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ABSTRACT

Dialogue State Tracking for Low-Resource Languages

Despite ground breaking work in the academia, current state-of-the-art work in

goal-oriented conversational-agents has not been able to fulfil the demand of the industry

for multi-domain multi-lingual, adaptable, dialogue systems. Data-intensive nature of

deep learning models used in dialogue state tracking (DST) module, which is a core

component of the goal-oriented dialogue architecture, and the lack of large labelled

dialogue corpus for state tracking are two main factors which have hindered the progress.

We identified, modeling with separate natural language understanding (NLU) module

and joint modeling of dialogue state tracker with NLU as the two main approaches for

state tracking, and accordingly made two major contributions. First, we propose a novel

meta-learning algorithm for intent detection and slot-filling tasks, focusing on models

with separate NLU. Our work empirically demonstrates that the proposed meta-learning

approach is capable of learning a meta-parameter(prior) from similar, but different tasks.

Compared to the random initialization, which regular supervised learning algorithms

rely on, proposed method significantly improves the accuracy in both intent detection

and slot-filling tasks in few-shot (5-way 1-shot and 5-way 2-shot) settings. Further, our

effective use of meta-learning for intent detection and slot-filling opens up new line of

research for DST. Second, we systematically review the progression of joint NLU/DST

models with special emphasis on their ability to generalize and adapt to new domains

and languages.

Keywords: Dialogue State Tracking; Natural Language Understanding; Joint Intent

Detection and Slot-Filling; Meta-Learning; Conversational-AI;
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Chapter 1

INTRODUCTION

Decades of continuous efforts in academia to improve conversational Artificial

Intelligence(AI) have resulted in several sub-disciplines. Based on the nature

of the dialogue that the conversational-agent tries to engage, dialogue systems

can be grouped into three major categories: question answering, social-chat and

goal-oriented.[1]

Question Answering : QA agents are expected to provide direct answers to

immediate user queries based on the knowledge acquired from various sources.

Research in these bots are mostly focused on representation of the knowledge

from different sources and little to no effort is made on modeling the context of

the conversation.

Social Chat : These agents are expected to build a human-like conversation

with the user. Similar to QA agents, these models may also depend on a knowledge

base. However, modeling context of the conversation is an important aspect of

these agents because the entire conversation with the user needs to be considered

in generating a response. Further, these agents model the ‘user’ considering their

intelligence quotient (IQ) as well as emotional quotient (EQ) in order to seamlessly

connect with the user.

Goal-Oriented : Goal-oriented agents are expected to fulfil user tasks ranging

from hotel or flight booking, bank transactions to scheduling meetings in a multi-

turn conversation. The agent should be able to comprehend each user query

within the context of the dialogue and engage in the conversation assisting the

user to accomplish a particular goal.

Our work predominantly focuses on goal-oriented dialogues. With growing

interest in the industry for replacing customer care operations with automated chat-

bots, goal-oriented dialogues have been established as a separate sub-discipline,

clearly differentiating from other types of conversational agents. Modular ar-
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Figure 1.1: Goal-Oriented Dialogue System Architecture

chitecture and related natural language processing (NLP) techniques specific to

goal-oriented agents have emerged.

1.1 Goal-oriented Dialogues : Architecture

This section will introduce the modules of goal-oriented dialogue systems which

is essential in defining and understanding the scope of the work. We rely on a

slightly evolved version of the [2] architecture which is shown in Figure 1.1. In

high-level architectural perspectives, goal-oriented dialogue systems can be viewed

as an integration of three main sub-modules:

Natural Language Understanding (NLU) : Takes user queries as input and converts

into semantic form by performing intent detection and slot tagging.

Dialogue Management (DM) : Takes semantic representation of NLU as an input

and acts as the controller of the system. DM can be further divided into two

sub-modules:

∙ Dialogue State Track (DST) : determines the state of the system based on

the semantic representation

∙ Dialogue Policy Learning (DPL) : determines an agent’s actions based on

the state. An action can be a response to a user or operation in a database.

Natural Language Generation (NLG) : Responsible for presenting actions selected

by DM to user in natural language.
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This work entirely focuses on natural language understanding and dialogue

state tracking. Therefore we introduce related terminology and the expected

functionality and the evaluation criteria in Section 2.1.

1.2 Motivation

Goal-oriented conversational AI, has been subjected to growing interest during the

last decade with applications in a large number of industrial sectors. For instance,

the hospitality industry deploys chat-bots (travel-bots) to facilitate tasks such as

hotel booking and flight booking while the banking and finance sector utilizes

chat-bots to support tasks such as checking account balance, money transfers and

bill payments.

1.3 Problem Statement

Despite ground-breaking research in the field, a significant gap exists between

current NLU capabilities of dialogue systems and the demand in the industry.

Major causes can be listed as follows:

∙ With the effect of globalization, companies which are moving towards di-

alogue systems to provide their services, wish to support their clients, in

their native language.

∙ The diversity of industry sectors that plan to adapt conversational agents

is high. Further, some companies expect the same agent to fulfill needs

within multiple domains. For instance, a company may needs to deploy an

agent that supports booking a flight and a hotel while providing information

to clients about attractions near the hotel. However, catering the demand

for multilingual, multi domain support has been challenging due to the

data-intensive nature of state-of-the-art deep learning models. Usually, these

models need to be trained separately for each domain and each language.

However, even for languages like English, availability of labelled dialogue

corpus is limited. Companies being reluctant to release dialogue corpus due
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to privacy concerns as well as tedious and complex labelling of dialogues

have dampened efforts to build large corpus. In the case of low-resource

languages, this barrier is even more challenging.

∙ Companies expect these dialogue systems to adapt to dynamic environments

with frequent business policy and requirement changes. For instance, a

hotelier which deploys a conversational agent may introduce new safety

regulations due to COVID-19 which was unknown during the initial devel-

opment. Current dialogue systems are limited in their ability to adapt to

these unseen or unknown scenarios with. Developing dialogue systems with

rapid inferring with only few examples is a challenge which requires special

attention.

In summary, current state-of-the-art models are trained from scratch for each

domain in each language and expect large amounts of data which is not not

available in the real world.

1.4 Objective

The main objective of the proposed research is to:

∙ Evaluate and make recommendations on current models for DST

∙ Recommend mechanisms to utilize DST models for low-resource languages

∙ Develop DST models for low-resource settings with special focus on low-

resource languages

∙ Evaluate DST models on low-resource settings

1.5 Contributions

∙ Novel meta-learning based approach for low-resource joint intent detection

and slot-filling

∙ Comprehensive survey on the evolution of DST with respect to generaliz-

ability and adaptability aspects.
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1.6 Organization

∙ Chapter 2 : This chapter consists of 3 sections which include background

details necessary to understand this work. Section 2.1 introduces the problem

of state tracking and the evaluation procedure with related metrics. Section

2.2 introduces several machine learning concepts which have been developed

to tackle low-resource barrier associated with deep learning models. Section

2.3 explains the intuition behind meta-learning in detail.

∙ Chapter 3: Section 3.1 of the chapter focuses on research with separate NLU

and discusses work related to problem of intent detection and slot-filling.

Section 3.2 systematically study the evolution of joint models with special

attention towards low-resource generalizability and adaptability aspects.

Content of this section will be published as a review paper.

∙ Chapter 4: Introduces the proposed meta-learning model for few-shot joint

intent detection and slot-filling, Meta-JOSFIN

∙ Chapter 5 : Provides details on experimental setup, results and discussion.

We consider two separate experiments for evaluating our proposed algorithm:

– Adaptability for unseen intents

– Cross lingual adaptability

∙ Chapter 6: Contains the conclusion with probable future directions of the

research

5



Chapter 2

BACKGROUND

2.1 Dialogue State Tracking

In-order to understand the functionality of dialogue state tracker , we will first

introduce some terminology associated with goal-oriented dialogues.

Domain Ontology : Goal-oriented dialogues are associated with a predefined

set of slots and list of probable slot-values for each slot which are collectively

known as domain ontology. These slots are defined based on tasks that dialogue

systems perform and information which needs to be gathered to achieve those

tasks. Further, these slot-values are categorized as informable and requestable.

User can provide a slot-value to the agent as a constraint for informable slots

and request slot-values for requestable slots from the agent. For example, Dialog

State Tracking Challenge 2 (DSTC 2) which competitors are asked to build

dialogue agents for restaurant search define pricerange as a tracking slot with

three possible slot-values: cheap, moderate and expensive. User can request the

telephone number of a restaurant from the system while a search restaurant using

the telephone number is not supported.

