centrality; for example people access established webpages more often and flights 

prefers to go through most renowned airports. In this study, it was decided to adopt 

Wu’s rendition of the Bristol approach. Due to this concepts as leaf cluster and branch 

cluster are different from that presented in ‘A Theory of structural vulnerability’ 

(Lu,1999). In our research, a structural ring is considered as the leaf cluster as opposed 

to the members. Due to this, the ‘structural ring’ is redefined as a sequence of a 

maximum of three connected members which can resist an arbitrary set of applied 

forces.  

Since we are concerned with the initial failure or the penultimate cluster in this process, 

we are not concerned with stage of reference stage clustering. 
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3.3.2 Clustering criteria 

The original Bristol approach (Wu,1991) states that, the selection of a cluster as a leaf 

cluster (most tightly connected cluster) or selection of a cluster for addition to the 

existing cluster is governed by the following factors. For the selection, the maximum 

of these factors were be used in the following order of preference 

 Wellformedness 

 Minimum damage demand 

 Nodal connectivity 

 Distance from reference 

 Free choice 

We have not considered the concept of the damage demand in this research. The 

damage demand is used to measure the vulnerability of the structure in the original 

approach. In this research it was decided to use an index called “Relative Separateness” 

to measure the loss of wellformedness. Another modification was made to the original 

approach with regard to symmetrical structures. 

In symmetrical structures there can be a situation where addition of two different 

rings/clusters to the main cluster will result in same wellformedness. Even in the first 

step of clustering, there can be two structural rings whose wellformedness are 

identical. In such situation the preference order would be used. As the last option, 

random choice is used in the original approach. 

However if the respective clusters are not intersecting and they are in a symmetrical 

position to each other, both clusters can be chosen as initiation clusters (in initiation 

stage) or added together to the main cluster if their position allows it (in later stage of 

clustering). This is done considering the fact that both clusters will have same 

probability of existing.  

As a result of this step, there would be simultaneous progression of symmetrical 

clusters acting in the same manner up to convergence of such clusters. 

3.3.3 Clustering Example 

In order to clarify the clustering process, clustering of truss T1 is shown as an example. 

Step 01: Calculation of Joint Stiffness. The calculated joint stiffness (J.S) as per 

equation 3.15 are given in Figure 3.5. 



Structural Connectivity of Two-Dimensional Assemblies Chapter III  

Bristol Approach 

 

36 

 

Figure 3.5 Joint Stiffness 

Step 02: Calculation of Wellformedness of the Structural Ring. The calculated 

wellformedness (W.F) of the structural rings as per equation 3.16 are shown in Figure 

3.6. Note that C.N refers to cluster number. 

 

Figure 3.6 Wellformedness of the Structural Rings 

From here we can see that cluster numbers 04 and 08 have the highest value of 

wellformedness and that they are in symmetrical position. Thus the clustering can be 

initiated using those clusters.  

Step 03: Structural Clustering Stage I 

The result of the first step of clustering is shown in Figure 3.7. 

 

Figure 3.7 Structural Clustering Stage I- Step 1 

Though clusters no 10 and 02 have same wellformedness (Figure 3.6) it would be 

geometrically impossible to cluster the C.N 10 with C.N 04, thus the clustering is 

progressed using C.N 02 as shown in Figure 3.8. 
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Figure 3.8 Structural Clustering Stage I- Step 2 

As per our research, both C.N 16 and C.N 17 would merge with C.N 09 

simultaneously. However, this step is broken into two parts to illustrate the change in 

wellformedness during this process as shown in Figures 3.9 and 3.10. 

 

 

Figure 3.9 Structural Clustering Stage I- Step 3.1 

 

 

Figure 3.10 Structural Clustering Stage I- Step 3.2 

At this stage, any more addition to the existing cluster will reduce its wellformedness. 

The new cluster is initialised using the same procedure explained above. Figure 3.11 

shows this. The progress of the clustering is shown in Figures 3.12& 3.13. 
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Figure 3.11 Structural Clustering Stage I- Step 4.1 

 

Figure 3.12 Structural Clustering Stage I- Step 4.2 

 

 

Figure 3.13 Structural Clustering Stage I- Step 5 

Adding an already existing cluster to the emerging cluster is allowed in the ‘Structural 

Clustering Stage I’. This marks the end of the first clustering stage as any more 

structural rings will reduce the wellformedness of the existing cluster.  

Step 04: Structural Clustering Stage II 

Figure 3.14 shows the first step of structural clustering stage II. This is also the 

penultimate cluster of this process. Figure 3.15 & 3.16 shows the final output 

comprising the entire structure. Wellformedness of this cluster is the wellformedness 

of the structure. 
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Figure 3.14 Structural Clustering Stage II- Step 1 

 

 

Figure 3.15 Structural Clustering Stage II- Step 2.1 

 

 

Figure 3.16 Structural Clustering Stage II- Step 2.2 

 

3.4 Relative Separateness 

Relative separateness is introduced to measure loss of wellformedness during the 

initial failure. This is defined as the ratio between the loss of wellformedness to the 

wellformedness of the intact structure. The wellformedness of the damaged structure 

is recalculated again from the start as any damage will change the clustering 

characteristics of the damaged structure. Wellformedness of the intact structure is 

taken as the summation of wellformedness of clusters existing at the end of Structural 

Clustering Stage I. The loss of wellformedness is the difference between the 
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wellformedness of intact structure and the wellformedness of the final cluster of 

damaged structure. 

𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝑺𝒆𝒑𝒂𝒓𝒂𝒕𝒆𝒏𝒆𝒔𝒔 =
𝑳𝒐𝒔𝒔 𝒐𝒇 𝑾𝒆𝒍𝒍𝒇𝒐𝒓𝒎𝒆𝒅𝒏𝒆𝒔𝒔

𝑾𝒆𝒍𝒍𝒇𝒐𝒓𝒎𝒆𝒅𝒏𝒆𝒔𝒔 𝒐𝒇 𝒕𝒉𝒆 𝒊𝒏𝒕𝒂𝒄𝒕 𝒔𝒕𝒓𝒖𝒄𝒕𝒖𝒓𝒆
  equation 3.18 

However, when a damage occurs in a truss it turns into a mechanism. Due to this, 

rather than using the relative separateness, wellformedness of the final cluster is used 

to determine the Structural connectivity of the trusses.  

3.5 Material Cost of Increase Wellformedness 

Usually, the chord members in trusses would have an increased axial stiffness 

compared to the web members. When chord member stiffness is increased, the overall 

wellformedness of the structure should increases. This was tested by increasing the 

axial stiffness by two times and four times. However, the material cost of this process 

also should be considered to keep the design economic. Here the increment in axial 

rigidity was assumed to be provided by increasing the cross-sectional area of the chord 

members. 
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3.6 Results 

It was observed that in addition to the wellformedness of the final cluster, analysing 

the penultimate cluster reveals information about the location of the possible failure. 

The penultimate clusters of the all three trusses for cases of differing chord axial 

rigidity is given in Figures 3.17 to 3.25. The wellformedness of the final clusters are 

given in Table 3.6. 

Case 1: All members’ axial rigidity= 1 

 

Figure 3.17 Penultimate Cluster of T1 for Case 1 

 

Figure 3.18 Penultimate Cluster of T2 for Case 1 

 

Figure 3.19 Penultimate Cluster of T3 for Case 1 
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Case 2: Chord members’ axial rigidity= 2 

 

Figure 3.20 Penultimate Cluster of T1 for Case 2 

 

Figure 3.21 Penultimate Cluster of T2 for Case 2 

 

Figure 3.22 Penultimate Cluster of T3 for Case 2 

 

  

9.19 

2.07 2.07 

4.87 
12.80 12.80 

4.95 

13.63 13.63 
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Case 3: Chord members’ axial rigidity= 4 

 

Figure 3.23 Penultimate Cluster of T1 for Case 3 

 

Figure 3.24  Penultimate Cluster of T2 for Case 3 

 

Figure 3.25  Penultimate Cluster of T3 for Case 3 

 

Table 3.6 Summary of Results 

 T1 T2 T3 

AE 4.57 7.56 9.96 

2AE 7.27 14.75 16.19 

4AE 13.09 30.23 29.71 
 

The material cost of the increased wellformedness is tabulated in Table 3.7. The 

change in wellformedness with the increased material cost is presented in graphical 

form in absolute values is presented in Figure 3.26 and relative percentages of 

10.30 

8.30 8.30 

11.68 26.15 26.15 

8.97 

25.05 25.05 
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increment taking Case 1 (all member AE=1) as the base model is presented in Figure 

3.27. The graph shows results for four cases including chord member axial rigidity as 

one through four. The calculation for the case where chord member axial rigidity 

equals three is not presented here. 

Table 3.7 Summary of Material cost 

 T1 T2 T3 

AE 33.59 30.97 28.78 

2AE 48.52 45.89 43.71 

4AE 78.37 75.75 73.57 

 

 

Figure 3.26 Change in Wellformedness vs Material Quantity (Absolute) 
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Figure 3.27 Change in Wellformedness vs Material Quantity (%) 

 

3.7 Discussion  

As observed from Table 3.6, truss T3 is selected as the most wellformed configuration 

as it has the highest wellformedness in Case 1 (where all members’ axial rigidity equals 

one). Truss T3 is again identified as the most wellformed configuration when the chord 

member axial rigidity is doubled (case 2). It should be noted that wellformedness of 

all truss forms increased between case 1 and 2. This trend is observed again between 

case 2 and 3 as well. However, truss T3 is identified to have higher wellformedness in 

case 3, thus the most wellformed configuration. Another thing to note that Truss T2 

and T3 display wellformedness values close to each other and there is a significant 

difference between them and truss T1 values in all three cases. 

The penultimate clusters needs to be analysed to gain further understanding about the 

weakly connected members/ zones. In the case 1, the penultimate cluster of T1 shows 

that the support nodes would be the most weakly connected to the rest of the structure. 

Truss T3 also showcases a similar behaviour, but the wellformedness of this 

arrangement is high compared to the truss T1, meaning the possibility of loss of 

connectivity is lower than truss T1. Though the wellformedness of the truss T2 is 

higher than truss T1, the location of failure is located in the top chords, any failure in 

this region will completely damage the structure. This scenario can be said as a low 

risk-high damage scenario. Structural connectivity analysis can be used to avoid this 

kind of scenarios. It should be observed that all the failure is taking place in the chord 
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of the trusses; thus it will be beneficial to increase the axial rigidity of the chord 

members and check the changes in the penultimate clusters. 

In the case 2, where the axial rigidity of the chord members is doubled, the failure 

location is shifted away from the support nodes to middle of the chord members in 

truss T1. Though the location of the possible failure is unfavourable, the possibility of 

the failure will be low due to the increased wellformedness. This is similar to truss T3 

in case 1. This is the first time, which the web members are involved in the failure 

scenario. Because of the simplicity of the selected configurations, a local web failure 

was not achieved using the Bristol Approach. A local web failure is more favourable 

than a chord member failure. Truss T2 and T3 show the failure has moved to the middle 

of the bottom chord. This is also more preferable to failure in the middle of the top 

chord as truss can avoid a complete collapse by using inherent arch action.  

In case 3, when the axial rigidity of the chord members is doubled again, failure 

location of the truss T2 & T3 have not changed but the wellformedness has increased. 

This shows that more effort needs to be employed to break that connection between 

the case 2 and 3. Truss T1 shows that the failure now involves more web members, 

this is also more preferable.  

As discussed above, the values of wellformedness for Truss T2 and T3 are close to 

each other. Material cost can be used to differentiate between these trusses. From the 

Figure 3.27, it is quite evident that truss T2 gives more returns for increment in the 

chord axial rigidity in terms of wellformedness. 
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4 Newman’s Method 

4.1 Introduction 

In order to understand Newman’s Method, understanding should be gained on the 

concept of Network Theory. Network Theory is the idealisation of real world networks 

into graphs of specific topology and the study of those graphs as the representation of 

relations/connections between discrete objects. This is presented in Section 4.2. 

Sections 4.3 & 4.5 discusses the unweighted and weighted Newman analysis 

respectively. An index for structural connectivity based on Newman’s method is 

proposed in Section 4.4. Section 4.6 details the modifications made to original 

Newman’s method in adapting it to this research. Results of the analysis are given in 

Section 4.7 followed by discussion on those results in Section 4.8. 

4.2 Network Theory 

4.2.1 Introduction to Network theory 

The initial process of Network theory would be idealisation or representation of a 

network in a graph form. The structure of network can be found in many areas in the 

natural and artificial (man-made) world. For example, there exists networks like the 

metabolism network, air-traffic network, social network, internet and banking 

network. Most networks cannot be easily idealised into nodes and links. The concept 

of a network paradigm is used in this process. 

4.2.2 The Network paradigm 

The term paradigm refers to the principles and assumptions made to idealise a real 

world phenomenon (Network Theory Course - YouTube, 2016). Another important 

thing to note is that the topology of the idealised network doesn’t necessarily follow 

the Euclidian geometry of the original network. The most important thing of the 

network representation is the connections in the network; this is expressed as the links 

in the network. The network paradigm also includes data on how the network emerges 

and the complexity and non-linearity of the network, but these concepts are out of 

scope of this study. In simple terms, the Network paradigm is a set of principles and 

assumptions used to idealise a real word network into a graph representing its topology 

and connectivity. Some of the common network topologies are given in Figure 4.1. 

In this study, the joints are nodes and members are links. The topology doesn’t need 

to be altered and the connections are given by the adjacency matrix of the graph. 

4.2.3 The network connections 

The amount of connections a network has alters the structure of the network and how 

it is interpreted. When there are only a few connections between the nodes, the 

characteristics of the network can be explained as the sum of the characteristics of the 
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nodes-i.e. change in one node will change the network proportionally, since that 

change won’t affect the other nodes in the network. When the number of connections 

increases between the nodes, a change in one node will affect other nodes in the 

network depending on the connections and the change in the network is not 

proportional to the change in the nodes. In essence, the characteristic of the network 

will be described by the connections between the nodes rather than the nodes 

themselves. It should be noted that due to this, how connected an individual node is 

becomes a key metric of its importance in the network. 

Based on the network topology, the networks can be divided into three main types. 

 Centralised network 

 Decentralised network 

 Distributed Network 

Centralised networks are known to have an important hub node as the central node, 

most of the other nodes being connected to it (example: star network in Figure 4.1). 

This is very robust against random attacks but highly vulnerable to strategic attacks. 

In the decentralised network, we can observe local clusters emerging with their own 

hubs. This network topology represents the concept called “Small World Phenomena” 

- i.e. in a graph where most nodes are not neighbours but most nodes can be connected 

in few steps. Distributed network represents a network where all or most have same 

degree of connections (example: fully connected network in Figure 4.1). This would 

be the most robust network topology as it has no hierarchy of connections. But this is 

also a less efficient network topology. Our engineering structures can be represented 

by decentralised networks. 

 

Figure 4.1 Typical network topologies 

A node’s importance in a network can be measured by its degree and its centrality. 

Degree of connectivity represents the immediate likelihood of catching whatever is 

passing through the network. Importance of node with respect to its location is 
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measured by the centrality measures (also discussed in Chapter 02). Some of the 

centrality measures are; 

 Degree centrality 

 Closeness centrality 

 Betweenness centrality 

 Prestige attachment 

Closeness centrality of the selected trusses are discussed in Chapter 02. This shows 

how likely a node can affect the rest of the nodes around it. Prestige attachment relates 

to the situation where nodes are get attached to identified important nodes to form 

clusters. This is true for citation networks or the World Wide Web. Betweenness 

centrality is the core of the Newman method. 

4.2.4 Network Robustness and Resilience 

As we discussed, there exist several types of networks at different levels. It is common 

that most of these networks are constantly attacked naturally and otherwise, but how 

the network responds to these damages depend on its characteristics. It should be noted 

that a network’s robustness and connectivity are interrelated. Without the connectivity, 

the parts of the network will become disconnected and disintegrated. Thus the 

robustness of a network can be assessed by removing one/many components and 

seeing how affects the rest of the network. If this analysis was done with respect to the 

nodes, it can be explained by the concept of node percolation, and by edge percolation 

if it was done with respect to the links. 

Edge betweenness is basically an index for identifying the in-between edges in a 

network. These links also act as the irreplaceable connections between one cluster and 

another. Whether the failure will have a cascading effect will determine the robustness 

of the network. For example, failure of a station in a power grid could have a cascading 

failure over the entire network. Another thing to consider is that whether the edge/ link 

removal is random or strategic. In this research, strategic removal of edges is 

considered for the analysis. Since the analysis is used to assess the inherent 

characteristic ‘structural connectivity’; it is required to find the weakest link in the 

network and remove it to check its effects. This was earlier explored in the Chapter 02 

in the description of Menger’s theorem. 

