ENHANCING THE APPLICATION OF LIFE CYCLE ASSESSMENT IN THE CONSTRUCTION INDUSTRY: USE OF MODIFIED QUINTUPLE HELIX INNOVATION MODEL

Sedillage Don Isuri Anuradha Amarasinghe

(198056X)

Thesis submitted in partial fulfilment of the requirements for the degree of Master of Science by Research

Department of Building Economics

University of Moratuwa Sri Lanka

September 2020

DECLARATION

Declaration, Copyright Statement and the Statement of the Supervisor

"I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Further, I acknowledge the intellectual contribution of my research supervisors Dr. Chandanie Hadiwattege for the successful completion of this research thesis. I affirm that I will not make any publication from this research without the names of my research supervisors as contributing authors unless otherwise, I have obtained written consent from my research supervisors.

Also, I hereby grant to the University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books)".

ervision.

ABSTRACT

Life Cycle Assessment (LCA) is identified as a systematic analytical tool used to assess the total environmental burdens related to any product, process, or activity by assessing all upstream flows and all downstream flows throughout the whole value chain. LCA has been applied significantly in developed countries, as a sophisticated assessment method to strengthen the decision-making process in the construction industry. Although LCA applications in the construction sector have been implemented comprehensively in the international arena, it is challenging to discover evidence in the Sri Lankan construction sector as a developing country. Also, the Sri Lankan construction industry has been in the position of highly vulnerable to face environmental degradation as a result of the booming nature of constructions, which drastically increases environmental challenges. Hence, it has become a key requirement for establishing LCA in the Sri Lankan construction industry as a solution to reduce the increasing adverse environmental impacts. Therefore, this study targets to bridge the research gap by solving the research problem of 'how to establish LCA practice in the construction industry through a Quintuple Helix Innovation approach?'. Literature findings emphasised the twelve (12) number of strengths and opportunities enjoyed by developed countries, which have improved the capacity of LCA applications. Further, literature findings indicate the eleven (11) number of weaknesses and threats faced by developing countries in establishing LCA. The qualitative research approach was adopted and an expert interview survey was used as the research method. Data was collected with the use of the Repertory Grid Interview (RGI) technique, and data collection was limited to twenty (20) expert interviews representing five (05) contenders in the Quintuple Helix Innovation Model. Data was analysed using manual content analysis. The empirical investigation highlighted that 'ability to identify opportunities for environmental improvements with the use of LCA' as one of the extremely important strengths identified by all contenders. 'Positive growth in the country to achieve environmental sustainability' identified as one of the extremely important opportunities by all contenders. 'Unavailability of experienced LCA professionals' identified as one of the weaknesses by all the contenders. 'Unavailability of accurate LCA data' categorized as one of the extremely influential threats by all the contenders. Then, individual SWOT analysis was developed for each of the contenders by identifying their respective strengths/opportunities and weaknesses/threats. Further, 'government intervention by providing financial incentives' and 'development of LCA database' are identified as some of the strategies to overcome the identified weaknesses and threats in establishing LCA for the construction industry. Finally, a Modified Quintuple Helix Innovation Model was developed and it could be employed to motivate all the related contenders to apply LCA as a decision-making tool to assess and mitigate environmental impacts generated by the Sri Lankan construction industry.

Keywords: Academia, Construction Industry, Environmentalists, Government, Life Cycle Assessment, Quintuple Helix Innovation Model, Society

ACKNOWLEDGMENT

The successful completion of my MSc thesis is not a single attempt that was taken by me. Therefore, I make this an opportunity to express my sincere gratitude to every individual who encouraged and supported me by giving their assistance for the successful completion of this research.

First and foremost I would like to convey my sincere gratitude to Dr. Chandanie Hadiwattege for her supervision, guidance, and encouragement to make this research successful as my supervisor. I would like to extend my sincere gratitude to all the academic and non-academic staff of the Department of Building Economics for their immense assistance provided during the research period.