Dialogue State: Dialogue state 𝑠𝑡 summarizes the dialogue up to turn 𝑡 of

a multi-turn dialogue, providing necessary information for the policy learner to

choose the next (agent) action. This state includes, slot-values communicated by

the user for different slots, requests made by the user on different slots, slot-values

provided by the system to the user. Other than, predefined set of probable slot-

values, slot-value may be denoted as None if the slot-value is not given by the user

up to that turn or dontcare if user has mention in the dialogue that (s)he don’t

want to make any constraint based on a particular slot. In the DSTC2 restaurant

example, conversation would start with None for pricerange and if the user said

(s)he never minds the price range of the restaurant, it will be denoted as dontcare.
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More formally, state can be defined in terms of :

∙ Goals: True value of all the slots defined in the ontology as mentioned up

to the current turn

∙ Method :Way that the user expects to interact with the system. In DSTC2&3

values can be by name, by constraints, by alternatives or finished and may

be inferred from the user-acts. Some other dialogue systems may prefer all

user-acts itself as part of the dialogue state.

∙ Requested slots List of slots requested by user up to current turn which are

not yet provided by the system.

Dialogue State Tracker : State tracker is expected take all the observable inputs

up to the time 𝑡 including user queries, system actions with resulted outputs

and return the true current state 𝑠* in that time. However, the true state is

not observable due to reasons such as issues in speech recognition (in spoken

dialogue systems), errors in language understanding, ambiguous user queries, non-

communicated changes in user goals. Therefore, dialogue state trackers usually

output belief estimates for multiple states (distribution over possible dialogue

state). Belief estimate is preferred over the single most probable state as it provides

a better insight for dialogue-policy-learner to make clarification actions.

More formally tracker output can be defined as:

∙ Goals : For each informable slot, tracker output the distribution over probable

slot-values. Joint goal distribution may be reported if the goal is not made

of independent slot distribution.

∙ Method :Distribution over methods defined in the ontology.

∙ Requested slots For all requestable slots in the dialogue, this defines the

binary distribution whether the user has requested and the system has to

inform.

Figures 2.1 illustrates step by step function of dialogue state tracker. However,

it should be noted that both domain ontology and the belief states are internal
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parts of DST. Further, the diagram only shows a single value for a particular slot.

But state trackers usually output a distribution over all the possible slot-values.

2.1.1 Datasets

In this section, we introduce a few very commonly used benchmark datasets in

detail. However, we do not cover all the available datasets. For interested readers,

[3] provides a comprehensive survey of available datasets (as of 2018) covering all

the main conversational AI tasks including DST. Other than listed datasets in

above work, the annual DSTC (initiated as Dialogue State Tracking Challenge and

renamed to Dialogue System Technology Challenge) competition series (currently

in 9th edition) provide useful data sets for state tracking research.

DSTC1 [4] : This corpus contains dialogue data of passengers who enquires

route information from a city bus company over the phone. For example, a

passenger may ask the time that the next bus leaves from a particular location to

his intended destination. Ontology is defined with 5 main slot types (route, from,

to, date and time). Both from and to slots were subdivided to three categories:

desc, neighbourhood, monument (such as from.desc or to desc) which make a

total of 9 slots. Training dataset is divided into 4 training sets based on how

data is collected. Four test sets are based on the similarity to various training

datasets. Presenting multiple test sets with different levels of similarities with

training datasets facilitate testing generalizability of dialogues systems built.

DSTC2 [5]: DSTC2 corpus contains dialogues in the restaurant information

domain. Corpus contains a train set with 1612 calls, a dev set with 506 calls and

a test set with 1117 dialogues. Note that all the slots are requestable while some

of them are informable as well with predefined values.

DSTC3 [5] : DSTC3 is an extension of DSTC2 towards a more complex tourist

information domain and ontology defines more values under available slots while

introducing more slots. However, DSTC3 labelled dataset is smaller (with only

10 dialogues) compared to DSTC2. Purpose of DSTC3 is to test generalizability

aspects of models (in terms of domain adaptability and expandability, learnability

8



(a) DST components

(b) takes user queries, domain ontology and previous
state for processing

(c) send output to the belief state after processing

(d) User query "I am looking for a cheaper restaurant"

Figure 2.1: Dialogue State Tracker :Functionality
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(e) Process the query and pass the dialogue act "Inform(Price=Cheap)"

(f) Slot price in belief state is updated with value cheap

(g) System respond to user "Sure, What Kind?" (This involves DPL and NLG)

(h) User respond, "Thai. Need to know where it is"

Figure 2.1: Dialogue State Tracker :Functionality

10



(i) pass the dialogue act "Inform(Price=Cheap,Food=Thai), Request(Address)"

(j) Corresponding slots updated in belief state

Figure 2.1: Dialogue State Tracker :Functionality

of unseen and unknown slots) made for DSTC2.

WoZ2.0 [6] : Similar to DSTC2, WoZ2.0 ontology is defined within the

restaurant domain where dialogue assists users to search for a restaurant in

Cambridge UK. Dataset contains about 600 dialogues (with some dialogues being

unfinished) within restaurant domain. There are 6 slots in ontology altogether:

food, pricerange, area, address, phone, postcode with only the first 3 slots being

informable.

Multi-WoZ [7] : This corpus contains a total of 10438 dialogues ( with 3406

single domain and 7032 multi-domain dialogues) dialogues across 7 domains;

attraction, hospital, police, hotel, restaurant, taxi, train. These domains are

naturally connected within a dialogue with single dialogue span up to 5 domains.

For example, a tourist would find a hotel, book a train and a taxi to reach the

hotel and search for attractions near the hotel. This dataset has been extensively

used in many multi-domain DST research. Multi-WoZ is magnitude larger and
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complex compared to previously mentioned datasets.

2.1.2 Evaluation Metrics

Single metrics is unlikely to evaluate the performance of a dialogue system due to

its inherent complexity. Therefore, DSTC2&3 propose several different metrics

each measuring different aspects of the dialogues. Out of these metrics, 3 metrics

are featured among competitors [16]:

∙ Accuracy : measure of 1-best quality

∙ L2 norm: probability calibration measure

∙ ROC Correct Accept (CA) 5 : This is the fraction of correct accepts when

there are at most 5% false accepts (FAs). Assess the discrimination.

It should be noted that each of the above metrics are used to calculate goals,

methods and requested slots separately. However, most the recent DST research

tends to compare model performance based on:

∙ Joint Goal Accuracy : Compares a predicted state at turn 𝑡 against the

ground truth at that turn. Output is considered correct, if and only if all

values of the prediction exactly match the ground truth.

∙ Slot Accuracy : Individually compares (slot, value) pairs, or (domain, slot,

value) triplets in multi-domain dialogues, with the ground truth.

2.2 Low-Resource Deep Learning and NLP

Demanding large amounts of data is characteristic to almost all the deep learning

models regardless of the domain applied. In this section, we will look into machine

learning techniques which have emerged to overcome this resource barrier. Two

most successful techniques which have been used to adapt deep learning models

for low-resource settings are:

∙ Transfer Learning

12



∙ Meta Learning

Early works in both of these techniques have proven successful in computer vision

and image processing domains and then applied in NLP tasks.

2.2.1 Transfer Learning

[8] defined transfer learning as: given a source domain 𝐷𝑆 and learning task 𝑇𝑆, a

target domain 𝐷𝑇 and learning task 𝑇𝑇 , transfer learning aims to help improve

the learning of the target predictive function 𝑓𝑇 in 𝐷𝑇 using the knowledge in 𝐷𝑆

and 𝑇𝑆, where 𝐷𝑆 = 𝐷𝑇 , or 𝑇𝑆 = 𝑇𝑇

Further [8] lists 4 different types of transfer learning approaches:

Instance-transfer : Re-using knowledge from the source domain to the target

task. However, all the source domain examples may not be equally important.

Therefore source instance relatedness to the target is re-weighted.

Feature-representation-transfer : Discover a set of good feature-representation

which reflects the common characteristics of both source and target domain. This

minimizes domain divergence and reduce error rates in classification and regression

models.

Parameter-transfer : Finds shared parameters or priors between source domain

and the target domain models. These shared params enable cross domains

transferring.