Menger’s theorem is normally interpreted as the max-flow, min-cut theorem. This 

means that most effective way to disconnect to vertices it to remove the edges that 

have the maximum shortest paths between those vertices. This is the basic foundation 

of Newman’s Method. 
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4.3 Newman’s unweighted analysis 

Newman’s method involves three stages of analysis. These are; 

 Calculating shortest paths between all vertex pairs. 

 Assigning the betweenness values for the edges. 

 Finding communities in the network. 

The first stage of the analysis can be carried out by using any of the existing methods 

to find the shortest paths such as depth first algorithm or breadth first algorithm. The 

example used in Newman (2004) will be followed to explain this procedure. Figure 

4.2 shows the selected network with its node numbers. The procedure to calculate the 

shortest paths is given below (breadth first algorithm) - (Newman 2004); 

1. “The initial vertex s is given distance ds = 0 and a weight ws = 1. 

2. Every vertex i adjacent to s is given distance di = ds + 1 = 1, and weight wi = 

ws = 1. 

3. For each vertex j adjacent to one of those vertices i we do one of three things: 

a. If j has not yet been assigned a distance, it is assigned distance dj = di 

+ 1 and weight wj = wi . 

b. If j has already been assigned a distance and dj = di + 1, then the 

vertex’s weight is increased by wi, that is wj ← wj + wi . 

c. If j has already been assigned a distance and dj < di + 1, we do nothing. 

4. Repeat from step 3 until no vertices remain that have assigned distances but 

whose neighbours do not have assigned distances.” 

In step 2, in order to check whether the node has been visited or not, a weight is 

assigned to the nodes that are visited in the algorithm. This weight is also used to 

record the total number of shortest paths crossing a specific node. It should be noted 

that this weight is not a structural characteristic but just an indicator. This has to be 

repeated for all vertex pairs.  

“If two vertices i and j are connected, with j farther than i from the source s, then the 

fraction of a geodesic path from j through i to s is given by wi/wj ”(Newman 2004). 

This procedure was automated using the MATLAB software. The MATLAB code was 

referred from the “MATLAB Tools for Network Analysis” provided by MIT Strategic 

Engineering (MATLAB Tools for Network Analysis (2006-2011), 2011). This was 

used to verify the author’s own MATLAB code. This MATLAB code is provided in 

the appendix. The results from the first stage of analysis is stored in a matrix form (n 

x n x n). 
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Figure 4.2 Selected Network 

The shortest paths from node 1 to all other nodes are shown in the Figure 4.3. From 

the node 1, the distance of shortest path to other nodes and each node weights are given 

in Figure 4.4.Since this is an unweighted analysis, a link will be regarded as a step and 

the shortest paths are calculated by counting the number of steps taken to reach each 

node from node1. 

 

Figure 4.3 Shortest Paths from node 1 
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Figure 4.4 Shortest distance from node 1 to other nodes 

The second stage of analysis was carried out as per the procedure given below 

(Newman-2004). 

1. “Find every “leaf” vertex t, i.e., a vertex such that no paths from s to other 

vertices go through t. 

2. For each vertex i neighbouring t assign a score to the edge from t to i of wi/wt. 

3. Now, starti with the edges that are farthest from the source vertex s and work 

up towards s. To the edge from vertex i to vertex j, with j being further from s 

than i, assign a score that is 1 plus the sum of the scores on the neighbouring 

edges immediately below it (i.e., those with which it shares a common vertex), 

all multiplied by wi/wj . 

4. Repeat from step 3 until vertex s is reached. 

5. Now repeating this process for all n source vertices s and summing the 

resulting scores on the edges gives us the total betweenness for all edges.” 

For easier understanding, the procedure explained above is simplified in Figure 4.5 & 

4.6. Figure 4.5 shows the edge betweenness scores for the shortest paths found in the 

Figure 4.3. 
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Figure 4.5 Betweenness score for edges taking node 1 as source 

The edge betweenness scores are added for each edge and given in Figure 4.6. 

 

Figure 4.6 Resultant Edge betweenness taking node 1 as source 

 

The edge betweenness after considering all the nodes as the source nodes is given in 

Figure 4.7. Even calculating edge betweenness of small networks such as the one 

shown here has too much computations to be done by hand. This is one of the reasons 

to develop the MATLAB code. 
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Figure 4.7 Final edge betweenness 

As can be seen in the Figure 4.7, the edge betweenness for the edge 5-7 is 6.0. All the 

shortest paths from node 7 to all other six node needs to travel through the node 5, 

resulting in the edge betweenness of 6.0. This can be taken as the validation for our 

MATLAB code. It can be observed that the highest edge betweenness occurs in the 

edge 3-5. As per our theory, the edge with the highest edge betweenness is most likely 

to be inter-cluster link and will be susceptible to higher damage from a random attack 

as it would have a lesser connectivity with the rest of the structure.  

In order to find the actual clusters in the structure, the links that have the highest edge 

betweenness have to be removed in each step. In addition to checking the structure 

after removal of each link, an index is required to show the characteristic such as how 

in-between was the removed link.  

4.4 Relative betweenness 

To avoid confusion, each iteration of the algorithm will be called a generation from 

now on. Relative betweenness is the ratio of the edge betweenness of the edge removed 

(highest edge betweenness in generation no “r”) to the sum of edge betweenness of all 

remaining edges in the next generation (“r+1”). 

𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝑩𝒆𝒕𝒘𝒆𝒆𝒏𝒏𝒆𝒔𝒔 =
𝑬𝒅𝒈𝒆 𝒃𝒆𝒕𝒘𝒆𝒆𝒏𝒏𝒆𝒔𝒔 𝒐𝒇 𝒕𝒉𝒆 𝒆𝒅𝒈𝒆 𝒓𝒆𝒎𝒐𝒗𝒆𝒅

𝑺𝒖𝒎 𝒐𝒇 𝒆𝒅𝒈𝒆 𝒃𝒆𝒕𝒘𝒆𝒆𝒏𝒏𝒆𝒔𝒔 𝒐𝒇 𝒂𝒍𝒍 𝒆𝒅𝒈𝒆𝒔 𝒊𝒏 𝒕𝒉𝒆 𝒏𝒆𝒙𝒕 𝒔𝒕𝒆𝒑
  Equation 4.1 

If the value of the relative betweenness is low that means that there are more inter- 

cluster links than what was removed in that particular generation. If the value is high 

then the link removed was one of the few or only inter cluster link. Figure 4.8 shows 

the generations of the selected network according to the algorithm and Table 4.1 shows 

the highest edge betweenness and the sum of edge betweenness of all remaining edges 

in the next step and the relative betweenness of the removed edge in each generation. 

Figure 4.8 comprise outputs from the MATLAB code. It was coded to represent the 

edge betweenness of that generation as the thickness of the edge. 
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(a) Generation 00 (b) Generation 01  (c) Generation 02 

Figure 4.8 Steps in the analysis 

 

Table 4.1 Relative betweenness values 

Generation 

No 

Highest edge 

betweenness 

Sum of edge 

betweenness in 

next generation 

Relative 

betweenness 

1 7.17 48.00 0.15 

2 12.00 12.00 1.00 

3 2.00 - - 

 

From Table 4.1, it can be observed that in generation 2 when the edge 4-6 is removed 

(Figure 4.7), the structure becomes separated and this clearly reflects in the relative 

betweenness of that edge. This can justify using relative betweenness to assess the 

connectivity of the network. 

4.5 Newman’s weighted analysis 

As discussed in the Chapter 2.3, a weighted graph can be represented by a multi-path 

model. The edge betweenness represents how many shortest paths are going through 

an edge, i.e. a pair of nodes. If there exists more than one path between a pair of 

vertices, the total number of shortest paths going through them won’t change. For 

example, if two paths exist between two cities with same travel time, though the drivers 

may choose either one of the paths, the total number of trips completed between those 

two cities will be same as the number of trips completed in the event of a single path 

existing between those two cities. Thus in weighted Newman analysis the initial step 

to compute the edge betweenness is carried out in the same way as for the unweighted 

case. 

But when it comes to removing the edges, the weight of the edges should be taken into 

consideration as they represent a number of parallel edges between a pair of vertices. 

In the previous example, the number of trips through a path will be half of the total 

number of paths between the two cities. Thus the edge betweenness of the edge is half 

of the unweighted analysis results. In the second stage of the weighted analysis, the 
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edge betweenness values taken from the unweighted analysis should be divided by the 

edge weights. Figure 4.9 shows a weighted network, this has the same structure as the 

network in Figure 4.2. 

 

Figure 4.9 A weighted network 

Table 4.2 shows the calculation of edge betweenness of the links of the selected 

network for the first generation of the analysis. 

Table 4.2 Edge betweenness of weighted analysis 

Edge ID Edge betweenness from 

unweighted analysis 

Edge 

weight 

Edge betweenness of 

weighted analysis 

1-2 3.00 2 1.50 

1-3 5.33 1 5.33 

2-4 4.67 1 4.67 

3-4 4.50 2 2.25 

3-5 7.17 3 2.39 

4-6 4.83 3 1.61 

5-6 4.50 1 4.50 

5-7 6.00 2 3.00 

 

It can be observed from Table 4.2 that the edge with highest edge betweenness has 

changed from edge 3-5 to edge 1-3. After removing this edge, the analysis will be 

carried out in similar manner until no edges remain. This weighted analysis results are 

shown in Figure 4.10 and computed relative betweenness in Table 4.3. 
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(a) Generation 00 (b) Generation 01  (c) Generation 02 

 

(d) Generation 03  (e) Generation 04   (f) Generation 05 

 

(g) Generation 06 

Figure 4.10 Breakdown of network during the weighted analysis 
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Table 4.3 Relative betweenness of weighted analysis 

Generation 

No 

Highest edge 

betweenness 

Sum of edge 

betweenness 

in next step 

Relative 

betweenness 

1 5.33 28.75 0.19 

2 10.00 9.25 1.08 

3 3.50 8.83 0.40 

4 3.00 2.50 1.20 

5 1.00 1.17 0.86 

6 0.50 0.67 0.75 

7 0.33 - - 

 

As expected from the findings in the unweighted analysis, the edge removals in 

generation no 2 and 4 (Figure 4.10 (c) & (e)) have the highest relative edge 

betweenness as their removal separates the structure. Thus the index “relative 

separateness” can be justified to be used as a measure of connectivity of the weighted 

networks as well. 

4.6 Modifications to Newman’s method 

For the analysis of trusses it was decided to take member stiffness as the weight of the 

edges. This is done to maintain uniformity in analysis between different analytical 

methods considered and to account for the fact that a member with a higher stiffness 

will have a lower possibility of failure. 

If we have a very large value as the weight, then its influence on the relative 

betweenness is more than what it should be. Same argument can be made for the 

number of shortest paths through an edge. A network having higher number of nodes 

has higher number of possible shortest paths through an edge, thus when comparing 

networks of different size, arrangements need to be made to offset this factor. 

It was decided to divide the number of shortest paths through an edge by number of 

all possible paths in that network, i.e. n*(n-1) where n= number of nodes in a network. 

From this, edge betweenness is given as the fraction of possible paths in a network. 

This will automatically scale the edge betweenness to be compared with a network of 

any size. However, the same can be achieved in calculating relative betweenness. Thus 

this step can be omitted if we are comparing relative betweenness and not the edge 

betweenness of the networks. 

To normalise the influence of weights in the calculation of relative betweenness it was 

decided to divide the weight of every edge by the average of all edge weights. From 

this the edge weights are given as the multiples of average edge weight. 

As discussed in the previous two chapters, the structural connectivity is characterised 

by the first edge to be removed. This is even truer for trusses as any loss of member 
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will turn it into a mechanism. In this study we are comparing the relative betweenness 

of the first edge to be removed. 

4.7 Results 

The results form Newman’s method are given in this section. The unweighted analysis 

results are presented in Section 4.6.1 and the weighted analysis results in the Section 

4.6.2. The summary of the relative edge betweenness for the considered analysis 

scenarios are given in Table 4.4. 

4.7.1 Unweighted Analysis Results 

The results for the unweighted analysis are given in Figure 4.11. This Figure shows 

the trusses after the initial step of member removal which corresponds to the 

penultimate cluster in the Bristol method.  

 

(a) Generation 01of Truss 01- Penultimate cluster in unweighted analysis 

 

(b) Generation 01of Truss 02- Penultimate cluster in unweighted analysis 
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(c) Generation 01of Truss 03- Penultimate cluster in unweighted analysis 

Figure 4.11 Results of the unweighted analysis 

4.7.2 Weighted Analysis Results 

This results of the weighted analysis in the Newman method are presented in this 

Section. Different axial rigidities for the chord members were analysed to check the 

effect of increased axial rigidity in the overall connectivity. The axial rigidities which 

were used in the Bristol approach were used here as well. The results for the chord 

axial rigidities AE=1, 2& 4 are given in the Figures 4.12, 4.13& 4.14 respectively; and 

a summary given in Table 4.4. 

 

(a) Generation 01of Truss 01- Penultimate cluster in weighted analysis 

 

(b) Generation 01of Truss 02- Penultimate cluster in weighted analysis 
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(c) Generation 01of Truss 03- Penultimate cluster in weighted analysis 

Figure 4.12 Weighted analysis results- AE=1 (Case 1) 

 

 

(a) Generation 01of Truss 01- Penultimate cluster in weighted analysis 

 

(b) Generation 01of Truss 02- Penultimate cluster in weighted analysis 
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(c) Generation 01of Truss 03- Penultimate cluster in weighted analysis 

Figure 4.13 Weighted analysis results- AE=2 (Case 2) 

 

 

(a) Generation 01of Truss 01- Penultimate cluster in weighted analysis 

 

(b) Generation 01of Truss 02- Penultimate cluster in weighted analysis 
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(c) Generation 01of Truss 03- Penultimate cluster in weighted analysis 

Figure 4.14 Weighted analysis results- AE=4 (Case 3) 

 

Table 4.4 Summary of relative edge betweenness of Generation 01 

 Unweighted AE 2AE 4AE 

T1 4.52 7.80 10.28 12.93 

T2 8.47 7.21 5.32 8.21 

T3 11.49 23.55 15.57 9.16 

 

4.8 Discussion 

As it was done for the Bristol approach, results from the Newman method have to 

analysed referring both the penultimate cluster (i.e. generation 01 in Newman method) 

and the index for connectivity (relative betweenness). Initially the generation 01 of the 

structures are taken into consideration. Failure in a web member (internal member) is 

more preferable to failure in the chord member. One of the reasons to increase the 

chord axial rigidity is to check whether the failure can be moved from the chord to 

web member and if it happens to check at which ratio of chord to web member axial 

rigidity that will happen. 

Since Newman’s method deals with edges and removes the most inter-cluster edge, it 

can be used to check the failure location directly. As seen in the Figures 4.11 and 4.12, 

both unweighted and weighted analysis (case 1) indicate that the failure to happens in 

the chord member. 

Unweighted analysis shows the analysis of the structure’s form only without any 

consideration of the member characteristic. Even if the truss selected in the unweighted 

analysis is found to be the least connected one in the weighted analysis, we can say 

that by changing the member characteristics in a strategic manner it can be made to be 

the most connected one. This is due to the fact that by being the best in the unweighted 

analysis, the truss’s form has more potential to be the most connected form in the 

weighted analysis. This is the advantage of unweighted Newman analysis and Graph 

theory analysis.  
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The relative edge betweenness of the truss T1 is the lowest in the unweighted analysis. 

Figure 4.11 shows that six edges are removed in this generation. It can be interpreted 

as these six edges having the same edge betweenness. The trusses T2 & T3 show that 

the bottom chord middle member is the most in-between member in those trusses. 

However, the value of relative edge betweenness of T2 is lower than that of T3, 

indicating that T2’s form is more wellconnected than that of T3. 

In the weighted analysis, when all members have same axial rigidity, the relative 

betweenness is the lowest for truss T2 and closely followed by truss T1. The relative 

betweenness of T3 is very high compared to trusses T1 and T2. In all three trusses, the 

bottom chord middle members are indicated as the weakly connected members.  

The major change between in the unweighted analysis and case 1 of weighted analysis 

is simply the division of unweighted analysis results by the stiffness of the member. 

Since the axial rigidity equals unity, change in the results directly corresponds to the 

length (or multiple of average length) of the member. This is clearly seen in truss T1 

results as the longer members out of six members identified in the unweighted analysis 

are again identified as the weakly connected members in the case 1 of the weighted 

analysis. This also justifies the sudden increase in edge betweenness of the truss T3 as 

the identified member is the longest in the truss. 