Further, I wish to extend my sincere gratitude to Senate Research Committee of the University of Moratuwa for providing funding to undertake this research under SRC/LT/2019/23. My sincere gratitude is extended to all the interviewees who supported throughout the data collection process in this research and assisted in many ways to deliver the final outcome of this study.

Moreover, I would like to convey my respectable gratitude to my family members. Finally, my appreciation goes to all my friends who have helped me directly and indirectly to make this research a success.

TABLE OF CONTENTS

DECLARATION	I
ABSTRACT	II
ACKNOWLEDGMENT	III
TABLE OF CONTENTS	IV
LIST OF TABLES	IX
TABLE OF FIGURES	XI
LIST OF ABBREVIATIONS	XIII
CHAPTER ONE	1
1.0 INTRODUCTION	1
1.1 Background	1
1.2 Problem Statement	4
1.3 Aim and Objectives	5
1.4 Research Methodology	5
1.5 Scope and Limitations	6
1.6 Chapter Breakdown	7
1.7 Chapter Summary	8
CHAPTER TWO	9
2.0 LITERATURE REVIEW	9
2.1 Introduction	9
2.2 Life Cycle Assessment: A Tool for Assessing Environmental Impacts	9
2.2.1 Significance of LCA Application in the Construction Industry	10
2.2.2.I.CA Applications in the Construction Industry	11

2.2.3 The Status of LCA Application in the Construction Industry of Developed ar	
Developing countries	12
2.3 Factors Influencing the LCA Application in the Construction Industry	13
2.3.1 Positive Factors Influencing on LCA Application in the Construction Industr	У
	13
2.3.2 Negative Factors Influencing on LCA Application in the Construction	
Industry	18
2.4 Establishing LCA in the Construction Industry: Key Stakeholders	21
2.5 Intermingling Key Stakeholders towards LCA Establishment in the Construction	
Industry: An Innovational Approach	22
2.5.1 Evolution of Helix Innovation Models	24
2.5.2 Quintuple Helix Innovation Model	26
2.5.3 Modifying Quintuple Helix Model	28
2.6 Aligning essential contextual stakeholders for establishing LCA in the	
construction industry with the Quintuple Helix Innovation Model significant	
contenders	30
2.7 Conceptual Quintuple Helix Innovation Model for LCA Integration to the	
Construction Industry	31
2.8 Summary	31
CHAPTER THREE	34
3.0 RESEARCH METHODOLOGY	34
3.0 Introduction	34
3.1 Research Design	34
3.2 Research Approach	34
3.3 Research Strategy	36

	3.4 Research Techniques	37
	3.4.1 Data Collection Technique	37
	3.4.2 Sampling Technique	41
	3.4.3 Data Analysis Technique	45
	3. 5 Decision criteria for categorising strengths/opportunities and weaknesses/threa	ats
		46
	3.6 Chapter Summary	48
C	CHAPTER FOUR	49
4	.0 DATA ANALYSIS AND DISCUSSION	49
	4.1 Introduction	49
	4.2 Analysis and Discussion of the Research Findings	49
	4.3 Environmental Impacts Generated by the Construction Industry	49
	4.4 Importance of Managing Environmental Impact in the Sri Lankan Construction	1
	Industry	51
	4.5 Introducing LCA as an Environmental Management Tool for the Sri Lankan Construction Industry	53
	4.6 Strengths/Opportunities and Weaknesses/Threats for Establishing Life Cycle	
	Assessment in the Sri Lankan Construction Industry	54
	4.8 Contenders in the Quintuple Helix Innovation Model: Academia	55
	4.8.1 Strengths and Opportunities in Establishing LCA in the Construction Indus	stry:
	Academia	55
	4.8.2 Weaknesses and Threats in Establishing Life Cycle Assessment in the	
	Construction Industry: Academia	59
	4.8.3 Strategies to Overcome Weaknesses and Threats in Establishing LCA in the	ne
	Construction Industry: Academia	62