Relational-knowledge-transfer : Maps relational knowledge between the source

domain and the target domains. Both domains are relational domains and

Independent and identically distributed (i.i.d) assumption is relaxed in each

domain

Based on different settings, transfer learning can be categorized into three:

Inductive Transfer Learning : Source and the target domains are the same but

the tasks within are different. Transfer learning attempts to get insight from the

inductive biases of the source domain to perform well on the target domain.

Unsupervised Transfer Learning : Similar to inductive transfer, but the focus

is on unsupervised target tasks
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Transductive Transfer Learning : Source and the target domains are different

but there are similarities between corresponding tasks. This setting expects a

large amount of label data for the source domain with no labelled data in target

domain.

Transfer Learning in Deep Learning: Previous introduction and catego-

rizations of transfer learning are generally applicable to all the machine learning

techniques. This subsection will look specifically into transfer learning in the

context of deep learning.

Training deep learning models is an example for an inductive learning process.

In inductive learning, models infer mapping from a set of training examples. For

instance, an image classification model learns a mapping between image features

and image class labels. Set of assumptions that models make on distribution of

the training data in order to generalize for unseen scenarios is known as inductive

bias. These biases affect what the model learns.

Inductive transfer learning techniques make use of inductive biases of source

tasks to facilitate target tasks. These facilitating could be of different forms such

as narrowing the hypothesis space or adjusting the search process itself.

Several deep transfer learning strategies have emerged:

Off-the-shelf pre-trained models have emerged as a successful way of deep

transfer learning. Deep learning models being layered architectures which different

features are learnt in different layers, idea is to leverage weighted layers from a

pre-trained model. Depending on the task these weights may be:

∙ Freezed : weights not updated in training process

∙ Fine tuned : rather than freezing all the layers, some layers, which learn

generic features, are freezed while other layers, which are more task specific,

are fine tuned.

There are few well known pre-trained models in:

Computer Vision : VGG-16, VGG-19, Inception V3, XCeption, ResNet-50

Natural Language Processing : Word2Vec, Glove, FastText , MUSE, Bert

14



Due to their relatedness and importance to our work, we also introduce some of

the NLP related pre-trained models in this section.

Word2Vec : Earliest model to represent words in a continuous vector space. []

proposed two algorithms namely; skip-gram model and continuous bag of words

(CBOW) model. Both models are architecturally similar, but the CBOW model

predicts the current word based on the context while the skip-gram model predicts

the context given the current word. Representations learnt from skip-gram model

have outperformed the CBOW based representations on many similarity tasks

Glove: Global vector representation combines context window approaches

like skip-gram with global matrix factorization. Glove model utilizes statistical

information by training only on the nonzero elements in a word-word co-occurrence

matrix, rather than on the entire sparse matrix or on individual context windows

in a large corpus.

FastText : Consider character n-grams opposed to the Word2Vec which learns

vectors only for complete words found in the training corpus. For example the

word undo will be represented as the sum of all n-grams <un,nd,do,und,ndo>

given the hyperparameter minimum n-gram size is 2. Use of n-grams enables

FastText to generate better embeddings for rare words as well as out-of vocabulary

words.

MUSE : All the prior word vectorization mechanisms discussed, usually repre-

sent words within a single language in a continuous vector space. Multilingual

Unsupervised and Supervised Embeddings (MUSE ) align representations in

different spaces to a single continuous vector space such that the cross-lingual

relationships are encoded while intra-language relationships between words are

preserved.

BERT : Bidirectional Encoder Representations from Transformers (BERT)

model is known as contextual word embedding, meaning context data is incorpo-

rated with word representation.For instance, character sequence “mouse” would

mean entirely different things based on the context and BERT would have two

separate representations. Compared to aforementioned models where embedding

layer is usually freezed when used for different tasks, BERT representation would

15



be fine-tuned.

2.3 Meta Learning

Meta-learning or learning to learn refers to the process of systematically observing

the way machine learning models perform on different tasks and using that

experience to learn new tasks or skills. This paradigm is motivated by the fact

that human brain never learn skills from scratch, rather infer from past experience

in similar(but different) settings. Objective of meta-learning is to enable machine

learning models to rapidly infer on new tasks utilizing prior knowledge gained

from similar experiences.

Defining the similarity between two tasks is a separate research question which

we will not discuss in this work. However, intuitively we consider two tasks are

different but similar when there is a common underlying skill for both the tasks

or the same task is performed in a different environment. For example running

and walking on a jogging track are two different tasks demanding lots of common

characteristics. On the other hand, walking on a road differs from walking on a

jogging track therefore they can also be considered as two different (but similar)

tasks.

2.3.1 Meta-Learning for Deep Neural Networks : Intuition

There are two schools of thoughts defining what is considered as a meta-learning

problem. Some scholars view any process which learns from data related to

training (meta-data) as a meta-learning process. This definition of meta-learning

covers research areas such as hyper-parameter tuning, Auto-ML. However, our

work will use the term ‘meta-learning’ in a narrower sense, mostly focusing on

neural approaches, especially deep learning. Recently meta-learning and deep

learning combination has been a hot topic in the area of few-shot image recognition.

We will describe the intuition behind meta-learning using an image classification

problem.

Question 1:Imagine your know absolutely nothing about dog breeds and answer
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the question What is the breed of this dog? A) Beagle B) Australian Terrier C)

English Foxhound

Question 2: What if following examples are provided and asked the question 1?

Almost all the human will be able to answer question 2 even if he or she had

no knowledge of the breed of the dog prior to that. This is because the human

brain has the ability to infer rapidly and differentiate breeds with only a few

examples. Our problem of interest can be summarized as “How can we train a

machine learning model to do what we (our brain) did in question 2?”

It may occur that the above example is just a classification problem and

standard supervised learning would easily solve the problem. However, this leads

to two issues. Firstly, we only have very few examples for each breed and image

classification models expect large amounts of data to form an accurate model.

Second, and perhaps the most important issue can be understood from Question

3.
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Question 3: Will the supervised learning model trained for prior example be able

to accurately classify the following example?

Answer to Question 3 is, the supervised learning models need to be re-trained

from scratch to classify new set of breeds. This illustrates the difference between

skills that supervised learning models acquired compared to human skills. We,

human have the understanding of the concept of ‘breed’ as opposed to the label

names remembered by normal supervised learning models. Meta-learning aims to

gain this skill.

Few-Shot Learning: As a side note we will also use the prior example to

introduce the idea of few-shot learning and related terminology. Few-shot learning

refers to the practice of training machine learning models with very small amounts

of data. Term, k-shot is a spin-off of few-shot learning where the k is used to denote

the number examples used. zero-shot, one-shot with explicit k are commonly

used. k-shot learning has been widely used in multi-class classification problems.

Multi class classification among n different classes is known as n-way classification.

Therefore, multi-class classification problems within a few-shot learning setup

are commonly referred to as n-way k-shot classification. In n-way k-shot setting,

model is expected to learn n-way classification with only k*n examples with k

examples under each intent. question 2 and 3 are examples of 3-way (3 types of

breeds) 4-shot ( 4 examples for each breed) classification problem.
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2.3.2 Transfer Learning vs Meta Learning

Transfer learning and meta-learning differ in the way the models are trained. In

transfer learning, the model is optimized in the data-space of a particular source

task with a large dataset and learnt model parameters are used for low-resource

target tasks. Meta-learning algorithms in contrast, are meta-trained in task-

space with the focus of learning an update rule or generalized parameterization

without optimizing for a particular task. It is during the adaptation phase that

meta-learning algorithms are tuned for specific tasks.

2.3.3 Related Work in Meta Learning

Prior work in learning to learn paradigms date back to [9] where genetic program-

ming approach is taken. [10] was mostly inspired by the behavioural difference

between biological neural networks and artificial neural networks. However, it

is [11] paper which critically questioned the generalizability of machine learn-

ing models in contrast to human learning ability, motivated the deep learning

community to revisit these fundamental concepts learning to learn. The paper

also proposed a probabilistic model with Bayesian programming learning which

outperformed many deep learning models in one-shot classification. Following this

success in few-shot classifications tasks, [12] proposed a meta-learning model using

neural networks with external memory capacities for few-shot classification. [13]

extended the trend for generative models with few-shot image generation. Other

significant works include MAML [14] with optimization based inference approach

to find a prior, SNAIL [15] with black box adaptation approach and [16] which

took a non-parametric approach. Going beyond supervised learning setups, [17]

has shown, RL tasks can also benefit from meta-learning.