When the chord axial rigidity is doubled, the failure location of the truss T1 is now 

moved to a web member. In addition to that both trusses T2 and T3 show decrease in 

the relative edge betweenness from case 1, though the same members are selected in 

this case as well. Value of the edge betweenness can be observed to have been 

increased from Case 1 to Case 2 for truss T1, but this cannot be directly compared to 

the Case 1 results as the failure has moved away from the original location. 

When the axial rigidity of the chord members was doubled again, one can see that the 

failure in T2 also has moved away from the chord to the web member, and as observed 

with the truss T1 in case 2 the value for the relative edge betweenness is more than 

what it was in case 1. This can be interpreted as the web member having a higher 

possibility of failure than the chord member. This was also observed in truss T1 where 

the value of the relative edge betweenness was increased from case 2 to case 3 for the 

same members. Though the same member was identified as the most weakly connected 

member throughout all three cases in the weighted analysis for truss T3, the value for 

the relative edge betweenness kept reducing. Observed results indicate that increasing 

the axial rigidity of the chord members proves beneficial for the truss forms 

irrespective of the configuration.
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5 Route Structure Analysis (RSA) 

5.1 Introduction 

Route structure analysis (RSA) was introduced by S. Marshall (2003) as a new method 

for characterising the network and route types. This was mainly developed for 

analysing the road network. This concept was later advanced into the line structure 

representation for road network analysis; however in this research the original route 

structure analysis was adopted. This approach sets out to model the structure of road 

network and analyse it irrespective of the network movement. Section 5.2 introduces 

the concept of routes and guidelines of route generation. The properties of routes are 

explained in Section 5.3. Results are given in Section 5.4 and followed by discussion 

on results in Section 5.5. 

5.2 Road network representation- Routes & Joints 

In the conventional road network representation, the road segments between junctions 

are represented by the links and junctions by the nodes. Figure 5.1 shows the difference 

between the conventional network representation and the RSA.  

“The routes are defined as the linear aggregation of links and the joints are defined 

to have only one conjoined route through them” (Marshall, 2003). 

 

(a) Layout plan   (b) Conventional network (c) Route structure 

Figure 5.1 Conventional and RSA representation of road network 

Various possible route structure representations can be made based on how the links 

are aggregated into routes. It is important that a set of rules or guidelines are made to 

systemise this process of aggregating links into routes. The contextual guidance given 

by Marshall (2003) for route formation is given below, 

“1. Where the designated route classification is known, this classification can be used 

to form routes. Hence, at any junction, a single route may be selected from two links 

with the same route designation (e.g. ‘A’ road class). 
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2. Where the route structure is not resolved by (1), then actual junction priority may 

be used, where known. 

3. Where the route structure is not resolved by (1) or (2), then continuity of physical 

alignment may be used to select the through route. 

4. Other possible means of determining the through route would be continuity of street 

name, or designation according to which route was constructed first, historically.” 

It can be observed that with detailed knowledge about the road network, better route 

structure can be formulated to represent the said road network. Since the routes can be 

used to represent a continuous member in a structure, this analysis provides a different 

perspective for structural connectivity. 

5.3 Route structure properties 

The route structure analysis is based on three main properties, which are measured for 

each route as well as for the overall network. The properties as defined by Marshall 

(2003) are presented here, 

Continuity: “The number of links that make up a specific route.” 

This will represent how continuous a member is, in a structure. For example, when 

fabricating a truss joint where two members are crossing, a member is kept continuous 

and the other one is cut and welded/bolted on either side of the continuous member. 

This index identifies that main members in a structure. 

Connectivity: “The number of routes a given route connects or comes in contact 

with.”  

This also represents the nodality of the joints a route is passing through. If two routes 

meet at more than one joint, the connectivity is calculated at each instance. 

Depth: “The property which measures how distant a route is from a particular datum, 

measured in number of steps of adjacency.”  

This represents how many steps need to be taken to reach a specific route from a datum. 

Figure 5.2 shows the depth of the routes identified in Figure 5.1 as line thickness. It 

should be noted that the connectivity and other properties are determined for routes 

(representing members) rather than the joints. The naming convention used in Figure 

5.2 follows the branching pattern of the routes. In this naming convention, the length 

of the name shows the depth of the route. The properties of all routes in Figure 5.2 are 

listed in Table 5.1. 
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Figure 5.2  Depth of a route structure 

 

Table 5.1 Route structure properties of Fgure 5.1 

Route Continuity Connectivity Depth Route Type 

1 5 5 1 a 

1.1 1 2 2 b 

1.2 1 1 2 c 

1.3 2 3 2 d 

1.4 1 2 2 e 

1.5 2 2 2 f 

1.3.1 1 2 3 g 

1.3.2 3 6 3 h 

1.5.1 2 3 3 i 

1.3.2.1 1 1 4 j 

1.5.1.1 1 1 4 j 

Total 20 28 28 10 types 

 

From Table 5.1 it can be observed that, route no 1 is the most continuous route and 

route 1.3.2 is the most connective one. Ten type of routes are identified in this network. 

In order to characterise the routes the following indices are introduced: 

 Relative continuity (equation 5.2) 

 Relative connectivity (equation 5.3) 

 Relative depth (equation 5.3) 

 

For a single route; 

𝑠 = 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 + 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑑𝑒𝑝𝑡ℎ     Equation 5.1 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 = 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦/𝑠     Equation 5.2 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦/𝑠     Equation 5.3 
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𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑒𝑝𝑡ℎ = 𝑑𝑒𝑝𝑡ℎ/𝑠       Equation 5.4 

For a network; 

𝑆 = ∑ 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 + ∑ 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 + ∑𝑑𝑒𝑝𝑡ℎ    Equation 5.5 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 = ∑ 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 /𝑆     Equation 5.6 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = ∑ 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 /𝑆    Equation 5.7 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑒𝑝𝑡ℎ = ∑𝑑𝑒𝑝𝑡ℎ /𝑆      Equation 5.8 

 

The relative continuity, connectivity and depth for the route types stated in Table 5.1 

is given in Table 5.2. 

Table 5.2 Relative properties of routes and network 

Route 
Relative  

Continuity 

Relative 

Connectivity 

Relative 

Depth 

Route 

Type 

1 0.455 0.455 0.091 a 

1.1 0.200 0.400 0.400 b 

1.2 0.250 0.250 0.500 c 

1.3 0.286 0.429 0.286 d 

1.4 0.200 0.400 0.400 e 

1.5 0.333 0.333 0.333 f 

1.3.1 0.167 0.333 0.500 g 

1.3.2 0.250 0.500 0.250 h 

1.5.1 0.250 0.375 0.375 i 

1.3.2.1 0.167 0.167 0.667 j 

1.5.1.1 0.167 0.167 0.667 j 

Network 0.263 0.368 0.368   

 

From Table 5.2, route id 1.3.2 can be identified as the most connected route. However, 

for the analysis, it was decided to check the overall network connectivity rather than 

individual route connectivity. Though our analysis is mainly concerned with the 

relative connectivity, relative depth also can be analysed in a structural context. If 

relative depth is low, most of the routes are accessible with fewer steps from the datum. 

This reduces likelihood of inter-cluster links and increases number of members 

available for load resisting. 

The same procedure can be applied for the selected trusses. The results of RSA of the 

selected trusses are given in the Section 5.4. 
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Figure 5.3 shows the routes identified in truss T1. The members’ continuity is 

considered in selecting the routes. For example, the chord members are taken as three 

separate routes. The bottom chord member is taken as the datum. This can be justified 

as bottom chord resembles a beam, which would be the most basic way to span 

between two points. 

 

5.4 Results 

The identified routes in the trusses T1, T2 & T3 are given in Figures 5.3, 5.4 & 5.5 

respectively. The absolute and relative properties of the identified routes are given in 

Tables 5.3 through 5.8. Table 5.9 shows a summary of results. 

 

Figure 5.3 Routes of truss T1 

Table 5.3 Properties of T1 truss 

Route 

No 

Route 

ID 

Continuity Connectivity Depth 

1 1 4 8 1 

2 1.1 4 8 2 

3 1.2 4 8 2 

4 1.1.1 2 6 3 

5 1.3 2 6 2 

6 1.4 2 6 2 

7 1.5 1 4 2 

8 1.6 1 4 2 

9 1.1.2 1 4 3 

10 1.7 1 4 2 

11 1.8 1 4 2 

12 1.2.1 1 4 3 

13 1.1.3 1 4 3 

14 1.2.2 1 4 3 

15 1.1.4 1 4 3 

Total 27 78 35 
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Table 5.4 Relative properties of T1 routes 

Route 

No 

Relative 

Continuity 

Relative 

Connectivity 

Relative 

Depth 

Route 

Type 

1 0.308 0.615 0.077 a 

2 0.286 0.571 0.143 b 

3 0.286 0.571 0.143 b 

4 0.182 0.545 0.273 c 

5 0.200 0.600 0.200 d 

6 0.200 0.600 0.200 d 

7 0.143 0.571 0.286 e 

8 0.143 0.571 0.286 e 

9 0.125 0.500 0.375 f 

10 0.143 0.571 0.286 e 

11 0.143 0.571 0.286 e 

12 0.125 0.500 0.375 f 

13 0.125 0.500 0.375 f 

14 0.125 0.500 0.375 f 

15 0.125 0.500 0.375 f 

Network 0.193 0.557 0.250   
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Figure 5.4 Routes of truss T2 

Table 5.5 Properties of T2 truss 

Route 

No 

Route 

ID 

Continuity Connectivity Depth 

1 1 7 14 1 

2 1.1 4 9 2 

3 1.2 4 9 2 

4 1.3 1 3 2 

5 1.4 1 4 2 

6 1.5 1 4 2 

7 1.6 1 4 2 

8 1.7 1 4 2 

9 1.8 1 5 2 

10 1.9 1 5 2 

11 1.10 1 4 2 

12 1.11 1 4 2 

13 1.12 1 4 2 

14 1.13 1 4 2 

15 1.14 1 3 2 

Total 27 80 29 
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Table 5.6 Relative properties of T2 routes 

Route 

No 

Relative 

Continuity 

Relative 

Connectivity 

Relative 

Depth 

Route 

Type 

1 0.318 0.636 0.045 a 

2 0.267 0.600 0.133 b 

3 0.267 0.600 0.133 b 

4 0.167 0.500 0.333 c 

5 0.143 0.571 0.286 d 

6 0.143 0.571 0.286 d 

7 0.143 0.571 0.286 d 

8 0.143 0.571 0.286 d 

9 0.125 0.625 0.250 e 

10 0.125 0.625 0.250 e 

11 0.143 0.571 0.286 d 

12 0.143 0.571 0.286 d 

13 0.143 0.571 0.286 d 

14 0.143 0.571 0.286 d 

15 0.167 0.500 0.333 c 

Network 0.199 0.588 0.213   
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Figure 5.5 Routes of truss T3 

Table 5.7 Properties of T3 truss 

Route 

No 

Route 

ID 

Continuity Connectivity Depth 

1 1 5 10 1 

2 1.1 4 9 2 

3 1.2 4 9 2 

4 1.3 2 7 2 

5 1.4 2 7 2 

6 1.5 1 5 2 

7 1.6 1 5 2 

8 1.7 1 3 2 

9 1.8 1 5 2 

10 1.9 1 3 2 

11 1.10 1 5 2 

12 1.1.1 1 5 3 

13 1.1.2 1 3 3 

14 1.2.1 1 5 3 

15 1.2.2 1 3 3 

Total 27 84 33 
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Table 5.8 Relative properties of T3 routes 

Route 

No 

Relative 

Continuity 

Relative 

Connectivity 

Relative 

Depth 

Route 

Type 

1 0.313 0.625 0.063 a 

2 0.267 0.600 0.133 b 

3 0.267 0.600 0.133 b 

4 0.182 0.636 0.182 c 

5 0.182 0.636 0.182 c 

6 0.125 0.625 0.250 d 

7 0.125 0.625 0.250 d 

8 0.167 0.500 0.333 e 

9 0.125 0.625 0.250 d 

10 0.167 0.500 0.333 e 

11 0.125 0.625 0.250 d 

12 0.111 0.556 0.333 f 

13 0.143 0.429 0.429 g 

14 0.111 0.556 0.333 f 

15 0.143 0.429 0.429 g 

Network 0.188 0.583 0.229   

 

Table 5.9 Summary of results 

 Relative 

Connectivity 

Relative 

Depth 

T1 0.557 0.250 

T2 0.588 0.213 

T3 0.583 0.229 

 

5.5 Discussion 

The relative connectivity of the overall structure is used to analyse the connectivity of 

the structures. Since, the links are accumulated into routes, the failure location or weak 

joint cannot be identified using this approach. The structure is analysed without using 

any of the member or joint structural characteristics. This is similar to Graph theory or 

the unweighted Newman’s method. In this approach, it is made possible to account for 

continuous members. The concept through-route reflects the real world practice in 

connection between the members. 

The relative depth shows how close the members are to the datum. As discussed in 

Section 5.3, having a lower depth would imply the reduced possibility of inter-cluster 

links. Thus a structure having lower relative depth value is expected to have a good 

structural form. 
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The number of routes in all three trusses are the same and the total absolute continuity 

is equal between all three trusses as they have the same number of members in their 

configurations. Truss T1 is a fractal form, in which a form replicates itself in reducing 

scale. Due to this, the finer fractal forms (triangles, in this case) are not in connection 

with each other and only connected with the fractal of larger scale. This has reduced 

the connectivity of routes comprised of links making the finer fractals. 

In truss T2, all web members are connected to the chord members directly, increasing 

the connectivity count. Truss T3 also shows similar behaviour. It can be observed from 

Table 5.9, that the value for relative connectivity is high for truss T2, followed closely 

by truss T3. This is also reflected in the values for the relative depth i.e. the relative 

depth is seen to be inversely proportional to relative connectivity. From this it can be 

concluded that as per route structure analysis, the truss T2 is chosen as the most 

connected truss form and truss T3 is considered a close second. It should be noted 

however, that the above indices are rather weak in discriminatory power, since the 

values for the three trusses (both relative connectivity and relative depth) are fairly 

close to each other. 
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6 Analysis of Frame 

6.1 Introduction 

In this chapter, the selected frame (Figure 6.1) is analysed in order to measure the 

structural connectivity using the methods introduced in chapters 03 to 05, namely 

Bristol approach, Newman method and RSA. The methodology of adapting the said 

methods for application to frames is discussed in Section 6.2. In addition to analysing 

the intact frame, possible failure states of the said frame were also analysed using the 

same methods to determine the loss in structural connectivity in those failure states. 

These failure states relate to specific column removals as shown in Figure 6.2. The 

results of the analysis are given in Section 6.3. The Section 6.4 gives the discussion of 

the results. 

 

Figure 6.1 Selected frame 

 

 

(a) Ground floor side column removal (GSR) 
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(b) Ground floor middle column removal (GMR) 

 

 

(c) Middle floor side column removal (MSR) 

 

 

(d) Middle floor middle column removal (MMR) 
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(e) Top floor side column removal (TSR) 

 

 

(f) Middle floor middle column removal (TMR) 

Figure 6.2 Failure scenarios considered in frame 

 

6.2 Methodology   

The methodology of applying the Bristol approach for frames is given in Section 6.2.1 

and Section 6.2.2 explains the steps applied in adopting the Newman method. The 

Section 6.2.3 defines the same for RSA. 

6.2.1 Bristol approach 

Following the same procedure given in Section 3.2.1, the joint stiffness for a frame 

joint can be derived. Here the each node will have three degrees of freedom since a 

frame element undergoes axial deformation as well as bending. Each degree of 

freedom will correspond to axial force, shear force and moment. It should be noted 

that the forces and displacements in the local axial direction are independent of the 

other two degrees of freedom. Stiffness matrix (in local coordinates) for a frame 

element is given equation 6.1. The ends of the elements are taken as fixed. The unit 
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displacements and forces along the local axis are marked with “ui” and “qi” 

respectively.  

{
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equation 6.1 

Transformation matrix [T] (this is the inverse of matrix [C] discussed in Chapter 03) 

can be formulated from equations 6.2, 6.3 & 6.4. This transformation matrix states the 

geometric relationship between the local displacements ui and global displacements vi, 

as shown in equation 6.5. 

𝑢1 = 𝑣1 cos 𝜃 + 𝑣2 sin 𝜃      equation 6.2 

𝑢2 = −𝑣1 sin 𝜃 + 𝑣2 cos 𝜃      equation 6.3 

𝑢3 = 𝑣3        equation 6.4 

𝑇 =

[
⌈
⌈
⌈
⌈
 
cos 𝜃 sin 𝜃 0
− sin 𝜃 cos 𝜃 0
0 0 1

0

0
cos 𝜃 sin 𝜃 0
− sin 𝜃 cos 𝜃 0
0 0 1]

⌉
⌉
⌉
⌉
 

   equation 6.5 

The equations 6.6, 6.7 & 6.8 show the relationship between the local forces qi and 

global forces fi. From the equations it can be shown that the same transformation 

matrix is used to translate the local displacements to global displacements and local 

forces to global forces, as shown by equations 6.9 and 6.10. 