4.9 Contenders in the Quintuple Helix Innovation Model: Government	64
4.9.1 Strengths and Opportunities in Establishing Life Cycle Assessment in the Construction Industry: Government	65
4.9.2 Weaknesses and Threats in Establishing Life Cycle Assessment for the Construction Industry: Government	69
4.9.3 Strategies to Overcome Weaknesses and Threats in Establishing LCA in the Construction Industry: Government	
4.10 Contenders in the Quintuple Helix Innovation Model: Construction Industry.	76
4.10.1 Strengths and Opportunities in Establishing Life Cycle Assessment in the Construction Industry: Construction Industry	
4.10.2 Weaknesses and Threats in Establishing Life Cycle Assessment in the Construction Industry: Construction Industry	80
4.10.3 Strategies to Overcome Weaknesses and Threats in Establishing LCA in Construction Industry: Construction Industry	
4.11 Contenders in the Quintuple Helix Innovation Model: Society	87
4.11.1 Strengths and Opportunities in Establishing Life Cycle Assessment in the Construction Industry: Society	
4.11.2 Weaknesses and Threats in Establishing Life Cycle Assessment in the Construction Industry: Society	91
4.11.3 Strategies to Overcome Weaknesses and Threats in Establishing LCA in Construction Industry: Society	
4.12 Contenders in the Quintuple Helix Innovation Model: Environmentalists	96
4.13.1 Strengths and Opportunities in Establishing Life Cycle Assessment in the Construction Industry: Environmentalists	
4.13.2 Weaknesses and Threats in Establishing Life Cycle Assessment in the Construction Industry: Environmentalists	.101

4.13.3 Strategies to Overcome Weaknesses and Threats in Establishi	ng LCA in the
Construction Industry: Environmentalists	104
4.14 A modified Quintuple Helix Innovation Model integrating the Sig	nificant
Contender Roles and Strategies for LCA Integration to the Construction	n Industry 106
4. 15 Summary	116
CHAPTER FIVE	117
5.0 CONCLUSIONS AND RECOMMENDATIONS	117
5.1 Introduction	117
5.2 Conclusions Drawn from the Study	117
5.3 Contribution to the Knowledge	121
5.4 Limitations of the Study	121
5.5 Recommendations for Industry Practitioners	122
5.6 Recommendations for Academic Research	123
5.7 Summary	123
Annexure	124
Deferences	120

LIST OF TABLES

Table 2.1: Positive Factors Faced by Different Stakeholders for Establishing LCA in the
Construction Industry
Table 2.2: Negative Factors Faced by Different Stakeholders in establishing LCA for the
Construction Industry
Table 2.3: Role of Contenders in the Quintuple Helix Innovation Model26
Table 3.1: A Comparison of the Quantitative Approach and the Qualitative Approach
with the Requirements of this Study
Table 3.2: Types of Research Strategies
Table 3.3: Profile of Interviewees
Table 4.1: Repertory Grid for the Strengths and Opportunities in Establishing LCA in
the Sri Lankan Construction Industry: Academia
Table 4.2: Repertory Grid for the Weaknesses and Threats in Establishing LCA in the
Sri Lankan Construction Industry: Academia
Table 4.3: Strategies to Overcome Weaknesses and Threats in Establishing LCA in the
Construction Industry: Academia
Table 4.4: Repertory Grid for the Strengths and Opportunities for Establishing LCA in
the Sri Lankan Construction Industry: Government
Table 4.5: Weaknesses and Threats in Establishing LCA for in Construction Industry:
Government
Table 4.6: Strategies to Overcome Weaknesses and Threats in Establishing LCA in the
Construction Industry: Government
Table 4.7: Repertory Grid for the Strengths and Opportunities in Establishing LCA in
the Sri Lankan Construction Industry: Construction Industry
Table 4.8: Repertory Grid for the Weaknesses and Threats in Establishing LCA in the
Sri Lankan Construction Industry: Construction Industry
Table 4.9: Strategies to Overcome Weaknesses and Threats in Establishing LCA in the
Construction Industry: Construction Industry85