Even though early research in the intersection of meta-learning and deep

learning was limlited to computer vision, recent work has shown that many NLP

tasks can benefit from this paradigm. [18] proposed a meta-learning approach for

low-resource neural machine translation (MetaNMT) with the support of unified

lexical representation. [19] investigated different meta-learning algorithms for
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low-resource NLU. [20] proposed a meta-learning approach for low-resource NLG

in goal-oriented dialogues. [21] used meta-learning for structured query generation.

Common characteristic of most the aforementioned research is the adaptation

of the MAML algorithm. This popularity of MAML is mainly due to its simple

and general nature with no constraint on the model architecture or loss function.

Further, most of these work cast problems to set-to-set few-shot learning setting.
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Chapter 3

RELATED WORK

In broader sense, dialogue state tracking models can be classified under two

categories.

∙ Models with separate NLU module

∙ Models with joint NLU/DST

In first type of models, NLU takes single user utterance and performs tasks

such as domain detection, intent detection and slot-filling. Results from these

individual utterances based NLU tasks are passed to dialogue state tracker where

they are combined with the context details for resolving the state. In contrast,

joints models take user utterance directly as an input and perform state tracking.

Generally, joint NLU/DST models have outperformed separate NLU models in

recent research.

3.1 Models With Separate NLU

Despite the success in joint models in comparatively high-resource settings, we

believe that further research is necessary to decide which level of integration

performs well under low-resource settings. It is commonly accepted that the

amount of data required increases when more and more components are combined.

Therefore, we will look into the NLU module which is a core-component in goal-

oriented dialogue systems which semantically represent individual user queries.

3.1.1 Intent Detection and Slot-Filing

The major role of NLU components is to identify the intention ( intent detection)

and extract attribute-values conveyed (slot-filling) from user utterances. 3.1.1

shows a sample user utterance with detected intent and slot tags following the
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IOB representation. (slot,value) pairs such as (datetime, latest) and (location,

New York) are extracted from the utterance.

Utterance Slot Tags Intent
give O

find-weather

your O
latest B-datetime

weather B-weather
report I-weather

for O
New B-location
York I-location

Table 3.1: slot tags and intent of the sample utterance "give your latest weather
report for New York"

Problem of slot-filling is usually modeled as a sequence labelling problem.

Given an input sequence 𝑋 = {𝑥1, 𝑥2...𝑥𝑛}, system outputs 𝑌 = {𝑦1, 𝑦2...𝑦𝑚}

where 𝑦𝑖 is chosen from predefined set of tags Y . So the problem can be defined

formally as follows: given ((𝑥(𝑛), 𝑦(𝑛)) : 𝑛 = 1, ..., 𝑛) find a function 𝑓 : 𝑋 − > 𝑌

where 𝑦𝑖𝜖Y . Intent detection on the other hand is considered a classification

problem. Given an input sequence (a user query) and set of possible intents I ,

system classifies the intention of the user. Traditionally, separate models were

developed for each of these tasks. However, recent models, try to achieve these

two tasks in a joint model due to their intimate relatedness. [22] propose few key

changes to the common encoder decoder architecture. First, bidirectional LSTM

is used as the recurrent unit of the encoder. Second, alignment details of sequence

input and the sequence output are incorporated explicitly, rather than model

expecting model to learn this relationship. Third, attention mechanism which

resolve the issue of forgetting earlier parts of utterance. Attention, allows model

to automatically (soft-)search for parts of a source sentence which are relevant for

tasks. We adapt this attention based encoder-decoder model as our base-model

for joint intent detection and slot-filling.
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3.1.2 Related Work in Intent Detection and Slot-Filling

Early methods in intent detection includes SVMs [23] and Boosting [24]. These

models relied on manually extracted features and failed to capture the deep

semantics of user queries. With the success of deep learning, scholars started to

utilize word embedding for intent detection tasks [25, 26]. Being able to repre-

sent semantic relatedness between words, these models outperformed traditional

approaches.

Motivated by the success in Convolution Neural Network (CNN) in the image

processing domain, [27] experimented CNN for text classification, achieving state-

of-the-art results. However, CNN capabilities were limited due to its inability to

grasp sequential nature of text. [28] introduced RNNs for intent detection with

significant reduction in error rate. [29] replaced vanilla RNN units with LSTMs

to overcome the gradient explosion and vanishing problems.

Before deep learning techniques gain traction, CRFs [30] and SVMs [31] were

used for slot-filling. [32] introduced RNN based approach for problem of slot-

filling with state-of-the-art results on ATIS (Airline Travel Information Systems)

benchmark.

Even though initial research considered slot-filling and intent detection as two

separate tasks and built models for each task accordingly, recent works tends to

achieve both tasks in a single model. [33] proposed a unified framework where

pipeline approach was taken. Results from slot-filling were used as a feature

for intent detection. [34] have shown that models which optimize two tasks

simultaneously outperform mono-objective models as well as pipe-lined cascade

models. [22] introduced attention mechanism to learn a soft alignment and capture

important semantic components.

3.1.3 Related Work in Low-Resource NLP

Early work in NLP, [35] relied on rule based approaches. Language specific

rules were defined and separate models had to be designed for each and every

language regardless of the amount of data available. Deep learning models in
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NLP mentioned earlier on the other hand relied on a vector representation learnt

from the data itself. Same model architecture could be used for many languages.

However, these models require large data corpus for training. Transfer learning

and meta-learning are two main lines of research adapted to overcome this resource

barrier.

Following the success of transfer learning [36] in image processing , [37] applied

transfer learning for document classification and sentiment analysis. [38] suc-

cessfully applied transfer learning for Neural Machined Translation(NMT). More

recently, transfer learning has been used for slot-filling [39]. Transfer learning

utilize the model parameters learned from source-task with large data corpus to

improve performance on similar target-tasks with little or no training data. Our

proposed approach focuses on more constrained setting where large corpus of

similar single task is not available. Datasets we used, to meta-learn initializing

parameter is smaller in magnitude compared to datasets where transfer learning

approaches were proven successful.

3.2 Evolution of Joint NLU/DST Models

This section reviews the evolution of join DST/NLU models with an emphasis on

the generalizability and adaptability within data scarce settings. Content of this

section will be published in a journal.

3.2.1 Use of RNN and De-lexicalization

[40] is an early attempt in joint modeling of DST. The proposed model, which

focuses on spoken dialogue systems, feeds automatic speech recognition(ASR)

hypothesis directly into state tracker omitting spoken language understanding

(SLU) processing steps. Proposed word-based approach avoids the necessity for

engineering feature function to build a semantic representation. Instead of few

chosen features, the suggested model uses 𝑛-grams extracted from ASR N-best list

combined with the last machine act. Model achieves the generalizability for unseen

states by introducing ‘tagged’ features. In parallel to learning specific examples
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with extracted 𝑛-grams (such as like indian food, serve indian food) model also

learns to generalized representation by tagging 𝑛-grams ( like <tagged-value> food,

serve <tagged-value> food). Intuition behind the mechanism is, in a sentence with

𝑛-gram <unseen_value> food, it is likely that 𝑓𝑜𝑜𝑑𝑡𝑦𝑝𝑒 =< 𝑢𝑛𝑠𝑒𝑒𝑛_𝑣𝑎𝑙𝑢𝑒 >.

For each slot (𝑠𝑙), these high-dimensional features are extracted and fed into an

RNN with probable slot-value (𝑠𝑣) for that particular slot. Model outputs the

probability distribution over the set of probable slot-values along with None.