𝑞1 = 𝑓1 cos 𝜃 + 𝑓2 sin 𝜃      equation 6.6 

𝑞2 = −𝑓1 sin 𝜃 + 𝑓2 cos 𝜃      equation 6.7 

𝑞3 = 𝑓3        equation 6.8 

𝑢 = 𝑇 ∗ 𝑣        equation 6.9 

𝑞 = 𝑇 ∗ 𝑓        equation 6.10 

As per Hook’s law, the relation between the forces and displacements are given in 

equations 6.11(same as equation 6.1) and 6.12 in terms of local and global coordinates 

respectively.  
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𝑞 = 𝑘 ∗ 𝑢        equation 6.11 

𝑓 = 𝐾 ∗ 𝑣        equation 6.12 

Combining the equations 6.9, 6.10 & 6.11, the equation 6.13 can be derived. 

𝑓 = 𝑇𝑇 ∗ 𝑘 ∗ 𝑇 ∗ 𝑣       equation 6.13 

Combining the equations 6.12 and 6.13, the equation 6.14 can be derived. This 

equation states the relationship between the local and global stiffness matrixes. The 

global stiffness matrix can be derived as shown in equation 6.15. 

𝐾 = 𝑇𝑇 ∗ 𝑘 ∗ 𝑇       equation 6.14 

𝐾 =

[
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         equation 6.15 

For the structure shown in Figure 6.3, the stiffness matrix for the members 1-2 (a) and 

1-3 (b) can be simplified as shown in equations 6.16 and 6.17 respectively. 

 

Figure 6.3 Simple frame joint 

𝐾𝑎 = [
𝑘11
𝑎 𝑘12

𝑎

𝑘21
𝑎 𝑘22

𝑎 ]       equation 6.16 

𝐾𝑏 = [
𝑘11
𝑏 𝑘13

𝑏

𝑘31
𝑏 𝑘33

𝑏 ]       equation 6.17 

2 

1 

3 

a 

b 



Structural Connectivity of Two-Dimensional Assemblies Chapter VI 

Analysis of Frame 

 

81 

At the joint 1, the addition of the matrices is carried out as shown in equation 6.18 to 

derive the joint stiffness matrix. 

𝐾1 = [

𝑘11
𝑎 + 𝑘11

𝑏 𝑘12
𝑎 𝑘13

𝑏

𝑘21
𝑎 𝑘22

𝑎 0

𝑘31
𝑏 0 𝑘33

𝑏

]      equation 6.18 

The basic unit of clustering, the structural ring, is chosen as a loop containing four 

frame joints; this follows the approach given by Wu (1991). Following this step, the 

rest of the procedure is identical to the one used for the trusses.  

The clustering of the intact frame is shown in Figure 6.4 to Figure 6.17 in order to 

explain the steps of clustering. Figure 6.4 shows the formation of structural rings. The 

selection of leaf clusters and initiation of structural clustering stage I is shown in Figure 

6.5. Here cluster numbers 6 and 10 are combined to make cluster number (C.N) 21. 

Though there is a possibility to join C.N 6 and C.N 7, this was omitted to account for 

the symmetry of the structure. Clustering stage 1 is continued up to Figure 6.15; 

following that structural clustering stage II is initiated and the clustering is completed 

in Figure 6.17. In Figures 6.9 and 6.13, new clusters are initiated as any addition to the 

existing clusters will reduce its wellformedness. 

 

Figure 6.4 Formation of structural rings 
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Figure 6.5 Structural clustering stage 1- Step 1 

 

 

Figure 6.6 Structural clustering stage 1- Step 2 

 

 

Figure 6.7Structural clustering stage 1- Step 3a 
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Figure 6.8 Structural clustering stage 1- Step 3b 

 

 

Figure 6.9 Structural clustering stage 1- Step 4 

 

 

Figure 6.10 Structural clustering stage 1- Step 5 
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 Figure 6.11 Structural clustering stage 1- Step 6a 

 

 

Figure 6.12 Structural clustering stage 1- Step 6b 

 

 

Figure 6.13 Structural clustering stage 1- Step 7 

 



Structural Connectivity of Two-Dimensional Assemblies Chapter VI 

Analysis of Frame 

 

85 

 

Figure 6.14 Structural clustering stage 1- Step 8 

 

 

Figure 6.15 Structural clustering stage 1- Step 9 

 

 

 Figure 6.16 Structural clustering stage 2- Step 10 
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Figure 6.17 Structural clustering stage 2- Step 11 

The change in wellformedness due to certain member removals are calculated using 

the index relative separateness as shown in equation 3.18. 

 

6.2.2 Newman’s method 

No additional steps needs to be adopted to implement the Newman method to the 

frames for unweighted analysis. But for the weighted analysis, the edge weights are in 

the form of a matrix, whose determinants are zero. Due to this, the edge weights cannot 

be directly applied to the analysis as it was done for the trusses. To solve this, an 

approach was adopted to create equivalent edge weights based on the node weights. 

The strength of a node in a weighted network is calculated as shown in equation 6.19. 

This shows that the strength of the node is an accumulation of all edge weights of the 

edges connecting to the node. 

𝑠𝑖 = ∑ 𝑎𝑖𝑗𝑤𝑗
𝑁
𝑗=1        equation 6.19 

𝑎𝑖𝑗= component of the adjacency matrix connecting node i and node j 

𝑤𝑗= edge weight of the link connecting node i and node j 

𝑠𝑖 = strength of the node 

N = number of links connected to node i 

This process can be reversed to find the equivalent edge weights of edges based on 

nodal weights. In order to determine the equivalent edge weights for the network 

shown in Figure 6.18, the nodal weights of nodes 1 to 4 should be determined first. 

The values of nodal weights will either be available or can be derived from true edge 

weights. The joint stiffness that was determined in the Bristol approach is an example 

of a derived nodal weight. Then equivalent edge weight for member “a” with respect 

to node 4 can be determined as shown in equation 6.20. This shows that the 
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contribution to equivalent edge weight of a member from a node is equal to weight of 

that node multiplied by a fraction of weight of the opposite node of the considered link 

to sum of nodal weights of all nodes connected the node considered. 

This process is applied to all the nodes. The equivalent edge weight is calculated by 

adding the contribution by both nodes of a member, as shown in equation 6.21. 

 

Figure 6.18 Sample network 

 

𝑤𝑖𝑗−𝑖 =
𝑠𝑖×𝑠𝑗

∑ 𝑎𝑖𝑘𝑠𝑘
𝑁
𝑘=1

       equation 6.20 

𝑤𝑖𝑗−𝑖= The contribution form node i to the equivalent edge weight of member i-j 

𝑤𝑖𝑗 = 𝑤𝑗𝑖 = 𝑤𝑖𝑗−𝑖 + 𝑤𝑗𝑖−𝑗      equation 6.21 

𝑤𝑗𝑖−𝑗= The contribution form node j to the equivalent edge weight of member i-j 

𝑤𝑖𝑗= The equivalent edge weight of member i-j 

 

After calculating the equivalent edge weights, the process of analysis is the same as 

that used for weighted Newman’s method for trusses. 

 

6.2.3 Route structure analysis 

The application of RSA to the frames is very similar to the application to the trusses. 

The determination of through routes needs special consideration. Normally the 

columns can be determined as more through than the beams, as they carry load from 

beams of all floors. But at the ground level, in the case of a raft foundation, the raft 

slab will be more continuous than the columns above it. In the meantime, in the case 

of pile foundations, the columns can be taken to be more continuous than the tie-beams 

at ground level. 

2 

1 

3 

a 

b 
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When a floor column is removed, the columns directly above them will become same 

level of thoroughness or less than the beam connecting them to the adjacent column, 

as they now have to transfer their loads to that beam. For corner column removals, the 

columns above the removed column and the beam connecting them to the adjacent 

column can be modelled as on route. For the middle column removals, the beams 

above the removed column is considered to make a route and to have higher 

thoroughness than the columns above them. 

 

6.3 Results 

The results for the analysis carried out using the methodologies discussed in the 

Section 6.2, is given here. The results of the Bristol approach are presented in Section 

6.3.1, followed by results of Newman’s method in 6.3.2. The results of RSA are given 

in Section 6.3.3. 

6.3.1 Results-Bristol approach 

The penultimate clusters of the intact frame and the considered column removal cases 

are given in Figures 6.19 to 6.25. Table 6.1 shows the summary of wellformedness and 

the relative separateness for the cases considered. 

 

Figure 6.19 Penultimate cluster of intact frame 
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Figure 6.20 Penultimate cluster of case GSR 

 

 

Figure 6.21 Penultimate cluster of case GMR 

 

 

Figure 6.22 Penultimate cluster of case MSR 
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Figure 6.23 Penultimate cluster of case MMR 

 

 

Figure 6.24 Penultimate cluster of case TSR 

 

 

Figure 6.25 Penultimate cluster of case TMR 
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Table 6.1 Summary of Wellformedness and separateness 

Frame condition Wellformedness at 

the end of clustering 

stage-1. 

Final 

Wellformedness 

Relative 

Separateness 

Intact 3.90E+27 1.99E+27  

GSR  2.03E+27 48.00 

GMR 1.91E+27 50.92 

MSR 1.95E+27 50.02 

MMR 1.79E+27 54.15 

TSR 2.03E+27 48.00 

TMR 1.91E+27 50.94 

 

6.3.2 Results of Newman’s method 

The generation 01 of the unweighted analysis are given in Figures 6.26 to 6.32. Table 

6.2 gives a summary of relative edge betweenness for the unweighted Newman’s 

method. Similarly the weighted analysis results are given in Figures 6.33 to 6.39. The 

summary of the weighted analysis is given in Table 6.3. 

 

Results of Unweighted analysis 

 

Figure 6.26 Generation 01-Intact frame 
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Figure 6.27 Generation 01-Case GSR 

 

Figure 6.28 Generation 01-Case GMR 

 

 

Figure 6.29 Generation 01-Case MSR 
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Figure 6.30 Generation 01-Case MMR 

 

 

Figure 6.31 Generation 01-Case TSR 

 

 

Figure 6.32 Generation 01-Case TMR 
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Table 6.2 Summary of unweighted analysis results 

 

 

Results of Weighted analysis 

 

Figure 6.33 Generation 01-Intact frame 

 

 

Figure 6.34 Generation 01-Case GSR 

 

Frame 

Condition 

Relative edge 

betweenness 

(x100) 

Intact 3.367 

GSR 3.385 

GMR 3.366 

MSR 4.075 

MMR 4.071 

TSR 3.385 

TMR 3.366 
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Figure 6.35 Generation 01-Case GMR 

 

 

Figure 6.36 Generation 01-Case MSR 

 

 

Figure 6.37 Generation 01-Case MMR 
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Figure 6.38 Generation 01-Case TSR 

 

 

Figure 6.39 Generation 01-Case TMR 

 

Table 6.3 Summary of weighted analysis results 

Frame 

Condition 

Relative edge 

betweenness 

(x100) 

Intact 3.045 

GSR 7.619 

GMR 8.354 

MSR 2.994 

MMR 3.265 

TSR 7.619 

TMR 8.354 
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6.3.3 Results of RSA 

The Figures 6.40 to 6.46 show the identified routes for the intact frame as well as the 

column removal scenarios. The depth of the routes are shown as route thickness. 

Tables 6.4 to 6.11 show the properties of route types as well as the relative properties 

of network. The summary of relative connectivity of all the frame cases is given in 

Table 6.12. 

 

Figure 6.40 Identified routes in intact frame 

Table 6.3 Route properties- Frame intact 

Type Continuity Connectivity Depth Nos 

1 5 6 1 2 

2 5 12 1 3 

3 1 3 2 12 

4 1 4 2 12 

Total 49 132 53  

Relative 0.209 0.564 0.226  

 

 

Figure 6.41 Identified routes in case GSR 
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Table 6.4 Route properties- Case GSR 

Type Continuity Connectivity Depth Nos 

1 5 11 1 1 

2 5 12 1 2 

3 5 6 1 1 

4 1 3 2 11 

5 5 6 2 1 

6 1 4 2 11 

7 1 2 2 1 

Total 48 126 52  

Relative 0.211 0.561 0.228  

 

 

Figure 6.42 Identified routes in case GMR 

 

Table 6.5 Route properties- Case GMR 

Type Continuity Connectivity Depth Nos 

1 5 6 1 2 

2 5 12 1 2 

3 4 9 3 1 

4 1 3 2 12 

5 1 4 2 8 

6 2 5 2 1 

7 2 4 2 1 

Total 48 124 51  

Relative 0.217 0.552 0.231  
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Figure 6.43 Identified routes in case MSR 

Table 6.6 Route properties- Case MSR 

Type Continuity Connectivity Depth Nos 

1 1 2 3 1 

2 5 12 1 3 

3 5 6 1 1 

4 3 4 2 1 

5 1 3 2 11 

6 1 4 2 12 

Total 48 130 53  

Relative 0.208 0.563 0.229  

 

 

Figure 6.44 Identified routes in case MMR 
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Table 6.7 Route properties- Case MMR 

Type Continuity Connectivity Depth Nos 

1 5 6 1 2 

2 5 12 1 2 

3 2 5 3 1 

4 2 6 1 1 

5 1 3 2 12 

6 1 4 2 10 

7 2 5 2 1 

Total 48 128 54  

Relative 0.209 0.557 0.235  

 

 

Figure 6.45 Identified routes in case TSR 

 

Table 6.8 Route properties- Case TSR 

Type Continuity Connectivity Depth Nos 

1 5 6 1 2 

2 5 12 1 3 

3 4 5 1 1 

4 1 3 2 11 

5 1 4 2 12 

6 1 2 2 1 

Total 48 130 53  

Relative 0.208 0.563 0.229  
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Figure 6.46 Identified routes in case TMR 

Table 6.9 Route properties- Case TMR 

Type Continuity Connectivity Depth Nos 

1 4 10 1 1 

2 2 4 2 1 

3 5 12 1 2 

4 5 6 1 2 

5 1 3 2 12 

6 1 4 2 10 

Total 48 126 51  

Relative 0.213 0.56 0.227  
 

Table 6.10 Summary of Relative connectivity and relative depth 

Frame Id Relative 

Connectivity 

Relative 

Depth 

% reduction 

in relative 

connectivity 

% increase 

in relative 

depth 

Intact 0.5641 0.2265   

GSR 0.5614 0.2281 0.48 0.70 

GMR 0.5520 0.2308 2.14 1.89 

MSR 0.5628 0.2294 0.24 1.30 

MMR 0.5565 0.2348 1.34 3.66 

TSR 0.5268 0.2294 0.24 1.30 

TMR 0.5600 0.2267 0.73 0.08 
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6.4 Discussion 

It can be observed that in the Bristol approach, the top or bottom part of the frame is 

the last cluster to be clustered into the main cluster. This implies that middle portion 

of the frame is more tightly connected than the top or bottom. Even though the loss of 

middle floor column causes a change in the way of clustering, the top portion still 

remains the last to be clustered. This can be due to the fact that most of the joints with 

higher joint stiffness remain in the middle portion of the frame. 

Table 6.1 shows that the middle floor middle column removal causes the highest 

relative separateness-i.e. highest loss in structural connectivity. It can also be observed 

that the middle column removals cause higher loss in structural connectivity than the 

side column removal in any floor. The wellformedness results also reflect the 

symmetry in column removal. The wellformedness of case TSR and GSR are same 

even though their penultimate clusters differ. The same can be said for cases TMR and 

GMR. 

In the Newman unweighted analysis, the columns in middle floors are identified 

having the highest relative edge betweenness in all the scenarios considered. Since all 

the shortest paths from the top and bottom of the frame need to pass directly through 

the middle portion, the middle floor columns are identified as the inter-cluster links. 

From Table 6.2, the MSR case is identified as to have the highest possibility to cause 

the next failure. In this analysis it was found that removing a side column in a floor 

will have higher possibility of next failure following it, rather that removing a middle 

column. Removal of a middle column will increase the number of shortest paths 

carried by the adjacent columns by no more than half of what it used to carry. But 

removal of a side column will increase the number of shortest paths carried by the 

adjacent column by the number of paths it used to carry. This could be the reasoning 

behind this observation. 

