

An Analysis of Methodologies for Solving Green Vehicle Routing Problem: A Systematic Review of Literature

P. L. N. U. Cooray University of Kelaniya, Sri Lanka

Thashika D. Rupasinghe

University of Kelaniya, Sri Lanka

1. Introduction

The Vehicle Routing Problem (VRP) can be described as the problem of finding optimal routes for delivery to or pick-up from one or more depots to many customers who are geographically dispersed. This problem has been at the core of many operations research problems. Later the focus has shifted to sustainable business practices with a novel category of VRP, known as the Green VRP. In this category, the objectives are different from the original VRP: it focuses on minimising the impact on the environment as opposed to merely minimising costs and the distance travelled.

2. Methodology

Energy Minimising VRP (EMVRP) has been developed to minimise the energy consumption of a fleet while serving all customers. It has been identified that energy consumption has a direct impact on carbon dioxide emissions.

Heuristics, often referred to as 'rules of thumb', has the meaning of discovering techniques for problem solving. The algorithmic community has gone one step beyond, and developed a class of Heuristics named 'Metaheuristics' which is heavily used in combinatorial optimisation. Normally these problems are found to be np-hard, which cannot be optimally solved in polynomial time. VRP is among the most known np-hard problems, thus, Metaheuristics is widely used in finding near optimal solutions. The most widely used exact methods are Linear Programming and variations of branch and bound methods. Problem formulations of Green VRP have been extensively reviewed in literature, but not the solving methods. Refer to Table 1 for a detailed analysis of the heuristics being used to solve Green VRPs and Pollution Routing Problem (PRP).

Research Study	Solving Method
A Green Vehicle Routing Problem	Modified Clarke and Wright Savings algorithm
	(MCWS) and Density Based Clustering
	Algorithm (DBCA)
A Variable Neighbourhood Search	Developed a variable neighbourhood search
Branching for the Electric Vehicle	branching algorithm to solve formulated electric
Routing Problem with Time Windows	vehicle routing problem with time windows
Green logistics at Eroski:	Used Mole and Jameson (1976) method to solve
A case study	CVRP and Nearest neighbour insertion
	algorithm (Bodin et al. 1983) to solve VRPB
Solving the Capacitated VRP with	Developed Mole and Jameson algorithms based
Environmental Criteria Based on Real	Algorithms with Environmental Criteria
Estimations in Road Transportation: A	(AWEC)
Case Study	
A block recombination approach to	Used a block recombination approach to solve
solve green vehicle routing problem	formulated problem

Table 1- Heuristics-Based Solving Methods Used for Solving Green VRP Variants

3. Conclusions

Table 2- Metaheuristics-Based Solving Methods Used to Solve Green VRP Variants

Research Study	GVRP	Solving Method
	Category	
Development of a fuel	Green	Developed a string-model based simulated
consumption optimisation	VRP	annealing algorithm with a hybrid exchange
model for the capacitated VRP		rule.
Using simulated annealing to	Green	Developed a simulated annealing algorithm to
minimise fuel consumption for	VRP	solve the formulated TDVRP
the time-dependent VRP		
The electric vehicle-routing	Green	Hybridization of Variable Neighbourhood
problem with time windows	VRP	Search and Tabu Search
and recharging stations		
A Memory Structure Adapted	Green	Developed a Memory Structure Adapted
Simulated Annealing	VRP	Simulated Annealing (MSA-SA) algorithm to
algorithm		solve Green VRP with time windows
An Adaptive Large	PRP	Used Adaptive Large Neighbourhood Search
Neighbourhood search		(ALNS) algorithm and at the second stage
heuristic		used a Speed Optimisation Algorithm (SOA)
		on the resulting VRPTW solution to find the
		optimal speed on every arc
The bi-objective Pollution-	PRP	Used Adaptive Large Neighbourhood search
Routing Problem		algorithm and a speed optimisation procedure
		to solve the formulated bi-objective PRP

Metaheuristics are a more generalised cluster of Heuristics; its potential of use in efficiently solving Green VRP is demonstrated through this study.

Table 2 reviews the studies which use Metaheuristics-based solutions and we find that these solutions can be used effectively for solving larger and more complex instances of Green VRP. Metaheuristics perform better than other approaches mainly because of their ability to explore feasible solutions in a wider random search space.

The scrutiny identifies several knowledge gaps where new methodologies can be developed to solve Green VRP formulations, and develops propositions for future research. With the development of novel data mining and machine learning techniques, focus also needs to be directed to combining current methods to produce solutions for larger problem instances in a timely manner.

References

- 1. Birattari, Mauro. Tuning metaheuristics: a machine learning perspective. Vol. 197. Berlin: Springer, 2009.
- 2. Gendreau, M. "Metaheuristics in Vehicle Routing" ICORES. 2012.
- 3. Kara, Imdat, Bahar Y. Kara, and M. Kadri Yetis. "Energy minimizing vehicle routing problem." Combinatorial optimization and applications. Springer Berlin Heidelberg, 2007. 62-71.
- 4. Lin, Canhong, et al. "Survey of green vehicle routing problem: Past and future trends." Expert Systems with Applications 41.4 (2014): 1118-1138.
- 5. Schneider, Michael, Andreas Stenger, and Dominik Goeke. "The electric vehicle-routing problem with time windows and recharging stations." Transportation Science 48.4 (2014): 500-520.
- 6. Xiao, Yiyong, and Abdullah Konak. "Green Vehicle Routing Problem with Time-Varying Traffic Congestion."
- Küçükoğlu, İlker, et al. "A memory structure adapted simulated annealing algorithm for a green vehicle routing problem." Environmental Science & Pollution Research 22.5(2015):3279-3297.
- 8. Bektaş, Tolga, and Gilbert Laporte. "The pollution-routing problem." Transportation Research Part B: Methodological 45.8 (2011): 1232-1250.
- 9. Ubeda, S., F. J. Arcelus, and J. Faulin. "Green logistics at Eroski: A case study." International Journal of Production Economics 131.1 (2011): 44-51.
- 10. Glover, F., Kelley, J.P. and Laguna, M., The Optquest approach to Crystal Ball simulation optimization. Decisioneering Inc. (1999).

Keywords: *Green VRP, Exact methods, Heuristics, Metaheuristics*