[41] proposed a multi-domain DST model built up on previously mentioned

RNN architecture. Compared to the original model in which only tagged possible

slot-values in the 𝑛-gram and used as a feature, this model delexicalize both

slot-values as well as slot-names. Delexicalized version of like Indian food will be

like <tagged-value> <tagged–name>. Features with this level of delexicalizing

enable transfer learning between unseen values as well as entirely new slots. This

ability to learn new slots consequently help learnability in new domains. Further,

in-order to achieve domain-independence, the model get rid of a component in

the original RNN which learnt a mapping from untagged 𝑛-grams to specific

slot-values. Transfer learning process work as Algorithm 1:

Algorithm 1 Transfer Learning Process in [41]
1: while Learn Generic Initialize Parameter (General Dialog Learning): do
2: for each domain do
3: Replace all slot-name, slot-value occurrences with a generic tag (delexi-

calize)
4: Tie all the RNN parameters across each slot.
5: Train the shared RNN model parameters with slot-agnostic delexicalized

dialogues
6: end for
7: end while
8: while Slot Specific Learning: do
9: Initialized slot-specialized model with shared RNN model parameters

10: Perform further training with slot-specific delexicalized training data.
11: end while
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3.2.2 Complete Neural Approach

Despite aforementioned early attempts motivated by the success in deep learning,

it is Neural Belief Tracker (NBT) [42] that leveraged the potential of deep learning

for DST to an unprecedented level. [41] has shown that semantic dictionaries

are essential for exact-matching, delexicalization based models to perform well

which hinder their adaptation in real world domains. NBT model overcomes

this challenge by effective utilization of semantic information encoded within

pre-trained word vectors. For example, exact-matching dialogue system would

depend on a predefined dictionary to know inexpensive is equivalent to cheap

where the proposed model would capture this similarity from the positioning of

respective word vectors.

Roles of each component can be listed as below:

User Utterance Representation: Paper proposed two learning representation

models NBT-DNN and CNN based NBT-CNN which significantly influenced the

direction of DST research. NBT-DNN model takes cumulative sums of all n-grams

where n=1,2,3 scenarios. Then each category of 𝑛-grams is passed through a

non-linear layer separately before the results of all categories are summed to

obtain final utterance representation. NBT-CNN model introduces CNN layers

with window sizes 1,2,3 which filters uni-grams, bi-grams and tri-grams. CNN

layer is followed by ReLu and maxpool layers before summing to obtain final

representation of the utterance.

Semantic Decoding : Interacts (slot, value) pair candidate representation (𝑐)

with user utterance representation (𝑟) to decide whether user has explicitly

mentioned the value in the last user turn of the dialogue. This decoding does not

take the context of the dialogue into account. It should be noted that the decoder

outputs element-wise vector multiplication as size of DSTC2 and WOZ did not

suffice to result in meaningful representation from the interaction between 𝑟 and

𝑐 vectors.

Context Modelling : Understanding of the context is essential to extract in-

formation in multi-turn dialogues. System acts, requests and confirms are of
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vital importance in decoding some user queries. Requests and confirms are two

common system acts in dialogues which are vital in the extraction process. NBT

model captures this system act information under the Markov assumption that

the last system acts matter. User utterance representation(𝑟) is directly fed as an

input while context representation (𝑡) is passed through the gating mechanism

only if it is mentioned about current slot,slot-value pair.

Binary Decision Making : Results from semantic decoding and context modeling

are passed as inputs to output binary softmax, which indicates whether a given

slot-value is provided or not.

Even though proposed NBT takes a fully data-driven approach when deciding

informable and requestable slots at given user utterance turn 𝑡 (based on system

act at 𝑡−1 ), a major drawback of this work is the rule-based approach used when

deciding whether to update the belief state or not. This rule-based mechanism relies

on a hyper-parameter which requires tuning for each new domain or environment

the model is deployed. [43] proposes two statistical update mechanisms to overcome

these drawbacks in the original NBT model. In the first mechanism named One-

Step Markovian Update, current belief state 𝑏𝑠𝑡 for a particular slot is modeled as

softmax of weighted sums of two vectors, decision vector at current turn, 𝑦𝑡𝑠 and

previous belief state, 𝑏𝑠𝑡−1.

𝑏𝑡𝑠 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑐𝑢𝑟𝑟𝑦
𝑡
𝑠 +𝑊𝑝𝑟𝑒𝑣𝑏

𝑡−1
𝑠 ) (3.1)

This update mechanism learns two matrices, 𝑊𝑐𝑢𝑟𝑟 and 𝑊𝑝𝑟𝑒𝑣, which combine two

aforementioned vectors to decide the current belief state for the slot. However,

this update process limits NBT model’s scope to slot-values which are encountered

during the training process. Second variant named Constrained Markovian Update,

which is designed to overcome this limitation, utilizes the fact that the new belief

state of a particular slot is either equal to previous state or the state mentioned

in the current utterance. Parameter tying mechanism proposed with the second

variant preserves NBT’s ability to handle unseen values. [44] extends the NBT

model to a teacher-student framework which enables cross-lingual transfer learning
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from source language (teacher) to target language (student). Proposed framework

focuses on zero-shot DST with no annotated dialog corpus available for students.

Two scenarios:

∙ bilingual corpus is available between source and the target languages

∙ only bilingual dictionaries are available

are considered separately and propose two different knowledge transferring meth-

ods.

3.2.3 Encoder Modification with Self-Attention

GLAD [45] addresses the challenge of detecting slot-values with very few training

examples. This is decisive because chances that given utterance contain one of

many rare slot-values is significant even though, probability of encountering a given

rare slot-value is low. In a high-level architectural perspective, both NBT and

GLAD are quite similar despite significant differences in module names used by

authors. Novelty of GLAD comes from global-locally self-attentive encoder which

is used within all three encoders (Action encoder, Utterance Encoder, Slot-value

encoder) internally. In contrast to most the DST models which predicted each

slot-value pair in isolation ( [46] discussed earlier being an exception ), GLAD

encoder introduces global modules to share parameters among slot-value pairs

along with local modules which learn slot-specific features.

Given an input 𝑋, proposed encoder outputs encoding (𝐻) and the self-

attention context (𝑐). Encoder mapping of GLAD can be denoted as:

𝑒𝑛𝑐𝑜𝑑𝑒(𝑋)− > 𝐻, 𝑐 (3.2)

Latency due to recurrent networks is a major limitation of GLAD. For each

utterance, GLAD needs to evaluate all slot-value pairs, with a single slot-value at

time, which significantly increase the computational time of the model. This makes

GLAD inefficient in production settings. Addressing these issues, [25] propose

Globally-Conditioned Encoder (GCE), improving GLAD encoder architecture
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removes slot-specific recurrent and self-attention layer by concatenating utterance

encoding and action encoding with slot embedding vectors. Modified encoding

function can be denoted as:

𝑒𝑛𝑐𝑜𝑑𝑒(𝑋, 𝑠)− > 𝐻, 𝑐 (3.3)

[47] introduce the ‘Candidate Set’ concept for improved scalability in multi-domain

DST. Intuition is that a slot-value that has not been mentioned in dialogue up

to that turn has near zero probability of being the belief state. Therefore, the

probability distribution over the selected candidate set is calculated. Imposing

an upper bound(𝐾) on the size of the candidate set allows deployed dialogue

systems to introduce new slot-values without affecting the computational time

of the system. Paper proposes a candidate scorer mechanism to extract top-𝐾

candidates and final distribution is over 𝐾 +2 candidates with none and dontcare

conditions always considered. Related to feature selection, three types of features

are defined. Utterance related features are relevant to all the candidates under all

the slots. Scope of slot related features is limited to all the candidates under a

particular slot. Candidate related features are relevant only to a specific candidate.

Same, two layered, bi-directional GRU network, which takes original utterance

and the delexicalized utterance (delexicalizing values only) to respective layers, is

used to extract:

∙ utterance representation

∙ candidate level details from user and system utterances

Extraction from last user and system utterances are concatenated with last

dialogue and system acts to define respective types of features. Slot related

features are defined in terms of system and user acts, which involve the slot

being considered (such as request(𝑠), deny (𝑠)) and score estimates for none and

dontcare conditions. Dimensions of candidate scoring mechanism related model-

parameters are independent of slots while dimension of two layered, bi-directional

GRU network being independent of domain. These characteristics allow model-
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parameters to be transferred from one domain to another. This cross-domain

transferability is a vital contribution for the progression of research in DST.

3.2.4 Reading Comprehension Approach with Pointer Networks

Dialogue systems are usually designed with predefined ontology and most the

low-resource adaptation research discussed previously targeted either on rare

slot-values (very few examples in training-set) or unseen values (no occurrence in

training-set). However, both of these scenarios expect possible slot-values to be

predefined in the domain ontology.

[48] propose a solution to the relatively unaddressed problem of detecting

unknown (slot-value not defined in the ontology) slot-values in state tracking.