In the Newman weighted analysis, the intact frame shows that middle floor middle 

column is the most likely to be removed. The cases GSR, GMR, TSR &TMR result in 

failure of beams immediately adjacent to the columns removed. The TSR and TMR 

show that the beams above the removed columns are failing. This is easier to interpret 

in a real world context. However, the cases GMR & GSR are showing that the beams 

below the removed columns are failing; and this is hard to interpret in a real world 

context. Table 6.3 shows that the relative edge betweenness for GMR and TMR are 

the highest and GSR and TSR are also equal. This echoes the symmetry observed in 

the Bristol approach results. This trend can be observed in the unweighted Newman 

analysis as well. It would be beneficial to incorporate the depth from the datum into 

the index to differentiate the top and bottom column removal. The cases MSR and 

MMR result in removal of middle floor columns, which is similar to the unweighted 

analysis. From Table 6.3, it can be determined that the middle column removal will 

have higher possibility of propagating failure rather than the side column removal in 

any floor. 
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The RSA was carried out in a manner to differentiate the ground floor column removal 

and top floor column removal. Figure 6.41 shows that after removal of ground floor 

side column, the columns above it and the beam immediately above the removed 

column are considered as the one through route terminating at the adjacent column. 

Whereas as shown in Figure 6.45, top floor column removal wouldn’t have similar 

effect as there is no column above it. This is done to incorporate the concept of possible 

load paths after a failure, to a small extent. In Figure 6.44 (MMR), it can be observed 

that beams immediately below the removed column are considered as two different 

routes, as they are still transferring load from that floor to the adjacent columns, same 

as before the failure. However the beams immediately above the removed column are 

considered as single route, as they have to transfer the load from the columns above to 

the adjacent columns. A similar philosophy was used all scenarios. 

Table 6.10 shows that the relative connectivity of the damaged frames will always be 

lower than of the intact frame. This can be seen as justifying the implementation of 

RSA to the frames. Table 6.10 also shows that the relative depth of the intact frame is 

always lower than its counterparts. It can be derived that relative depth can be used to 

measure the degree of damage of the structure. Similar to the Bristol approach, the 

middle column removals cause severe loss in the connectivity, compared to the 

respective side column removal. It can be noted that the least loss of connectivity due 

to a middle column removal (TMR) is greater than the largest loss in connectivity due 

to a side column removal (GSR). The loss in connectivity due to column removals 

reduces as it moves away from the ground - i.e. loss in connectivity can be repeated as 

GMR>MMR>TMR>GSR>MSR>TSR. The ground floor middle column causes the 

highest loss in connectivity. The middle floor middle column causes the largest 

increase in relative depth. 
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7 Analysis of Road Network 

7.1 Introduction 

In the previous chapters, the structures (truss and frame) were analysed in an attempt 

to quantify the structural connectivity. Three different methods were employed for this 

purpose. Based on the knowledge gained, it is attempted to measure the structural 

connectivity of a two dimensional network, different to the structures. The road 

network of Sri Lanka is chosen as the network to be analysed. Section 7.2 introduces 

that network and its idealisation. The analysis method and results are given in Sections 

7.3 and 7.4 respectively. Section 7.5 presents the discussion of results. 

7.2 The network idealisation 

Like many other networks, a road network is complex in nature. Figure 7.1 shows the 

national road network of Sri Lanka and its complexity. The road network of Sri Lanka 

is reported to have density of 1.76km/sq.km. This can be simplified by choosing the 

level of resolution of network to be analysed. The major roads in road network are 

classified in to the following six different categories (Sri Lanka Tagging Guidelines - 

OpenStreetMap Wiki, 2017). 

 Expressway (E) 

 Main Road (A-Level) 

 Main Road (B-Level) 

 Secondary/Minor Road (C&D) 

 Jeep/Car road 

 Footpath  

By selecting only the expressways and the main A-level roads, the resolution of the 

network is reduced, i.e. reduced resolution offers less details of network. Figure 7.2 

shows only the A-Level roads and the expressways extracted from Figure 7.1. As can 

be observed, the complexity of the network is greatly reduced. This leads to easier 

computation with respect to identification of shortest paths. With increased resolution, 

it would be possible to get more accurate results regarding the network; however the 

computation effort also increases. In this research, it was decided to limit the resolution 

to expressways and main A-level roads. 
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Figure 7.1 National Road Network (RDA-2017) 

 

Figure 7.2 A-Level main roads and expressways 
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When selecting the roads for the analysis, in addition to the A-level roads and 

expressways, the roads connecting the expressways to the A-level roads are included. 

It was noted that parallel roads of the same level don’t commonly exist in the network 

at this resolution; thus it was decided not to include the number of parallel roads as the 

edge weight for the analysis in this research. This can be explored in the analysis of 

network of larger resolution, as it would have a higher number of parallel roads. 

The road junctions are modelled as joints. The road is modelled as a link connecting 

these two joints, while the orientation of the road is dictated by the joint location. The 

length of the link is kept as the actual physical length of the road segment between the 

said joints. The idealised road network is given in Figure 7.3. This network has 70 

nodes and 105 links. The physical road lengths were rounded off to nearest 2 km.  

 

Figure 7.3 Idealised network 
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7.3 The analysis method 

7.3.1 Introduction 

The Bristol approach was identified as the most suitable index to measure the structural 

connectivity of the structures. To adopt the Bristol approach to the road network, the 

traffic modulus of every link should be determined. Traffic modulus is the equivalent 

of the elastic modulus for structures and deals with traffic flow (analogous to stress) 

and traffic strain (analogous to mechanical strain) (Liu, 2016). Computation of traffic 

modulus requires data on the traffic capacity and many other aspects which would not 

be available for everyone, or cannot be assumed as fixed over a period of time.  

It was decided to adopt a combination of Newman’s method and RSA (which is 

developed specifically for roads) to quantify the structural connectivity of the road 

network. The Newman method was used to disintegrate the network by removing the 

most in-between road segments and the RSA was used to identify the overall 

connectivity of the network in each generation of the Newman method. 

7.3.2 Weighted geodesic paths 

As explained in Chapter 5, the Newman method uses shortest paths to calculate the 

edge betweenness. This is carried out in an unweighted manner, i.e. distance between 

the nodes are given by the number of steps taken to travel between them. The weight 

of the link is not taken into consideration when calculating the shortest path, it is 

calculated as one step. The edge weight is later used to divide the edge betweenness 

from the unweighted analysis to produce the edge betweenness for the weighted 

analysis, thus influencing the analysis. This approach is appropriate for most scenarios.  

But in the case of road network, the calculation of shortest paths cannot be carried out 

in the unweighted manner. Selection of travel path between two cities will largely 

depend on the physical distance of the paths between the said cities. The formula of 

the Newman method was modified to calculate the weighted shortest paths. It should 

be noted that only the calculation of the shortest paths are carried out in the weighted 

manner; but the calculation of the edge betweenness and the rest of the analyses are 

carried out in the unweighted manner. 

The algorithm was developed based on the concept that if a weighted shortest path to 

node ‘x’ from node ‘y’ is passing through two adjacent nodes ‘i’ and ‘j’, then the 

distance between the node ‘i’ and ‘j’ should be equal to the difference between the 

shortest distances from ‘i’ and ‘j’ to node ‘y’. Since all graphs/ network are undirected 

and connected, shortest path from node ‘x’ to node ‘y’ is equivalent to shortest path 

from node ‘y’ to node ‘x’. 

The algorithm is done in two stages. The initial stage is to calculate the weighted 

shortest distances to all the nodes from a specific node. The algorithm is explained 

using network shown in Figure 7.4 as the example. This is a modified version of 
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network shown in Figure 4.2. The weights (distances) of the links are shown as circled 

values in Figure 7.4. 

 

Figure 7.4 Selected weighted network 

Step 01: Select a node, ‘s’ as the source node. 

 Note 01: node 1 is selected as the source node in this example. 

Step 02: Initial node‘s’ is given, distance ds=0. 

Step 03: Every node ‘i’ adjacent to node ‘s’ is given distance 

 di=ds+Dsi; where Dsi= distance between node ‘s’ and ‘i’. 

 Note: nodes 2 and 3 are given distance of 2. 

Step 04: For every node ‘j’ adjacent to node ‘i’, do one of the following; 

 If node ‘j’ has not been assigned a distance, then it is assigned distance 

dj=di+Dij; where Dij= distance between node ‘i’ and ‘j’. 

 If node ‘j’ has already been assigned a distance and dj>di+Dij then it is replaced 

with 

dj=di+Dij; where Dij= distance between node ‘i’ and ‘j’. 

 If node ‘j’ has already been assigned a distance and dj<di+Dij then we do 

nothing 

Note 02: when the node 2 is taken as node ‘i’, node 4 is the only adjacent node 

(node ‘j’) and given the distance of 5.  

Note 03: Following that node 3 is taken as ‘i’, it has two adjacent nodes (node 4 

&5 as node ‘j’). The shortest distance from node 1 to node 4 through node 3 is 
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equals to distance 6. However this is more than the distance assigned to node 4 in 

the Note 03, thus this step is omitted. Node 5 is assigned distance of 5. 

Step 04: Repeat the step 03, taking the node ‘j’ as node ‘i’, until all the nodes are 

assigned a distance. 

Note 04: The process is propagated away from the source node towards the 

farthest node. 

Step 05: Repeat steps 03 and 04, counting each iterations as a generation, until the 

shortest distance from node ‘s’ to all nodes remains the same in two consecutive 

generations. 

Note 05: In large networks, the shortest path to a node that is away from the 

source node may be calculated incorrectly in the first trial. Step 05 is introduced 

to correct this. 

This concludes the initial stage of the algorithm. Now, the weighted shortest distance 

to all nodes from node ‘s’ is available for the second stage of the analysis. Distances 

from ‘s’ can now be seen as an attribute of all the nodes. Figure 7.5 shows the shortest 

distances from node 1 to all other nodes. 

 

Figure 7.5 Shortest distance to all nodes from the source node 

Step 06: For all nodes ‘i’ other than the source node ‘s’, find the adjacent nodes ‘j’ and 

group them into two groups, up_neighbour and down_neighbour with respect to the 

distances to node ‘s’, using the conditions given here; 

 up_neighbour will contain all the nodes ‘j’ through which the shortest paths 

from source node ‘s’ to a specific node ‘i’ will run through. For such nodes ‘j’, 

di= shortest distance to node ‘i’ from node ‘s’. 

dj= shortest distance to node ‘j’ from node ‘s’. 
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Dij= distance between node ‘i’ and ‘j’. 

If dj<di AND dj=di-Dij, then node ‘j’ is assigned to up_neighbours (i.e. node ‘j’ 

closer to ‘s’ than ‘i’) 

Note 06: For example, the node 4 has three adjacent nodes in Figure 7.4. Out 

of this three nodes, node 2 and node 3 have distances lower than that of node 

4. However, only node 2 is assigned to up_neighbour according to the 

algorithm. 

 Similarly, down_neighbours will contain all the nodes ‘j’ whose shortest paths 

from source node ‘s’ will run through specific node ‘i’.  

If dj>di AND dj=di+Dij, then node ‘j’ is assigned to down_neighbours (i.e. node 

‘i’ closer to ‘s’ than ‘j’). 

Note 07: node 7 is assigned as down_neighbour of node 4. 

 If dj=di, then do nothing. 

Step 06-1: Arrange the nodes according to the shortest distance from the source node 

in ascending order, staring with the source node ‘s’.  

 Note 08: This order for Figure 7.5 would be nodes 1, 2, 3, 4, 5, 6 and 7. 

Step 06-2: Assign a weight flag to source node as ws=1. For all other nodes weight 

flag shall be equal to summation of weight flags of nodes in the up_neighbour group. 

 Note 09: Figure 7.6 shows the weight flag assigned for nodes of Figure 7.4. 

 

Figure 7.6 Weight flags of the nodes 

Step 07-1: Arrange the nodes according to the shortest distance from the source node 

in descending order, finishing with the source node ‘s’. 

 Note 10: This order for Figure 7.5 would be nodes 7, 6, 5, 4, 3, 2 and 1. 
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Step 07-2: For each node ‘i’, in descending order, find the nodes in the 

down_neighbours ‘j’ and add the edge betweenness of the connecting edges (i-j). This 

would be zero for the first node in the order (farthest form the source node). 

Step 07-3: Then find the nodes j in the up_neighbour and assign the edge betweenness 

as given in equation 7.1. 

Edge betweenness of i-j= (wj/wi)*(1+ summed edge betweenness)   equation 7.1 

Note 11: The edge connecting the farthest node (node 7) to its upneighbour 

(node 5) is edge 5-7. Edge betweenness for this edge can be calculated as 1. 

Note 12: Edge betweenness of edges 4-6 and edge 5-6 (the edges connecting 

node 6’s to its upneighbours) is calculated as 0.5 each. 

Note 13: Edge betweenness of edge 3-5 is calculated as 2.5. This is the 

summation of edge betweennesses of edge 5-6 and edge 5-7 added with value 

one then multiplied by 1. 

Figure 7.7 shows the edge betweenness calculated for all edges considering 

node 1 as the source node. 

 

Figure 7.7 Edge betweenness considering node 1 as the source node 

After this, all seven steps need to be carried out for all nodes in the network and the 

edge betweenness of an edge is the summation of all edge betweennesses of that 

specific edge throughout the analysis, i.e. considering all nodes as source edges. The 

removal of edges follow the normal unweighted Newman analysis method. It should 

be noted that weight flag, w, is used to account for multiple paths but doesn’t constitute 

weighted analysis.  
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7.3.3 The route structure 

Even though only the expressways and level-A main roads are considered for the 

analysis, some priority basis needs to be established for route formation. Expressways 

are considered as more through than the level-A roads. Between the level-A roads, the 

naming was used to determine the thoroughness of the route. Lower the naming 

number, the road was considered as more through e.g. the road A1 is more through 

than A2 or A3. The Newman method is used to remove the most in-between edge and 

the RSA is used to calculate the overall connectivity of the network. As the Newman 

method progresses to remove edges incrementally, the overall connectivity is 

recalculated by re-identifying routes. When the network is broken into two or more 

groups, the process is kept the same while the relative connectivity and relative depth 

are now calculated separately for each cluster as well as the overall network. 

Calculation of connectivity of overall network even after it is disconnected has been 

explored by previous researchers (Cartledge, 2011). For example, Table 7.1 shows the 

route properties identified for the intact network. All the routes are considered to have 

the same depth. 

Table 7.1 Route properties for intact network 

Stage 0 Continuity Connectivity Depth 

E03 3 4 1 

E02 1 3 1 

E01 3 7 1 

A00 1 2 1 

A01 7 10 1 

A02 6 9 1 

A03-1 2 4 1 

A03-2 1 4 1 

A04 10 15 1 

A05 6 8 1 

A06 7 10 1 

A07 2 3 1 

A08-1 1 3 1 

A08-2 1 3 1 

A09-1 1 2 1 

A09-2 10 12 1 

A10-1 2 5 1 

A10-2 2 5 1 

A11-1 1 3 1 

A11-2 1 3 1 

A12-2 4 7 1 

A12-1 2 5 1 

A13 1 2 1 

A14 3 3 1 
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A15 2 5 1 

A16 2 3 1 

A17-1 2 3 1 

A17-2 1 4 1 

A18 2 3 1 

A19 1 3 1 

A20 1 2 1 

A21 1 3 1 

A22 1 2 1 

A23 1 3 1 

A24 2 3 1 

A25 1 3 1 

A26 1 3 1 

A27 1 3 1 

A28 1 2 1 

A29 1 3 1 

A30 1 3 1 

A31 1 3 1 

A32 1 2 1 

A33 1 2 1 

A34 1 2 1 

A35 1 2 1 

 

7.4 Results 

Figures 7.8 to 7.11 show the first three generations of the modified Newman’s 

algorithm for the road network. Figure 7.12 shows the 19th generation of the algorithm. 