Table 4.10: Repertory Grid for the Strengths and Opportunities in establishing LCA in
the Sri Lankan Construction Industry: Society87
Table 4.11: Repertory Grid for the Weaknesses and Threats in Establishing LCA in the
Sri Lankan Construction Industry: Society
Table 4.12: Strategies to Overcome Weaknesses and Threats in Establishing LCA in the
Construction Industry: Society95
Table 4.13: Repertory Grid for the Strengths and Opportunities in Establishing LCA in
the Sri Lankan construction industry: Environmentalists977
Table 4.14: Repertory grid for the weaknesses and threats in establishing LCA in the Sri
Lankan Construction Industry: Environmentalists
Table 4.15: Strategies to Overcome Weaknesses and Threats in Establishing LCA in the
Construction Industry: Environmentalist

TABLE OF FIGURES

Figure 2.1: Three Types of Helix Models	25
Figure 2.2: Developed Quintuple Helix Model for a Green New Deal	288
Figure 2.3: Conceptual Quintuple Helix Innovation Model for Establishing LC	A in
Construction Industry	33
Figure 3.1: Concept of SWOT Analysis	39
Figure 3.2: Components in the Repertory Grid Interview Technique	41
Figure 3.3: Selection Process of the Sampling Method	43
Figure 3.4: Decision Criteria for Categorising Strengths and Opportunities	437
Figure 3.5: Decision Criteria for Categorising Weaknesses and Threats	437
Figure 4.1: SWOT Analysis to Establish LCA for the Sri Lankan Construction	Industry
from an Academic Perspective	62
Figure 4.2: SWOT Analysis to Establish LCA for the Sri Lankan Construction	Industry
from the Government Perspective	73
Figure 4.3: SWOT Analysis to Establish LCA for the Sri Lankan Construction	Industry
	84
Figure 4.4: SWOT Analysis to Establish LCA for the Sri Lankan Construction	Industry
from a Society Perspective	944
Figure 4.5: SWOT Analysis to Establish LCA for the Sri Lankan Construction	Industry
from an Environmentalists Perspective	104
Figure 4.6: Initial Layout of the Modified Quintuple Helix Innovation Model in	ntegrating
the Significant Contender Roles and Strategies for LCA Integration to the Cons	struction
	1049
Figure 4.7: SWOT Analysis to Establish LCA for the Sri Lankan Construction	Industry
from an Academic Perspective	104
Figure 4.8: SWOT Analysis to Establish LCA for the Sri Lankan Construction	Industry
from the Government Perspective	10411

Figure 4.9: SWOT Analysis to Establish LCA for the Sri Lankan Construction Industry	y
	12
Figure 4.10: SWOT Analysis to Establish LCA for the Sri Lankan Construction Industri	ry
from a Society Perspective	13
Figure 4.11: SWOT Analysis to Establish LCA for the Sri Lankan Construction Industri	ry
from an Environmentalists Perspective	14
Figure 4.12: Strategies to Overcome Weaknesses and Threats in Establishing LCA in the	he
Construction Industry	15

LIST OF ABBREVIATIONS

BIM - Building Information Modelling

CED - Cumulative Energy Demand

CPR - Construction Products Regulation

EPD - Environmental Product Declarations

ERA - Environmental Risk Assessment

GBCSL - Green Building Council of Sri Lanka

GHG - Green House Gas Emission

ISO - International Organization for Standardization

LCA - Life Cycle Assessment

LCI - Life Cycle Inventory

LCIA - Life Cycle Impact Assessment

MFA - Material Flow Analysis

MFA - Material Flow Analysis

RGI - Repertory Grid Interview

SCP - Sustainable Consumption and Production

UK - United Kingdom

USA - United States of America

WLC - Whole Life Cycle