Proposed model is based on a pointer network (PtrNet) architecture [28] which

outputs discrete tokens corresponding to positions in an input sequence. Two

main differences of PtrNet from standard seq2seq models are:

∙ output is discrete and corresponds to a position in input sequence

∙ number of target classes vary depending on the size of the input

Drawing parallel with machine comprehension, problem of DST is reformulated

as a pointing task, which output of the decoder indicates the starting and the

ending indices of the input sequence. Model embeds entire dialogue history up

to current turn 𝑡, while augmenting with speaker role to differentiate between

user and system utterances. Bidirectional LSTM encoder is used for encoding.

Even though, the proposed techniques succeed in pointing to the value when it

is mentioned, it fails to identify none and dontcare conditions, because there is

no part of the sequence to be pointed. Therefore, a classification component is

introduced to overcome the problem of non-pointable values, classifying pointable,

none and dontcare. Final forward state of the encoder is used as an input feature

for the classifier. Identifying, insufficient tail representation with the same set of

slot values repeating frequently as a major cause for poor generalizability, targeted

dropout mechanism, is introduced to improve performance. The solution is an
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adaptation of widely used randomize dropout [29]. However, in the targeted

dropouts, frequent slot-value embeddings are selectively set to zero. This forces

the model to learn unknown slot-values from the context rather than remembering

frequently occurring words.

[1] very explicitly takes a reading comprehension approach, with targeted

questions being ”what is the value of slot 𝑖 ?” with 𝑖 being the name of the slot

. For a dialogue system which tracks 𝑀 types of slots, 𝑀 number of questions

will be asked. Attention based networks which find the span of the answer to the

aforementioned question make the core of the model. This approach overcome the

necessity for fixed ontology and enable tracking unknown slots. Prior to the span

component, two components are added to the model in the following order: First,

slot carryover model which makes a binary decision on whether the slot-value from

the previous turn to be used. Second, a classifier which classify answers among

target classes: yes, none, dontcare, span. This classification process takes place

only if the carryover model decided not to carryover. Yes refers to categorical

states (such as requestable slots) while span refers to named entities within the

dialogue. The slot span model will be used to extract entities only when classified

under span. Successful use of pre-trained contextual word embedding [49] is

another noteworthy contribution of this work.

[50] makes a significant contribution for the direction of multi-domain low-

resource research. Model is made of three components, Utterance Encoder, State

Generator and Slot Gate Utterance Encoder : Authors use bidirectional GRU

for encoding. However, the model does not make any strict limitation on the

encoding model. Last 𝑙 dialogue utterances(𝑈𝑖) and system responses(𝑅𝑖) sequence

is taken as inputs rather than last utterance. Where 𝑑𝑒𝑚𝑏 refers to the size of

word embedding:

𝑋𝑡 = (𝑈𝑡−𝑙, 𝑅𝑡−𝑙, . . . .𝑈𝑡, 𝑅𝑡)𝑅
|𝑥𝑡|*𝑑𝑒𝑚𝑏 (3.4)

State Generator : Similar to [27], TRADE also utilizes a pointer-network approach

in state generators. However, deviating from the index-based pointer network,

TRADE uses a soft-gated pointer-generator model. This model can be thought of
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as a hybrid of sequence to sequence model with PtrNet. While PtrNet provide

a copying mechanism from the input, attention based seq2seq gives generative

capabilities to the model. These hybrid characteristics are preferred over index

based PtrNet as there is no guarantee that exact words of true slot-values are

present in the text 1. GRU decoder value for each (domain, slot) pair is predicted

by the generator. Summed embedding of the domain and slot are given as first

inputs followed encoder input. Resulted decoder output, utilized for two purposes.

∙ compute history attention

∙ as an input of final output distribution calculation after mapping to vocabu-

lary space.

Slot Gate: For all the (domain, slot) pairs, this three-way classifier takes encoder

hidden state as input feature and classifies among ptr, none and dontcare. Decoder

output is ignored when the slot gate predicts none or dontcare.

Paper empirically shows its domain-adaptation capabilities in zero-shot and

few-shot settings. Zero-shot adaptability is demonstrated by excluding one domain

at a time and training on remaining domains. Excluded domain is used for testing.

Domain expandability of multi-domain dialogues is an important yet overlooked

aspect of DST research. In the case of domain adaptation, the model is further

trained to learn a new domain with performance of the originally trained domain

not being a concern. However, multi-domain dialogues expect models to perform

well on expanded domains without forgetting (or unlearning) previously trained

domains. TRADE is evaluated for domain expandability with promising results

in adapting to new domains.

1For more details on soft-gated pointer generator, user is referred to [51]
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Chapter 4

METHODOLOGY

Meta-learning work in the task-space compared to the data-space which normal

supervised learning work. Each individual task here contains set of utterances with

its intent and slot-tags. For 𝑛−𝑤𝑎𝑦 𝑘− 𝑠ℎ𝑜𝑡 joint intent detection, a task should

be accompanied by total of 𝑛 * 𝑘 utterances with 𝑘 utterances under each of 𝑛

intents. 𝐷𝑚𝑡𝑟, meta-dataset is made of such datasets under different tasks. Further

we maintain 𝑘𝑚𝑒𝑣𝑙 sample utterances under each 𝑛 intents for meta-evaluation.

These meta-evaluation datasets combines to form 𝐷𝑚𝑒𝑣𝑙 meta-dataset. Structure

of adaptation phase meta-datasets 𝐷𝑓𝑡 and 𝐷𝑒𝑣𝑎𝑙 are similar to 𝐷𝑚𝑡𝑟 and 𝐷𝑚𝑒𝑣𝑙

respectively. We formulate the problem assuming the existence of pool of tasks

with datasets having aforementioned characteristics. Details on how these pools

of tasks are generated for each experiment is discussed in section 5.1.1.

4.1 Meta Learning Problem Formulation

Pool of meta-learning tasks 𝜏𝑚𝑡𝑙 can be formally summarized as:

𝜏𝑚𝑡𝑙 =
{︀
𝜏 1𝑚𝑡𝑙, 𝜏 2𝑚𝑡𝑙, .. , 𝜏𝐿𝑚𝑡𝑙

}︀
(4.1)

Each of these tasks 𝜏 𝑖𝑚𝑡𝑙 is accompanied with a meta-training 𝐷𝑖
𝑚𝑡𝑟 and meta-

evaluation set 𝐷𝑖
𝑚𝑒𝑣𝑙. With (𝑥𝑖

𝑎,𝑦𝑖𝑎 ) indicating input utterance and target label

pair, we can define:

𝐷𝑚𝑡𝑙 =
{︀
(𝐷1

𝑚𝑡𝑟, 𝐷
1
𝑚𝑒𝑣𝑙), ..., (𝐷

𝐿
𝑚𝑡𝑟, 𝐷

𝐿
𝑚𝑒𝑣𝑙)

}︀
𝐷𝑖

𝑚𝑡𝑟 =
{︀
(𝑥𝑖

1, 𝑦
𝑖
1), ...(𝑥

𝑖
𝑚, 𝑦

𝑖
𝑚)

}︀ (4.2)

Adaptation tasks 𝜏𝑎𝑑𝑝 can be defined in a similar manner. If 𝐷𝑛𝑒𝑤
𝑓𝑡 and 𝐷𝑛𝑒𝑤

𝑒𝑣𝑙 are

fine-tuning and evaluation datasets of task 𝜏𝑛𝑒𝑤𝑎𝑑𝑝 entire learning process can be
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denoted as:

𝜑* = argmax
𝜑

log Pr
(︀
𝜑|𝐷𝑛𝑒𝑤

𝑎𝑑𝑝 , 𝐷𝑚𝑡𝑟

)︀
(4.3)

Learning from 𝐷𝑚𝑡𝑟 is summarized to 𝜃 as follows:

𝜃 : Pr(𝜃|𝐷𝑚𝑡𝑟)

𝜃* = argmax
𝜃

log Pr (𝜃|𝐷𝑚𝑡𝑟)
(4.4)

Finally, with the prior 𝜃*, the problem can be redefined as :

𝜑* = argmax
𝜑

log Pr
(︀
𝜑|𝐷𝑛𝑒𝑤

𝑎𝑑𝑝 , 𝜃
*)︀ (4.5)

Meta-JOSFIN algorithm proposed in Section 4.2 can be used to find this prior.