The edge betweenness of each edge is represented as the thickness of the edges in the 

given Figures. Table 3.2 shows the relative connectivity and relative depth of the 

network for first ten generations of the algorithm. This data is also represented in the 

Figure 7.9 as a graph. When the network is broken into different clusters, the 

parameters for the new clusters are also tracked. 
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Figure 7.8 Generation 00 (Intact network) 

 

Figure 7.9 Generation 01 (Penultimate cluster) 
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Figure 7.10 Generation 02 

 

Figure 7.11 Generation 03 



Structural Connectivity of Two-Dimensional Assemblies Chapter VII 

Analysis of Road Network 

 

116 

 

Figure 7.12 Generation 19 

Table 7.2 Relative connectivity and relative depth of road network 

St
ep

 

R
el

at
iv

e 
C

o
n

n
ec

ti
vi

ty
- 

O
ve

ra
ll 

R
el

at
iv

e 

C
o

n
n

ec
ti

vi
ty

- 

C
lu

st
e

r 
1

 

R
el

at
iv

e 

C
o

n
n

ec
ti

vi
ty

- 
C

lu
st

e
r 

2
 

R
el

at
iv

e 

C
o

n
n

ec
ti

vi
ty

- 
C

lu
st

e
r 

1
.1

 

R
el

at
iv

e 
C

o
n

n
ec

ti
vi

ty
- 

C
lu

st
e

r 
1

.2
 

R
el

at
iv

e 
D

ep
th

- 

O
ve

ra
ll 

R
e

la
ti

ve
 

D
ep

th
- 

C
lu

st
e

r 
1

 

R
el

at
iv

e 
D

ep
th

- 
C

lu
st

e
r 

2
 

0 0.56232     0.13333   

1 0.56232     0.13623   

2 0.56105     0.13953   

3 0.56105     0.14244   

4 0.55977 0.56279 0.55469   0.14577 0.13953 0.15625 

5 0.55977 0.56279 0.55469   0.14869 0.14419 0.15625 

6 0.55882 0.56132 0.55469   0.15000 0.14623 0.15625 

7 0.55882 0.56132 0.55469   0.15294 0.15094 0.15625 

8 0.55786 0.55981 0.55469   0.15430 0.15311 0.15625 

9 0.55689 0.55825 0.55469   0.15569 0.15534 0.15625 

10 0.55319 0.55224 0.55469 0.55422 0.55085 0.15805 0.15920 0.15625 
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Figure 7.13 Relative connectivity and relative depth of road network 

 

7.5 Discussion 

In this chapter, the road network was analysed as an attempt to determine the 

applicability of structural connectivity to networks other than structures. It was also 

attempted to check adoptability of the indices considered for structural connectivity of 

structures to the road network. Though the preferred index of structural connectivity 

of structures (Bristol approach) was not applicable to the road network in its current 

form, mainly due to its requirement of data that may not be available to public, a 

suitable replacement index was formulated by combining Newman’s method and route 

structure analysis. 

Analysis using weighted multiple shortest paths provides a realistic approach towards 

the road network analysis, as travel time is the major component influencing the route 
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selection in travelling. However, this analysis is carried out on an idealised network of 

low resolution, limiting the possible alternate shortest paths that can be formulated 

within the network. It is also assumed that all roads have similar traffic capacity, traffic 

flow and same comfort level of travel. Since all the roads are of A-level or above, this 

is a reasonable assumption. The expressways are deemed to have higher throughness 

due to lesser congestion and higher comfort level. The influence of the traffic capacity 

can be taken as an edge weight for a weighted analysis along with the parallel roads 

between two junctions. Since this is an unweighted analysis, it was assumed that all 

nodes have same traffic generating potential, this can be modelled as nodal weights 

for weighted analysis of road network. Due nature of the analysis (unweighted) and 

scope of this research, the said assumptions are deemed to suffice. 

It can be observed from Figure 7.13 and Table 7.2 that the relative connectivity of the 

overall network always reduces or stays constant in consecutive generations. It is also 

observed that the modified Newman’s algorithm seeks out the cluster with the highest 

relative connectivity, after the network is broken into clusters (at generation 4). 

Though the relative connectivity remains constant between some generations, the 

overall relative depth always increases. This trend is observed in the broken clusters 

as well. The relative depth of the cluster 1 always increases as the cluster continues to 

lose edges. This shows that the relative depth can be used as an index for level of 

damage in a network (overall as well as individual clusters). 

The Figures 7.8 to 7.11 show the generations of modified Newman’s algorithm. The 

most in-between edge detected in the 1st generation of the algorithm is the road 

segment shared by A9 (Kandy- Jaffna) and A6 (Ambepussa- Trincomalee) roads near 

Dambulla. This can be regarded as one of the most strategic road segments as most of 

the west-east/north, south-north & central-north/east trips will occur through this road 

segment. This is consistent with everyday experience and gives credibility to the 

applied algorithm and the analysis method. In addition, by generation 19, the road 

network is broken in to clusters that almost resemble the established provincial 

divisions as shown in Figure 7.12. This shows that the analysis method captures the 

spatial connectivity of the road networks
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8 Summarizing Discussion 

8.1 Introduction 

This chapter acts as a summary and combination of the discussion sections in the 

previous chapters. Initially the discussion on the selected analysis methods and 

selected networks is presented in Section 8.2. The Section 8.3 discusses the trusses and 

offers comparison between results from the different analysis methods. The frame 

results are discussed in the Section 8.4 followed by discussion on road network results 

in Section 8.5. Section 8.6 highlights the indices that are most helpful for analysing 

the connectivity of two dimensional assemblies whether intact or damaged. 

8.2 Analysis methods and selected structures 

The aim of this research was to give definition for structural connectivity in the context 

of structures and to propose an index for it. Three kinds of two-dimensional assemblies 

were analysed in this research and each type was used for different kind of purpose. 

Three different trusses were analysed to check which form has the better structural 

connectivity. Effect of increasing the chord member stiffness was checked as well. The 

frame was analysed to check which column loss would cause the highest loss in 

structural connectivity. The road network was checked to confirm the applicability of 

structural connectivity to networks other than structures. The change in structural 

connectivity during the network decomposition was measured for the road network. 

Figures 1.4 to 1.6 shows the selected truss forms and Figure 1.7 the selected frame 

configurations. The idealised road network is given in Figure 7.3. 

The analysis methods can be grouped into the following two categories; 

 Unweighted analysis methods 

 Weighted analysis methods 

Graph theory, unweighted Newman’s analysis and route structure analysis can be 

called unweighted analysis methods. These analysis methods don’t consider the 

structural characteristics of the links or nodes in the idealised network. Since they don’t 

consider the length of the links in the analysis, the spatial location of the nodes don’t 

influence the results. The main factor in deciding the structural connectivity is the 

connections between the nodes. But the route structure analysis for the road network 

(not the trusses)  takes the spatial positioning of the links and nodes into consideration.  

The weighted Newman’s method and the Bristol approach are the weighted analysis 

methods used in this research. These methods take the actual form and structural 

characteristics of the structure into account during the analysis. These characteristics 

can be the joint type and member stiffness, among others. All the unweighted methods 

offer an insight into the form of the structure/network without any structural 
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characteristics, while the weighted analysis methods offer information on the structural 

feature of the structure as well. If a structure has high structural connectivity in the 

unweighted analysis, then it has the potential to be the form with the highest structural 

connectivity in the weighted analysis.  

Out of the selected four analysis methods, only the Bristol approach and Newman’s 

method have the ability to predict the possible failure location. However there exists a 

fundamental difference between Newman’s method and the Bristol approach. The 

Bristol approach, being an agglomerative method, creates clusters in the first step of 

the analysis. The last cluster to be added to the main cluster is identified as the least 

connected one. This last cluster can either be a structural ring or a cluster that has 

grown to some extent; this means that it is not always possible to identify a single 

member as a weak link but rather a weakly connected region. Newman’s method being 

a decompositive method seeks out the least connected link in the first step itself. 

8.3 Trusses 

In Table 2.3, it was shown that indices such as closeness centrality, diameter of graph 

and graph radius select truss T1 to be most closely knitted as one. These indices 

indicate how closely the nodes in a graph are connected together. The strength of 

graph, which is similar to Newman’s method, shows that truss T1 is the strongest. It 

should be noted that the unweighted Newman analysis also selects truss T1 to be the 

most wellformed. Truss T1 is also selected to have the highest connectivity when it 

comes to algebraic connectivity index. Truss T2 is identified to be the most 

triangulated one as it has the highest values for both global and average local clustering 

coefficients. 

It was observed that the unweighted analysis methods such as Graph theory and the 

unweighted Newman analysis indicate that truss T1 to be the most connected one. 

However the Route Structure Analysis (RSA) results don’t reflect this. In the RSA, 

truss T1 is shown to be the least connected one. It should be noted that though RSA is 

identified as an unweighted analysis, the spatial relationship of the network is taken 

into consideration during this analysis. This is somewhat similar to weighted analysis 

methods and truss T1 is not favoured in any of the weighted analyses. From Table 5.9, 

it can be seen that truss T2 has the highest relative connectivity in RSA. It should be 

noted that in the Graph theory indices select the truss T2 to be second most 

wellconnected truss form. 

Newman’s method is the only unweighted analysis that can show the possible failure 

location or the weak link. It was noted that all failure locations are located on the 

chords of the trusses (Figure 4.11). This is also observed in the weighted analysis. 

In the weighted analysis, three cases were considered for the analysis, varying the axial 

rigidity of the chord members while keeping the axial rigidity of the web members as 

unity. These cases were; 
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 Case 1 : Axial rigidity of all the members are unity 

 Case 2 : Axial rigidity of the chord members are double that of the web 

members 

 Case 3 : Axial rigidity of the chord members are four times that of the web 

members 

Understanding the penultimate cluster of the Bristol approach (or generation 01 of 

Newman’s method) is important to identify the possible failure location in a structure. 

Figures 4.1 to 4.3 show the possible failure locations identified in the three cases 

considered. Solid loops are used to indicate the failure location identified by the Bristol 

approach while the dashed loops to indicate weakest link identified by Newman’s 

method. Table 8.1 gives a summary of analysis results for trusses. 

 

(a) Fractal truss 

 

(b) Warren truss 

 

(c) Fan type truss 

Figure 8.1 Results of Case 1 
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(a) Fractal truss 

 

(b) Warren truss 

 

(c) Fan type truss 

Figure 8.2 Results of Case 2 

 

 

(a) Fractal truss 
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(b) Warren truss 

 

(c) Fan type truss 

Figure 8.3 Results of Case 3 

Figures 8.1 to 8.3 shows that the failure locations predicted by the different methods 

don’t always agree with each other. It is generally regarded that failure of a web 

member is preferable to failure of a chord member. Due to simplicity of the chosen 

truss forms and the nature of agglomerative clustering, the Bristol approach is unable 

to point to a failure that is purely a web failure. Newman’s method is able achieve this.  

Figure 8.1 shows that the failure is located in the chords of the trusses for both 

methods. Newman’s methods identifies the middle of the bottom chord as the possible 

failure location for all three trusses. Though failure in the chord is not desirable, the 

inherent arching action of trusses may negate complete failure even after failure of 

middle bottom chord. For truss T1 and T3, the Bristol approach shows that the failure 

might occur in the corner nodes of the trusses. These are usually the support nodes. 

Truss T2’s failure is expected to happen in the middle of the top chords. This kind of 

failure can lead to complete failure and should be avoided. In Figure 8.1, none of the 

failure locations predicted by two methods match each other. 

Figure 8.2 shows that truss T2 and T3 indicate the same failure locations for both 

analysis methods. Middle of the bottom chord is identified as the failure location for 

both of these trusses. The failure location identified by both methods lie in the middle 

fractal of truss T1. The failure of truss T1 now affects the top chord which is not 

preferable but the overall wellformedness has increased indicating the effort to cause 

the failure will be higher than in case 1. As per Newman’s method, the failure has 

shifted from the chord to a web member, and this is much preferable. 
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In Figure 8.3, only truss T3 shows the same failure location for both Bristol approach 

and Newman’s method which remains at the middle of bottom chord. For truss T1, 

Newman’s method indicates the same location of failure while the region of failure 

region indicated by the Bristol approach moves away from the support nodes. 

Newman’s analysis for truss T2 shows that the failure has moved from chord to web 

completely. However the Bristol approach continues to indicate that middle of bottom 

chord is susceptible to failure even after quadrupling the axial rigidity from case 1.  

 

Table 8.1 Summary of truss analysis results (shading indicates better connectivity) 

 Truss T1 Truss T2 Truss T3 
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Wellformedness 4.57 7.27 13.09 7.56 14.75 30.23 9.96 16.19 29.71 

Relative 

betweenness  
7.80 10.28 12.93 7.21 5.32 8.21 23.55 15.57 9.16 

Relative 

connectivity  
0.557 0.588 0.583 

Relative Depth 0.250 0.213 0.229 

 

In Bristol approach, the structural connectivity is measured by the wellformedness (for 

trusses and intact frames) and by the relative separateness (for damaged frames) 

irrespective of the possible failure location. Table 8.1 shows that increasing the chord 

member stiffness benefits all the truss forms. This is easily observable for the Bristol 

approach - increasing the chord axial rigidity always results in increased 

wellformedness for all three trusses. The relative betweenness of the Newman method 

is highly dependent on the removed edge; this was the reason behind the sudden 

increase in relative betweenness between case 1 and case 2 for truss T1and between 

case 2 and case 3 for truss T2. Figures 8.1 and 8.2 shows that the failure has moved 

from the chord to web member of truss T1 and Figures 8.2 and 8.3 show the same for 

truss T2. In case 3 for truss T1, the relative betweenness again increases indicating that 

the web member has become more in-between which in turn indicates that the 

possibility of a chord failure has reduced even further. The failure location of truss T3 

remains same in Newman analysis for all three cases. Table 8.1 shows that the relative 

betweenness of truss T3 reduces as the axial rigidity is increased. Since the indicated 

failure location is in the chord of truss T3, this indicates that identified member is 

becoming less in-between. This is favourable. 

As per the Bristol approach, truss T3 is selected to be the most wellformed in case 1 

and 2. But in the case 3, truss T2 is chosen as the most wellformed truss. In Newman’s 

method, truss T2 is selected to be most wellconnected throughout all three cases. The 

RSA also selects truss T2 to have highest connectivity. The material cost for increasing 
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the wellformedness was compared in Figure 3.27. Truss T2 is shown to be most 

effective in this aspect. 

 

8.4 Frame 

Unlike for the trusses, detailed comparison of results from different methods is already 

presented in Section 6.4. A brief summary of the mentioned discussion is presented in 

this section. Table 8.2 shows a summary of results from different analysis methods for 

different column loss conditions considered. 

Table 8.2 Summary of frame analysis results (shading indicates poorer connectivity) 

Frame condition GSR GMR MSR MMR TSR TMR 

Relative separateness 48.00 50.94 50.02 54.15 48.00 50.94 

Relative betweenness 

(unweighted) 
3.385 3.366 4.075 4.071 3.385 3.366 

Relative betweenness 

(weighted) 
7.619 8.354 2.994 3.265 7.619 8.354 

% Reduction in 

relative connectivity 
0.48 2.14 0.24 1.34 0.24 0.73 

% increase in relative 

depth 
0.70 1.89 1.30 3.66 1.30 0.08 

 

Among the selected analysis methods for frames, only Newman’s method offers a 

purely unweighted analysis. It is shown in Table 8.2 that middle floor side column 

removal causes the highest possibility of propagating the failure, closely followed by 

middle floor middle column removal scenario. It can be concluded that as per 

unweighted analysis middle floor column removals cause higher loss in connectivity 

than top or ground floor column removals. This is understandable as all shortest paths 

from top and bottom of the structure have to travel through the middle floor columns. 

This result is also reflected in the Bristol approach to some degree. It is also noted in 

the unweighted Newman analysis, the side column removals has a greater effect than 

middle column removals. 

Table 8.2 shows that the middle floor middle column removal has the highest relative 

separateness. The middle portion of the structure has the joints with highest joint 

stiffness causing the clustering to be initiated from there. Loss of a member in the 

middle portion of structure causes the highest loss in structural connectivity. The 

middle floor middle column removal causes the largest increase in the relative depth 

in RSA, which is an index used to check the damage to the structure. It should be noted 

that in the Bristol approach middle column removal at any floor has a greater effect 

that the respective side column removals. This is reflected in both weighted Newman 

analysis and RSA.  
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The ground floor middle column removal and top floor middle column removals are 

chosen as the mostly likely scenarios to propagate failure in the weighted Newman 

analysis. In the RSA results it can be observed that percentage loss in relative 

connectivity for each scenario can be arranged in the ascending order such that the 

least loss in relative connectivity by a middle column removal is greater than the 

greatest loss by a side column removal. It was also observed that ground floor middle 

column removal will have the greatest effect on the relative connectivity followed by 

middle floor middle column removal. Loss in connectivity of selected scenarios can 

be arranged as GMR>MMR>TMR>GSR>MSR>TSR. 

It can be observed from the Table 8.2, that both Newman’s method and Bristol 

approach results are symmetric in nature-i.e. the result of GMR is equal to TMR and 

GSR is equal to TSR. This behaviour is not reflected in the RSA results. Actual spatial 

relationship of the member is taken into consideration in the RSA, enabling the 

analysis method to assess the top column and ground column removals separately. This 

highlight the importance of having an index that can account the spatial arrangement 

of the structure. Bristol approach employs a parameter called ‘distance from datum’ to 

account this.  