4.2 Meta JOSFIN Algorithm

Algorithm 2 Meta JOSFIN: Meta Learning for Joint Intent Detection and
Slot-Filling
Require: 𝜏𝑚𝑡𝑙

Require: : 𝛼, 𝛽
1: while training do
2: Sample batch of tasks 𝐴 from 𝜏𝑚𝑡𝑙

3: for all 𝑎 in 𝐴 do
4: for 𝑗 in 𝑁 do
5: Evaluate ∇𝜃𝐿𝐷𝑎

𝑚𝑡𝑟
(𝑓𝜃𝑎𝑗−1

)
6: Compute adapted parameters with gradient descent:

𝜃𝑎𝑗 := 𝜃𝑎𝑗−1 − 𝛼∇𝜃𝐿𝐷𝑎
𝑚𝑡𝑟

(𝑓𝜃𝑎𝑗−1
)

7: Compute and store 𝐿𝐷𝑎
𝑚𝑒𝑣𝑙

𝑓𝜃𝑎𝑗
8: end for
9: end for

10: 𝜃 := 𝜃 − 𝛽∇𝜃

∑︀𝐴
𝑎=1

∑︀𝑛
𝑗=0 𝑣𝑗𝐿𝐷𝑎

𝑚𝑒𝑣𝑙
𝑓𝜃𝑎𝑁

11: end while

Given a pool of joint intent detection and slot-filling tasks, 𝜏𝑚𝑡𝑙, our proposed

approach finds a prior 𝜃* such that, model can adapt to new tasks and environments

with minimum number of examples. Proposed procedure is shown in Algorithm 2.

From the tasks distribution, batch of 𝐴 𝑛− 𝑤𝑎𝑦, 𝑘 − 𝑠ℎ𝑜𝑡 joint intent detection

tasks are sampled . ( Characteristic of these meta-learning tasks and the attached
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datasets is discussed in sub-section 5.1.1)

We define the joint intent detection base-model to be 𝑓𝜃 with meta-parameter

𝜃. Let 𝜏𝑎 is a meta-learning task with meta-training set 𝐷𝑎
𝑚𝑡𝑟 and meta-evaluation

set 𝐷𝑎
𝑚𝑒𝑣𝑙 where 𝑎 is the index of the task. Goal is to learn an initial parameter

𝜃 = 𝜃0 for the 𝑓𝜃 such that, few 𝑁 number of gradient updates using 𝐷𝑎
𝑚𝑡𝑟 suffice

for the model to perform well on meta-evaluation set 𝐷𝑎
𝑚𝑒𝑣𝑙.This 𝑁 updates are

known as inner-loop update and 𝑗𝑡ℎ inner loop update can be denoted as:

𝜃𝑎𝑗 := 𝜃𝑎𝑗−1 − 𝛼∇𝜃𝐿𝐷𝑎
𝑚𝑡𝑟

(𝑓𝜃𝑎𝑗−1
) (4.6)

𝛼 is the task learning rate and 𝜃𝑎𝑗 is the base-model weights after 𝑗𝑡ℎ inner loop

update. ∇𝜃𝐿𝐷𝑎
𝑚𝑡𝑟

(𝑓𝜃𝑎𝑗−1
) represent the loss on support set after 𝑗 − 1 updates.

Following 𝑁 inner loop updates on the batch 𝐵, we can define a meta-objective

as the sum of base-model losses on meta-evaluation set with initialization 𝜃𝑎𝑁 .

With 𝜃𝑎𝑊 (𝜃0) explicitly denoting the dependence of 𝜃𝑎𝑁 on 𝜃0 meta-objective:

𝐿𝑚𝑒𝑡𝑎(𝜃0) =
𝐴∑︁

𝑎=1

𝐿𝐷𝑎
𝑚𝑒𝑣𝑙

𝑓𝜃𝑎𝑊 (𝜃0) (4.7)

Meta-objective 4.2 indicates, how good is our initialization with respect to a

given task. Now the meta objective can be optimized with outer-loop updates:

𝜃0 := 𝜃0 − 𝛽∇𝜃

𝐴∑︁
𝑎=1

𝐿𝐷𝑎
𝑚𝑒𝑣𝑙

𝑓𝜃𝑎𝑁 (4.8)

[52] has shown that Multi Step Loss Optimization(MSL) stabilize the training over

completing all the inner-loops before target set loss evaluation. MSL calculate the

total loss as weighted sum of losses on 𝐷𝑎
𝑚𝑒𝑣𝑙 after every inner-loop step.When 𝑣𝑖

is the importance weight of the target set loss at step 𝑖, outer-loop update changes

to:

𝜃0 := 𝜃0 − 𝛽∇𝜃

𝐴∑︁
𝑎=1

𝑛∑︁
𝑗=0

𝑣𝑗𝐿𝑇𝑎𝑓𝜃𝑎𝑁 (4.9)

Adaptation phase is similar to meta-learning phase with the key difference of
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omitting outer-loop update. We initialize the model with learnt 𝜃* and fine tune

for specific tasks, performing 𝑁 inner-loop updates.

4.3 Base-Model Changes

Deviating from calculating loss by simple arithmetic sum of two goals in base-

model, we introduce hyper-parameter 𝜂 to our base-model as of Equation :4.3, to

control learning process of intent detection and slot-filling. This 𝜂 can be adjusted

according to the distribution of slot tags over intents.

𝐿𝑜𝑠𝑠 = 𝜂𝐿𝑜𝑠𝑠𝑖 + (1− 𝜂)𝐿𝑜𝑠𝑠𝑠𝑓 (4.10)
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Chapter 5

EVALUATION

5.1 Experimentation

The goal of our experiment and evaluation is to answer the following question:

Can our meta-learning approach learn an initial parameter 𝜃0 such that, the

model can adapt to similar joint intent detection task within few-shot setting. We

evaluate the applicability of our meta-learning approach in two different few-shot

classification settings.

∙ meta-learnt with one set of intents, evaluate the adaptability for new set of

intents

∙ meta-learnt with one language, evaluate the adaptability for new languages

5.1.1 Task Pool Generation

As mentioned before, meta-learning learns in the task-space. Therefore, how we

generate our pool of tasks from available data is an important research problem.

To generate a pool of tasks we need a dataset of datasets. First, we assume the

existence of a single dataset with following characteristics:

∙ There exist a separate train-set and test-set with labelled utterances under

set of intents.

∙ Slot-tags across these intents are consistent. For example, if the tag ‘time’

is used to denote a specific time of a day in one intent, it should be used to

denote the same property over all intents.

Train set in the dataset is further split into two where one split is used for

generating meta-train and the other is sampled for meta-evaluation utterances.

From set of intents available, we randomly select n intents. Then we sample 𝑘
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labelled examples from each intent creating 𝑛− 𝑤𝑎𝑦, 𝑘 − 𝑠ℎ𝑜𝑡 meta-train tasks.

For the same set of intents, we sample 𝑘𝑡 utterances for each intent, from the

other split. We follow the same procedure with test-set to generate fine tuning

and evaluation tasks.

5.1.2 Datasets

In order to test adaptability for unseen intents, we utilized ATIS dataset. Original

ATIS training-set consist of 4978 utterances over 17 intents. We selected 9 intents

for generating meta-learning tasks while utterances under remaining 8 intents were

used for evaluating the adaptability for unseen intents. However, our hypothesis

demands the number of examples available even for training (meta-learning) task

to be limited. To simulate this constraint, we reduced the original ATIS dataset

such that maximum number of utterances per intent in reduced meta-learning

dataset is 30. Table 5.1 shows the details of restricted dataset. Train-set made

of 9 intents were further split into two. Set of 𝑘 utterances required to generate

meta-training tasks are drawn from one split while the other split is used for

sampling 𝑘𝑡 utterances for meta-evaluation. This splitting ensures meta-evaluation

examples differ from meta-training examples. We followed the same procedure

with test-set to generate fine-tuning and evaluation dataset.

Dataset Intents Utterances Constraint(per intent) Stage Used

Train 9 112 =< 20 Meta-Training
47 =<10 Meta-Evaluation

Test 8 Dynamic No upper limit Adaptation
No upper limit (Adaptation) Testing

Table 5.1: Reduced ATIS dataset constraints and their usage in task pool gener-
ation. Original ATIS training-set contain 4978 utterances across 17 intents. In
contrast, our reduced dataset utilize 159 utterances over 9 intents for meta-learning.

For evaluating the adaptability for new languages, we used publicly available

[53] dataset 1 which contains utterances in English, Spanish and Thai. Utterances

are under three domains alarm, reminder and weather. In our experiment, we do

not follow this domain-intent hierarchy in the given dataset and create a flat pool
1https://fb.me/multilingual_task_oriented_data

38

https://fb.me/multilingual_task_oriented_data


of 11 intents. Tasks generated from English language utterances across 11 intents

are used during meta-learning phase. Similar to reducing ATIS dataset, we created

smaller dataset from available utterances. In contrast to 30521 training examples

across 12 intents in the original dataset, our reduced dataset for generating meta-

training tasks contained 11 intents with 30 utterances each. To draw utterances

for meta-evaluation, reduced dataset contained separate split with maximum of

30 utterances per intent. For fine-tuning and testing stages, we used Spanish and

Thai datasets.

Adhering to the process described in section 5.1.1, we generated the pool of

tasks required for each experiment using above reduced datasets.

5.1.3 Experimental Setup

Evaluating the adaptability in our approach for new tasks, we ran tests with 5-way

1-shot and 5-way 2-shot settings. For each setting, we generated training tasks

dynamically while maintaining 50 evaluation tasks. Out of 50 evaluation tasks

generated, 10 tasks used for validating after each epoch in meta-training. From

these validation statistics, we chose best 5 models and tested their adaptability on

50 evaluation tasks. To compare the quality of the meta parameter learnt by our

model, we ran the base-model with random initialization on same set of evaluation

tasks. Pre-trained Glove [54] word embedding is used for initializing word vectors.

For evaluating adaptability to new languages 5-way 1-shot and 5-way 2-shot

settings were evaluated for adaptability to new languages. We generated meta-

learning tasks dynamically from English dataset and maintained the same 60

evaluation tasks from each language across all experiments. Out of 60 tasks, 12

tasks were used as validation set for evaluating the model after each epoch. For

each language we trained models with

∙ 64 dimension randomly initialized embedding

∙ 300 dimension (further) trainable MUSE embedding (TE)

∙ 300 dimension non trainable MUSE embedding (NTE)
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5.2 Results

Model Intent Detection Slot-Filling
Direct JOSFIN Direct JOSFIN

5-way 1-shot 27.6 30.4 35.65 32.73
5-way 2-shot 31.2 40.2 23.7 38.6

Table 5.2: Evaluation results of adaptability for new intents on reduced ATIS
dataset. Mean accuracy values in intent detection and slot-filling over 50 evalua-
tions tasks presented.

Table 5.2 shows the results of few-shot experiments on reduced ATIS dataset.

5-way 1-shot setting shows 2.8% gain with a mean intent accuracy of 30.4%.

However, slot-filling accuracy of the model with the best intent accuracy is lower

compared to base-model random initialization. 5-way 2-shot intent detection

task shows 9% improvement with Meta JOSFIN to achieve 40.2% accuracy. This

suggests that proposed JOSFIN algorithm learns a parameter that enables rapid

inferring with few examples of new set of intents. Further, it is noteworthy that

2-shot setting has shown significant improvement over 1-shot setting.

Model Intent Detection Slot-Filling
Direct JOSFIN Direct JOSFIN

Spanish

5-way 1-shot
W/O Muse 20.8 39.2 22.5 55.9

With Muse(TE) 30.0 34.8 33.9 55.1
With Muse(NTE) 25.2 43.2 38.6 50.4

5-way 2-shot
W/O Muse 22.2 44.8 21.9 58.6

With Muse(TE) 36.6 48.4 43.1 69.1
With Muse(NTE) 34.4 42.8 50.2 67.9

Thai

5-way 1-shot
W/O Muse 21.6 36.8 20.5 55.1

With Muse(TE) 33.6 42.4 55.1 64.6
With Muse(NTE) 28.0 36.8 55.3 68.2

5-way 2-shot
W/O Muse 22.2 50.8 22.9 73.2

With Muse(TE) 39.6 49.0 63.8 74.3
With Muse(NTE) 44.8 55.2 67.9 78.1

Table 5.3: Intent Detection and Slot-Filling accuracy on Spanish and Thai datasets.
Direct indicates random initialization of the base-model and JOSFIN stands for
learning a prior from Meta-JOSFIN algorithm. TE: Trainable Embedding NTE:
Non Trainable Embedding

Table 5.3 shows results for cross lingual adaptability experiments. In 5-way

1-shot experiment on Spanish dataset, our approach report maximum of 43.2%

accuracy on intent detection with non-trainable Muse embedding where highest
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accuracy achieved by the base-model without Meat-JOSFIN is 30.0%. Slot-filling

accuracy also improves in all 3 variation of Spanish 5-way 1-shot experiments.

Similar behaviour can be seen in Thai 5-way 1-shot setting with the only exception

of intent detection with trainable Muse embedding reducing the accuracy. For

5-way 2-shot experiments, trainable Muse with Meta-JOSFIN shows the best

accuracy on Spanish data with 48.4% intent detection and 69.1% slot-filling

accuracy. Our method achieve 55.2% intent detection and 78.1% (with non

trainable Muse embeddings) in slot-filling on Thai 5-way 2-shot experiments.

Further, there is a clear gain from 1-shot setting to 2-shot setting.

5.3 Discussion

Results from both experiments support our hypothesis that Meta-JOSFIN algo-

rithm learns a meta-parameter (prior) which stores common charectersitics from

similar, but different tasks. This enable rapid inference on new tasks similar to

human brain.

In the reduced ATIS experiment, our approach has clearly performed better

compared to random initialization approach in both intent detection and slot-filling

tasks. This suggests prior found using one set of intents contains information

of underlying tasks (n-way k-shot classification and slot-filling) rather than just

remembering few tags. This ’prior knowledge’ acquired by the meta-parameter

enable fast adaptation for completely new set of intents.

In cross lingual experiment, our meta-learning based approach shows signifi-

cant improvement in accuracy with only one exception (5-way 1-shot trainable

Muse on Thai data). This mean our Meta-JOSFIN algorithm has been able to

learn initializing parameter which stores language-independent knowledge. This

language independent learning from English utterances enable the base-model to

quickly adapt new languages: Spanish and Thai.

Further, it can be noted in both the experiments that there is a significant

improvement from 1-shot to 2-shots. This suggests that parameter learnt by

Meta-JOSFIN does not restrict the further learnability with more examples.
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Transfer Learning Approaches vs Meta-JOSFIN: Usually transfer learn-

ing approaches in NLP which focus on generalizability and adaptability expects

one large source task for initial training . However, this large dataset is not

available in real-world scenarios. Reduced datasets used to produce meta-training

and meta-evaluation datasets in our experiments are magnitudes smaller com-

pared to source task dataset expected for transfer learning. However, in a broader

sense, both meta-learning and transfer learning can be applied for low-resource

settings. For example, in the cross-lingual experiment we utilized pre-trained word

embedding which is a form of transfer learning.

Stabilizing Model Training: It is noted during model training that the

generalization ability of the meta-parameter 𝜃 does not improve smoothly with

the number of epochs. Even though there is overall upward trend against the

number of epochs, five best models selected were not concentrated towards last

epochs. This suggests that model training for generalizability is unstable to an

extent and further investigation may be conducted.

In summary, the proposed meta-learning approach, Meta-JOSFIN encode

underlying similarity from different tasks and improve the adaptability and gener-

alizability for new tasks. However, the training process of the proposed approach

is unstable to some extent and further research is required to stable training-setup.
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Chapter 6

CONCLUSION

The first phase of our work targeted towards DST models with separate NLU

component. Modeling the problem of intent detection and slot-filling as a few shot

meta-learning problem, we empirically demonstrated that NLU module in goal-

oriented dialogues can greatly benefit from learn to learn paradigm in low-resource

settings. In the second phase, presented systematic study of the evolution of joint

NLU/DST models with respect to generalizability and adaptability.

6.1 Future Directions

We believe, our work especially related to meta-learning lay foundation to two

main line of research:

∙ Despite not being straight forward, adapting leave-one-out cross validation

proposed in [55] is a probable improvement to the meta-learning setup.

∙ As described in the review of joint NLU/DST models heavily rely on transfer

learning techniques for generalizability and adaptability. We view meta-

learning techniques for joint NLU/DST models as a promising line of re-

search.

∙ We also believe all conversational AI related tasks including DPL and NLG

should shift the focus from data-driven approaches to task-driven approaches,

Shallow and distributed nature of dialogue datasets would complement this

line of research.
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