8.5 Road Network 

The analysis of the road network was carried out to confirm the adaptability of the 

concept of structural connectivity to other two dimensional networks. The response of 

a network to strategic link removal was also explored during this. Due to the difficulty 

of adopting Bristol approach to road network, only a combination of Newman’s 

method and RSA was used analyse the road network. 

In order to find the weak links in the road network, Newman’s community finding 

algorithm was modified to use weighted multiple shortest paths. This modified 

algorithm could prove to be useful in many future network analyses. The RSA was 

used to find the relative connectivity of the overall network and clusters that formed 

by removing the in-between edges. The relative depth proved to be a good index to 

analyse the damage level of the network. 

8.6 Key Indices 

Key indices used in this research are tabulated against the assemblies in Table 8.3. 

While the Bristol method accounts for many of the structural features in a structure, 

its implementation is not so straightforward for transferring to other assemblies such 

as roads. The time tested Newman methods are probably the most versatile, based as 

they are on even more established graph theory principles. The route structure analysis, 

relatively unknown to the structural engineering community, also appears to be 

promising. 
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Table 8.3 Key indices in this research 

Analysis Method Index Trusses Damaged Frame Roads 

Bristol approach Wellformedness ✔ ✔  

Relative separateness  ✔  

Newman’s method Relative betweenness ✔ ✔ (✔) 

RSA Relative connectivity ✔ ✔ ✔ 

Relative depth ✔ ✔ ✔ 
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9 Conclusions  

The following are the conclusions from this research. 

 The concept of structural connectivity for assemblies is defined as follows; “In 

a field of a finite number of joints/nodes/points of interests connected by a 

finite number of members/paths/connections, the concept of ‘structural 

connectivity’ seeks to not only assess how strongly the members are connected 

at a given joint but also how strongly the groups of members are connected to 

each other.” 

 All selected analysis methods are identified to have their own merits. However, 

out of the selected analysis methods, Bristol approach (wellformedness) is 

tentatively recommended as the index for measuring the structural connectivity 

of structures. This is because it uses direct structural mechanics properties in 

the analysis. 

 The importance of the unweighted analysis is realised in this research as it 

reveals the form that can have the highest structural connectivity in the 

weighted analysis. The Route Structure Analysis (RSA) is recommended as the 

preferred unweighted analysis method as it takes the spatial relationship of the 

structure into account in the analysis. 

 Newman’s method proved to be the most flexible one, given its adaptability 

for several uses. Being able to determining appropriate weights for each 

analysis is the strongest characteristic of this analysis method. Though Bristol 

approach method is recommended as the measure for structural connectivity, 

Newman’s method should be appreciated for being able to determine the 

weakest link in the structure at the first step of the analysis with acceptable 

accuracy.  

 In addition to the measurement indices, the penultimate cluster of Bristol 

approach and generation 01 of Newman’s method gives important information 

regarding structural connectivity and weakly connected zones/members in a 

structure. 

 Though some of results from the different analysis methods are similar to each 

other, similarity is not consistent throughout the results. This is particularly 

noted in the determination of weak links. However, the results did lead to a 

convergence in the identification of the ends and mid-span of trusses as the 

general location of weak links. It was also identified that chord members are 

the weak links in all scenarios.  

 Bristol approach shows the truss T3, Fan type truss, to have the highest 

structural connectivity followed by Warren type truss (truss T2). Both 

weighted Newman analysis and RSA show truss T2 to have the highest 

structural connectivity. Considering all the results, truss T2 is chosen to have a 

good structural form. 
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 It was observed that increasing the axial rigidity of the chord member benefits 

all the truss forms. This was observed in both weighted analysis methods. 

Increasing the axial rigidity of the chord members either increases the 

structural connectivity of the trusses and/or moves the weak link/ possible 

failure location from chord member to web member. Truss T2 gives highest 

percentage increase in wellformedness compared to the material cost incurred 

to achieve it. 

 For the framed structure, analysis methods agree that middle column removal 

causes higher loss in connectivity than side column removal in the 

corresponding floor. The different methods indicate different middle column 

removals to have the highest effect on the structural connectivity. 

 The Bristol approach and weighted Newman analysis show symmetric results-

i.e. loss in structural connectivity for GMR & GSR is equal to TMR & TSR 

respectively. This might not be reflected in a real world context. The RSA 

shows that the loss in connectivity can be arranged as GMR> MMR> TMR> 

GSR> MSR> TSR.  

 Based on this, it is recommended to incorporate spatial relationships of the 

structure in calculation of structural connectivity to a greater degree in future 

research.  

 The concept of structural connectivity for structures is proved to be applicable 

to two dimensional networks other than structures. The A-level road network 

of Sri Lanka was successfully analysed using the concept of structural 

connectivity. 

 The relative depth from RSA can be used as an index to measure the damage 

to two-dimensional assemblies. 
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APPENDIX A: MATLAB Code 

The MATLAB code to calculate betweenness stated in Newman’s method is presented 

here. The code is broken into different executable M-files. Appendix A-1 gives the 

code for the normal network and Appendix A-2 the code for road networks. Though 

this might not be the most efficient coding, it was fit for its purpose. 

Appendix A-1: MATLAB code for analysing normal network 

M-file: Combined_input_code.m 

% Input Area 

  
M=xlsread('FPRTM21.xls'); 
C=xlsread('FC.xls'); 

  
% Creating basic adjacency matrix 
adj=sparse(M(:,1),M(:,2),1); 
adj=full(adj); 

  
%assigning cordinates 
nm=length(M(:,1)); 
nj=length(C(:,1)); 

  
n1=M(:,1); 
n2=M(:,2); 

  
y2 = zeros(nm,1); y1 = y2; x2 = y1; x1 = x2; 
for i=1:1:nm 
    x1(i,1)=C(n1(i,1),1); 
    y1(i,1)=C(n1(i,1),2); 
    x2(i,1)=C(n2(i,1),1); 
    y2(i,1)=C(n2(i,1),2); 
end 

  
% Assigning other charecteristics 

  
A=M(:,5); 
I=M(:,6); 
E=M(:,7); 
R=M(:,8); 

  
% Length computation 
l=zeros(nm,1); 
for i=1:nm 
l(i)=hypot((x2(i)-x1(i)),(y2(i)-y1(i))); 
end 

  
% creating full adjacency matrix 
n=length(adj); 
[a,b]=size(adj); 
adj1=zeros(max(a,b)); 
adj1(1:a,1:b)=adj; 
adj=adj1; 
% Check 1= Graph 
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G=graph(adj,'upper'); 
 

plot(G,'XData',C(:,1),'YData',C(:,2),'EdgeColor','black','NodeColor'

,'black'); 
 % Full matrix 
 AdjM2=adj+adj'; 

  
dof= zeros(6,1,nm); 
doft=zeros(4,1,nm); 
T = zeros(6,6,nm); 
K_e_local= zeros(6,6,nm); 
K_e_global= zeros(6,6,nm); 
K_t_local=zeros(2,2,nm); 
K_t_global=zeros(4,4,nm); 
K_assembled = zeros(3*nj,3*nj); 
K_tassembled = zeros(2*nj,2*nj); 
Tt = zeros(2,4,nm); 

  
K_f=zeros(6*nm,6); 
K_f_W1=zeros(nm,2); 
K_f_W=zeros(nm,1); 
for i=1:nm 
    T(:,:,i)=matrix_tr(l(i),x1(i),y1(i),x2(i),y2(i)); % creating 

transformation matrix for frame 
    K_e_local(:,:,i) = s_matrix(l(i),A(i),I(i),E(i));% creating 

stiffness matrix 
    al1=l(i);aA1=A(i);aI1=I(i);aE1=E(i);  
    b1=det(K_e_local(:,:,i));b2=4*aE1*aI1/(al1^2); 
    K_f_W1(i,:)=[b1,b2]; 
    K_f_W(i,1)=K_f_W1(i,R(i,1)); % assigning newman weight based on 

column/ beam 
    K_e_global(:,:,i) = T(:,:,i)'*K_e_local(:,:,i)*T(:,:,i); % 

global stiffness matrix 
     csvwrite('tryf.csv',K_e_global(:,:,i)); 
    K_f(6*i-5:6*i,1:6)=csvread('tryf.csv'); % global storage 

differently 

     
    dof(:,:,i) = [3*n1(i)-2; 3*n1(i)-1; 3*n1(i); 3*n2(i)-2; 3*n2(i)-

1; 3*n2(i)]; 
    K_assembled(dof(:,:,i),dof(:,:,i)) = 

K_assembled(dof(:,:,i),dof(:,:,i)) + K_e_global(:,:,i); % assembled 

frame matrix 
end  
K_t=zeros(4*nm,4); 
K_t_W=zeros(nm,1); 
for i=1:1:nm 
    Tt(:,:,i)=matrix_ttr(l(i),x1(i),y1(i),x2(i),y2(i)); 
    K_t_local(:,:,i) =  E(i)*A(i)/l(i)*[1 -1;-1 1]; 
    K_t_W(i,1)=E(i)*A(i)/l(i); 
    K_t_global(:,:,i) = Tt(:,:,i)'*K_t_local(:,:,i)*Tt(:,:,i); 
    csvwrite('tryi.csv',K_t_global(:,:,i)); 
    K_t(4*i-3:4*i,1:4)=csvread('tryi.csv'); 
    doft(:,:,i) = [ 2*n1(i)-1; 2*n1(i);2*n2(i)-1; 2*n2(i)]; 
    K_tassembled(doft(:,:,i),doft(:,:,i)) = 

K_tassembled(doft(:,:,i),doft(:,:,i)) + K_t_global(:,:,i); 
end  

  
save('K_t.mat','K_t') % global stiffness matrix for truss separetely 
save('K_f.mat','K_f') % global stiffness matrix for frame separetely 
save('K_tas.mat','K_tassembled') 
save('K_fas.mat','K_assembled') 
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save('t_W.mat','K_t_W') 
save('f_W.mat','K_f_W') 
save('AdjM2.mat','AdjM2') %full adjacency matrix 
save('Location.mat','C') 
save('Prop.mat','M') 
save('length.mat','l') 

 

M_file: matrix_tr.m 

function [T] = matrix_tr(l,x1,y1,x2,y2) 
cost = (x2-x1)/l; 
sint = (y2-y1)/l; 

  
k = [cost sint 0;-sint cost 0;0 0 1]; 
y = zeros(3); 

  
T = [k y;y k]; 

  
end 

 

M_file: matrix_ttr.m 

function [T] = matrix_tr(l,x1,y1,x2,y2) 
cost = (x2-x1)/l; 
sint = (y2-y1)/l; 

  

  
T = [cost sint 0 0;0 0 cost sint]; 

  
end 

 

M_file: s_matrix.m 

function [K_local] = s_matrix(l,A,I,E) 

  
a = E*A/l; 
b = 12*E*I/(l^3); 
c = 6*E*I/(l^2); 
d = 4*E*I/(l); 
e = 2*E*I/(l); 

  
K_local = [a 0 0 -a 0 0;0 b c 0 -b c;0 c d 0 -c e;-a 0 0 a 0 0;0 -b 

-c 0 b -c;0 c e 0 -c d]; 

  
end 

 

M_file: s_tmatrix.m 

function [K_local] = s_tmatrix(l,A,E) 

  
a = E*A/l; 

  
K_local = [a -a;-a a]; 
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end 

 

M_file: Jointsiffness.m 

clc 
clear all 
load('K_fas.mat') 
af=length(K_assembled)/3; 
Kf=zeros(3,3,af); 
Cf=zeros(af,1); 
for i=1:1:af 
    Kf(:,:,i)=K_assembled(3*i-2:3*i,3*i-2:3*i); 
    Cf(i,1)=det(Kf(:,:,i)); 
end 
load('K_tas.mat') 
at=length(K_tassembled)/2; 
Kt=zeros(2,2,at); 
Ct=zeros(at,1); 
for i=1:1:at 
    Kt(:,:,i)=K_tassembled(2*i-1:2*i,2*i-1:2*i); 
    Ct(i,1)=det(Kt(:,:,i)); 
end 

  
save('C_t.mat','Ct') 
save('C_f.mat','Cf') 

 

M_file: MultiSPaths.m 

function [P D TW]= MultiSPaths(AdjR) 
n=length(AdjR); 
D=ones(n)*10000; 
P=cell(n); 
for i=1:1:n 
    AdjMod=AdjR; 
    D(i,i)=0; 
    qu=i; 
    Vi=zeros(1,n); 
    while(~isempty(qu)) 
        v=qu(1); 
        for j=1:1:n 
            if (AdjMod(v,j)==1) 
                if (Vi(v)==0) 
                    qu=cat(2,qu,j); 
                    if(D(i,j)==10000) 
                        D(i,j)=D(i,v)+1; 
                    end 
                    if (D(i,j)==D(i,v)+1) 
                        P{i,j}=cat(2,P{i,j},v); 
                    end 
                end 
            end 
        end 
        qu(1)=[]; 
        Vi(v)=1; 
    end 
end 
Pa=cell(n); 
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for i=1:1:n; 
    for j=1:1:n; 
        Pa{i,j}=zeros(n); 
    end 
end 
for i=1:1:n; 
   for j=1:1:n 
       Tr=j; 
       PaMat=zeros(n); 
       while(~isempty(Tr)) 
               PaMat(P{i,Tr(1)},Tr(1))=1; 
               Tr=cat(2,Tr,P{i,Tr(1)}); 
               Tr(1)=[]; 
       end 
       Pa{i,j}=PaMat; 
   end 
end 
W=cell(n); 
for i=1:1:n 
    for j=1:1:n 
        W{i,j}=zeros(n); 
    end 
end 
for i=1:1:n 
    for j=1:1:n 
        WMat=zeros(n); 
        PaMat=Pa{i,j}; 
        MBr=max(sum(PaMat,2)); 
        We=1; 
        WStc=[j]; 
        while(~isempty(WStc)) 
            Po=WStc(end); 
            WStc(end)=[]; 
            WStc=cat(2,WStc,P{i,Po}); 
            WMat(P{i,Po},Po)=WMat(P{i,Po},Po)+We; 
        end 
        NPa=sum(WMat(i,P{j,i})); 
        if(NPa~=0) 
            W{i,j}=WMat/NPa; 
        end 
    end 
end 
TrW=cell(n); 
for i=1:1:n 
    for j=1:1:n 
        TrW{i,j}=zeros(n); 
    end 
end 
for i=1:1:n 
    for j=1:1:n 
        TrWMat1=W{i,j}; 
        TrWMat2=W{j,i}; 
        Tmp=zeros(n); 
        for k=1:1:n 
            for m=1:1:n 
                Tmp(k,m)=max(TrWMat1(k,m),TrWMat2(m,k)); 
            end 
        end 
        TrW{i,j}=Tmp; 
        TrW{j,i}=Tmp'; 
    end 
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end 
TW=zeros(n); 
for i=1:1:n 
    for j=1:1:n 
        TW=TW+TrW{i,j}; 
%         TW=TW+W{i,j}; 
    end 
end 
for i=1:1:n 
    for j=1:1:n 
        TW(i,j)=TW(i,j)/(n*(n-1)); 
    end 
end   

 

M_file: EndPlot.m 

function EndPlot(AdjR,C,TW) 
% St=['ABCDEFGHIJKLMNO']; 
n=length(AdjR); 
St=['ABCDEFGHIJKLMNOPQRSTUVWXYZabcd']; 
F=figure; 
global ima; 
for i=1:1:n 
    for j=1:1:n 
        x=[C(i,1) C(j,1)]; 
        y=[C(i,2) C(j,2)]; 
        if(AdjR(i,j)==1) 
            plot(x,y,'Color',[0,0,0]','LineWidth',TW(i,j)*0.7); 
            %axis([-1 8 -1 3]); 
            axis([-1 17 -1 17]); 
            axis equal; 
            hold on; 
        end 
    end 
end 
S=[num2str(ima) '.jpg']; 
saveas(F,S); 

 

M_file: DGen.m 

function [TWG]= DGen(t,Ge,WF,Li) % t= frame/ truss, Ge= Number of 

generations, WF= Weight factors 
close all 
clc 
load AdjM2; 
load Location; 
load length; 
n=length(AdjM2); 
TWN=cell(1,Ge); 
AdjR=AdjM2; 

  
load t_W; 
%load f_W; 
load C_f; 
load Prop; 

  
Adjtemp=AdjM2; 
for i=1:1:length(AdjM2) 
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    for j=1:1:length(AdjM2) 
        if(AdjM2(i,j)==1) 
            Adjtemp(i,j)=Cf(j); 
        end 
    end 
end 

  
Adjsum=zeros(length(AdjM2),1); 
for i=1:1:length(AdjM2) 
Adjsum(i,1)=sum(Adjtemp(i,:)); 
end 

  
Adjtemp2=zeros(length(AdjM2),length(AdjM2)); 
for i=1:1:length(AdjM2) 
    for j=1:1:length(AdjM2) 
        Adjtemp2(i,j)=Cf(i)*Adjtemp(i,j)/Adjsum(i); 
    end 
end 

     
K_f_W= zeros(length(AdjM2),length(AdjM2)); 
for i=1:1:length(AdjM2) 
    for j=1:1:length(AdjM2) 
        if (j>i) 
            K_f_W(i,j)=Adjtemp(i,j)+Adjtemp(j,i); 
        end 
    end 
end 

    
n1=M(:,1); 
n2=M(:,2); 
e1=M(:,5); 

  
StiffnessMat=ones(sum(sum(AdjM2))/2,1); 
StiffnessMat(:,1)=K_t_W; 

  
WeightAdj=zeros(n,n); 

  
for i=1:1:length(StiffnessMat) 
    WeightAdj(n1(i),n2(i))=StiffnessMat(i,1); 
end 

  
if (t) 
    WeightAdj=K_f_W; 
end 

  
if (Li) 
    for i=1:1:length(StiffnessMat) 
        WeightAdj(n1(i),n2(i))=e1(i,1); 
    end 
end 

  
tot=sum(sum(WeightAdj))/((sum(sum(AdjM2))/2)); 

  
for i=1:n 
    for j=1:n 
        if WeightAdj(i,j)>0 
            WeightAdj(i,j)=round(WeightAdj(i,j)/tot,2); 
        end 
    end 
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end 

  
WeightAdj=WeightAdj+WeightAdj'; 
global ima; 
ima=0; 
z1=zeros(Ge,2); 
for i=1:1:Ge 
    [P D TW]= MultiSPaths(AdjR); 
    if WF>0 
        for a=1:1:n 
            for b=1:1:n 
                if WeightAdj(a,b)== 0 
                    TW (a,b)=0; 
                else 
                    TW (a,b)=TW (a,b)/WeightAdj(a,b); 
                end 
            end 
        end 
    end 
    TWG{i,i}=TW; 
    aa=sum(sum(TW))/2; 
    if aa<10 
        power=(ceil(log10(aa)-1))-1; 
        TW=TW/10^power; 
        TW=round(TW*1000)/1000; 
        TW=TW*10; 
        ima=i; 
        EndPlot(AdjR,C,TW);title(strcat('Generation :',num2str(i))); 
        TW=TW/10; 
        TW=TW*10^power; 
    else 
        TW=round(TW*100)/100; 
        ima=i; 
        EndPlot(AdjR,C,TW);title(strcat('Generation :',num2str(i))); 
    end 
    maxW=max(max(TW)); 
    z1(i,1)=maxW; 
    TootW=sum(sum(TW))/2; 
    z1(i,2)=TootW; 
    [B]=find(TW==maxW); 
    AdjR(B)=0; 
end 
xlswrite('aaaa.xls',z1); 

 

Analysis procedure: 

1. Run the “Combined_input_code.m” after adjusting the input values. 

2. Run the “Jointsiffness.m” to determine the joint stiffnesses for Bristol 

approach. 

3. Run the “DGen.m” inputting the values to determine the nature of the analysis 

such as truss/frame and weighted/ unweighted. 

t=1     => frame 

Ge      => number of generations 

WF=1 => weighted analysis 
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Appendix A-2: MATLAB code for analysing road network 

M_file: Combined_input_code.m 

% Input Area 

  
M=xlsread('RL6.xls'); 
C=xlsread('RC6.xls'); 

  
% Creating basic adjacency matrix 
adj=sparse(M(:,1),M(:,2),1); 
adj=full(adj); 

  
%assigning cordinates 
nm=length(M(:,1)); 
nj=length(C(:,1)); 

  
n1=M(:,1); 
n2=M(:,2); 

  
y2 = zeros(nm,1); y1 = y2; x2 = y1; x1 = x2; 
for i=1:1:nm 
    x1(i,1)=C(n1(i,1),1); 
    y1(i,1)=C(n1(i,1),2); 
    x2(i,1)=C(n2(i,1),1); 
    y2(i,1)=C(n2(i,1),2); 
end 

  
% Assigning other charecteristics 

  
l=M(:,4); 

  
% creating full adjacency matrix 
n=length(adj); 
[a,b]=size(adj); 
adj1=zeros(max(a,b)); 
adj1(1:a,1:b)=adj; 
adj=adj1; 
% Check 1= Graph 
G=graph(adj,'upper'); 

  
% G1=graph(n1,n2,l); 
x=C(:,1); 
y=C(:,2); 
D=distances(G); 
p=plot(G,'XData',x,'YData',y,'EdgeColor',[0 0 0]); 
axis equal; 
axis([0 320 0 470]); 

  
%  

plot(G,'XData',C(:,1),'YData',C(:,2),'EdgeColor','black','NodeColor'

,'black'); 
%  % Full matrix 
 AdjM2=adj+adj'; 

  

  
save('AdjM2.mat','AdjM2') %full adjacency matrix 
save('Location.mat','C') 
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save('Prop.mat','M') 
save('length.mat','l') 
save('D.mat','D') 
clear all 

 

M_file: kneighbors.m 

function kneigh = kneighbors(adj,ind,k) 

  
adjk = adj; 
for i=1:k-1; adjk = adjk*adj; end; 

  
kneigh = find(adjk(ind,:)>0); 
 

end; 

M_file: numedges.m 

function m = numedges(adj) 

  
sl=selfloops(adj); % counting the number of self-loops 

  
if issymmetric(adj) & sl==0    % undirected simple graph 
    m=sum(sum(adj))/2;  
    return 
elseif issymmetric(adj) & sl>0 
    sl=selfloops(adj); 
    m=(sum(sum(adj))-sl)/2+sl; % counting the self-loops only once 
    return 
elseif not(issymmetric(adj))   % directed graph (not necessarily 

simple) 
    m=sum(sum(adj)); 
    return 
end 

 

M_file: numnodes.m 

function n = numnodes(L) 

  
n = length(L); 

end; 

 

M_file: edge_betweenness.m 

function ew = edge_betweenness(adj) 

  
el=adj2edgeL(adj);  % the corresponding edgelist 
n = size(adj,1);  % number of nodes 
m = numedges(adj);  % number of edges 

  
ew = zeros(size(el,1),3); % edge betweenness - output 
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for s=1:n % across all (source) nodes 

     
    % compute the distances and weights starting at source node i 
    d=inf(n,1); w=inf(n,1); 
    d(s)=0; w(s)=1; % source node distance and weight 
    queue=[s];      % add to queue 
    visited=[]; 

     
    while not(isempty(queue)) 
        j=queue(1); % pop first member 
        visited=[visited j]; 
        neigh=kneighbors(adj,j,1); % find all adjacent nodes, 1 step 

away 

         
        for x=1:length(neigh)  % add to queue if unvisited 
            nei=neigh(x); 

             
            if isempty(find(visited==nei)) & 

isempty(find(queue==nei)); queue=[queue nei]; end 

         
        end 
        for x=1:length(neigh) 

         
            nei=neigh(x); 
            if d(nei)==inf   % not assigned yet 
                d(nei)=1+d(j); 
                w(nei)=w(j); 
            elseif d(nei)<inf & d(nei)==d(j)+1  % assigned already, 

add the new path 
                w(nei)=w(nei)+w(j); 
            elseif d(nei)<inf & d(nei)<d(j)+1 
                'do nothing'; 
            end 
        end 
        queue=queue(2:length(queue));  % remove the first element 
    end 

     
    eww = zeros(size(el,1),3);   % edge betweenness for every source 

node (iteration) 

     
    % find every leaf - no path from "s" to other vertices goes 

through the leaf 
    leaves = find(d==max(d)); % farthest away from source 
    for l=1:length(leaves) 
        leaf=leaves(l); 
        neigh=kneighbors(adj,leaf,1); 
        nei2rem=[]; 
        for x=1:length(neigh) 

             
            if isempty(find(leaves==neigh(x))); nei2rem=[nei2rem 

neigh(x)]; end 

         
        end 
        neigh=nei2rem;  % remove other leaves among the neighbors 
        for x=1:length(neigh) 
            indi=find(el(:,1)==neigh(x)); 
            indj=find(el(:,2)==leaf); 
            indij=intersect(indi,indj);   % should be only one 

element at the intersection 
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            eww(indij,3)=w(neigh(x))/w(leaf); 
        end 
    end 

     
    dsort=unique(d); 
    dsort=-sort(-dsort);  % reverse sort of unique distance values 

   
    for x=1:length(dsort) 
        leaves=find(d==dsort(x)); 
        for l=1:length(leaves) 
            leaf=leaves(l); 
            neigh=kneighbors(adj,leaf,1); 
            up_neigh=[]; down_neigh=[]; 
            for x=1:length(neigh) 
                if d(neigh(x))<d(leaf) 
                    up_neigh=[up_neigh neigh(x)]; 
                elseif d(neigh(x))>d(leaf) 
                    down_neigh=[down_neigh neigh(x)]; 
                end 
            end 
            sum_down_edges=0; 
            for x=1:length(down_neigh) 
                indi=find(el(:,1)==leaf); 
                indj=find(el(:,2)==down_neigh(x)); 
                indij=intersect(indi,indj); 
                sum_down_edges=sum_down_edges+eww(indij,3); 
            end 
            for x=1:length(up_neigh) 
                indi=find(el(:,1)==up_neigh(x)); 
                indj=find(el(:,2)==leaf); 
                indij=intersect(indi,indj); 
                

eww(indij,3)=w(up_neigh(x))/w(leaf)*(1+sum_down_edges); 
            end 
        end 
    end 

     
    for e=1:size(ew,1); ew(e,3)=ew(e,3)+eww(e,3); end 

  
end 

  
for e=1:size(ew,1) 
    ew(e,1)=el(e,1); 
    ew(e,2)=el(e,2); 
    %ew(e,3)=ew(e,3)/n/(n-1);   % normalize by the total number of 

paths 
end 

 

M_file: edge_betweennessrr.m 

function ew= edge_betweennessrr(adj,adjW) 

  
el=adj2edgeL(adj); 
n=numnodes(adj); 
m=numedges(adj); 

  
ew=zeros(size(el,1),3); 
ew(:,1)=el(:,1); 
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ew(:,2)=el(:,2); 
resultmat=zeros(n,2,n); 

  
for s=1:n 
    d=inf(n,1); 
    d(s)=0; 
    for trial=1:10 
        queue=[s]; 
        visited=[]; 

         
        while not(isempty(queue)) 
           j=queue(1); 
           visited=[visited j]; 
           neigh=kneighbors(adj,j,1); 

            
           for x=1:length(neigh) 
               nei=neigh(x); 
               if isempty(find(visited==nei)) & 

isempty(find(queue==nei)) 
                   queue=[queue nei]; 
               end 
           end 

            
           for x=1:length(neigh) 
               nei=neigh(x); 
               if d(nei)==inf 
                   d(nei)=adjW(j,nei)+d(j); 
               elseif d(nei)<inf & round(d(nei)-

(d(j)+adjW(j,nei)))>0 
                   d(nei)=d(j)+adjW(j,nei); 
               elseif d(nei)<inf & floor(10*abs(d(nei)-

(d(j)+adjW(j,nei))))==0 
                   continue 
               elseif d(nei)<inf & round(d(nei)-

(d(j)+adjW(j,nei)))<0 
                   continue 
               end 
           end 

            
           queue=queue(2:length(queue)); 
        end 
    end 

     

  
    Dcell=cell(1,length(d)); 
    Ucell=cell(1,length(d)); 

  
    for i=1:length(d) 
        if i==s 
            continue 
        else 
            up_neigh=[]; 
            down_neigh=[]; 
            neigh=kneighbors(adj,i,1); 
            for y=1:length(neigh) 
                bark=neigh(y); 
                A1=d(i)-d(bark)-adjW(bark,i); 
                A2=d(bark)-d(i)-adjW(i,bark); 
                A3=d(i)-d(bark); 
                if (d(bark)<d(i)) & (round(A1)==0) 
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                    up_neigh=[up_neigh bark]; 
                elseif (d(bark)>d(i)) & (round(A2)==0) 
                    down_neigh=[down_neigh bark]; 
                elseif round(A3)==0 
                    continue 
                end 
            end 
            Ucell{i}= up_neigh; 
            Dcell{i}= down_neigh; 
        end 
    end 
 

    asort=unique(d); 
    asort= sort(asort); 
    w=zeros(n,1); 
    w(s)=1; 
    visit=[]; 
    for x=1:length(asort) 
        roots=find(d==asort(x)); 
        for r=1:length(roots); 
            root=roots(r); 
            A=Ucell{root}; 
            for y=1:length(A) 
                w(root)=w(root)+w(A(y)); 
            end 
            visit=[visit root]; 
        end 
    end 

  

  

  
    eww=zeros(size(ew,1),1); 
    dsort=unique(d); 
    dsort=-sort(-dsort); 
    for x=1:length(dsort) 
        if dsort(x)==inf 
            continue 
        else 
            leaves=find(d==dsort(x)); 
            for l=1:length(leaves) 
                leaf=leaves(l); 
                A=Ucell{leaf}; 
                B=Dcell{leaf}; 
                sum_down_edges=0; 

  
                if ~isempty(B) 
                    for y=1:length(B) 
                        indi=find(ew(:,1)==leaf); 
                        indj=find(ew(:,2)==B(y)); 
                        indij=intersect(indi,indj); 
                        sum_down_edges=sum_down_edges+eww(indij,1); 
                    end   
                end 
                for y=1:length(A) 
                    indi=find(ew(:,1)==A(y)); 
                    indj=find(ew(:,2)==leaf); 
                    indij=intersect(indi,indj); 
                    

eww(indij,1)=(w(A(y))/w(leaf))*(1+sum_down_edges); 
                end 
            end 
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        end 
    end 

  
    for e=1:size(ew,1); 
        ew(e,3)=ew(e,3)+eww(e,1); 
    end 
    resultmat(:,1,s)=d; 
    resultmat(:,2,s)=w; 
end 
    for e=1:size(ew,1); 
        ew(e,3)=ew(e,3)/n/(n-1); 
    end 

  
save('resultmat.mat','resultmat') 

 

M_file: RGen.m 

function [TWN]= RGen(Ge,WF) % Ge= Number of generations, WF= Weight 

factors 
close all 
clc 
load AdjM2; 
load Location; 
load length; 
n=length(AdjM2); 
TWN=cell(1,Ge); 
AdjR=AdjM2; 

  

  
load Prop; 

  
n1=M(:,1); 
n2=M(:,2); 
prt=M(:,4); 

  
WeightAdj=zeros(n,n); 

  
  for i=1:1:length(n1) 
        WeightAdj(n1(i),n2(i))=l(i,1); 
  end 

  
WeightAdj=WeightAdj+WeightAdj'; 

  

  
global ima; 
ima=0; 
z1=zeros(Ge,2); 

  
for i=1:1:Ge 
    TW= zeros(n,n); 
    ew= edge_betweenness(AdjR); 
    if WF>0 
        ew=edge_betweennessrr(AdjR,WeightAdj); 
    end 
    load resultmat; 
    for j=1:size(ew,1) 
        TW(ew(j,1),ew(j,2))= ew(j,3); 
    end 
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    for a=1:n 
        for b=1:n 
            TW(a,b)=round(TW(a,b)*10000)/10000; 
        end 
    end 

  
    Lower=zeros(n,n); 
    Upper=Lower; 
    Check=Lower; 
    for a=1:n 
        for b=1:n 
            if a==b 
                continue 
            elseif a>b 
                Lower(a,b)=TW(a,b); 
            elseif a<b 
                Upper(a,b)=TW(a,b); 
            end 
        end 
    end 
    Check=Upper-Lower'; 
    if sum(sum(Check))>0 
        continue 
    end 
    TWN{1,i}=TW; 
    aa=sum(sum(TW))/2; 

     
        ima=i; 
        EndPlot(AdjR,C,TW);title(strcat('Generation :',num2str(i))); 

     
        maxW=max(max(TW)); 
    z1(i,1)=maxW; 
    TootW=sum(sum(TW))/2; 
    z1(i,2)=TootW; 
    [B]=find(TW==maxW); 
    AdjR(B)=0; 
end 
xlswrite('aaaa.xls',z1); 

 

Analysis procedure: 

1. Run the “Combined_input_code.m” after adjusting the input values. 

2. Run the “RGen.m” inputting the values to determine the nature of the analysis. 

Ge      => number of generations 

WF should be given as 1 to enable weighted shortest paths analysis. 

 


