

PRICING ON EMBEDDED GENERATION

DEPARTMENT OF ELECTRICAL ENGINEERING UNIVERSITY OF MORATUWA SRI LANKA

October 2004

PRICING ON EMBEDDED GENERATION

THESIS PRESENTED

Ву

W.D.A.S. RODRIGO

BSc (Electrical Engineering), University of Moratuwa, Sri Lanka, November 2002

This thesis was submitted to the Department of Electrical Engineering of the

University of Moratuwa- Sri Lanka

in partial fulfilment of the requirements for the

Degree of Master of Science

OCTOBER 2004

Supervised By

Prof. Priyantha D.C. Wijayatunga

DECLARATION

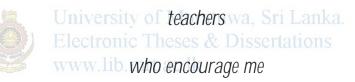
The work submitted in this thesis is the results of my own

investigation, except where otherwise stated.

It has not already been accepted in substance for any degree, and

also is not being concurrently submitted for any other degree.

Signed W.D.A.S. Rodrigo (Author)


Jniversity of Moratuwa, Sri Lanka. Electronic Theses & Dissertations

UOM Verified Signature

Signed Prof. Priyantha D.C. Wijayatunga (Supervisor) Dedicated to

my loving farther & mother

and

for my education

Power generation sources which are connected to the medium voltage distribution system of the National Grid with relatively small installed capacities are presently classified as **Embedded Generators**. Most of embedded generators including small-hydroelectric in many countries have been financed, developed and operated by the Private sector.

The purpose of this research was to develop an appropriate pricing methodology for the embedded electricity generation with emphasis on the Sri Lankan system. The study recommended that the embedded generation tariff be based on the avoided cost, and this avoided cost calculation should include the cost of externalities in the energy sector and the exact cost of avoided network loss.

Traditionally electricity tariff reflects only the cost of production and delivery electricity to the consumers, which includes cost of labour, capital, operation, taxes and insurance. But the production of electricity causes some damage to environment, which associated some cost. Level of environment damage due to electricity generation varies with the technology, site etc.

Since there are no Sri Lankan studies on the damage costs related to the pollutants associated with the power sector. Estimation of externalities of electricity production in this study mainly depends upon the results of studies done elsewhere specially the "ExternE" Project of the European Commission. Therefore an adjustment was made to those results by using a factor based on per capita GNP ratio to adopt those values for Sri Lanka. From that, it was found that there is an external cost of 0.22 ECU cents/kWh for the oil based power generation in Sri Lanka and that would be around 11-14% of the total avoided energy cost.

The study recommends nodal based avoided network loss calculation for the embedded generation tariff. It is also found that there is a considerable contribution of the cost of avoided network loss to the proposed embedded generation tariff and final tariff would vary significantly with the location of the node.

The proposed pricing methodology would provide important information for the investors to choose the most economical site. This can be done by examine the tariff at each node, which can also be used to optimize the network use and finally improving on the benefit of society.

Guidelines were suggested to improve accuracy of the tariff and to minimize the uncertainty of the calculation. These will allow the developers of embedded generation facility and the Utility to maximize the potential of embedded generation and the net benefit of the society.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk It is a great pleasure to express my gratitude to those who were behind me in completing my research successfully.

First of all I would like to express my gratitude to my research supervisor, Professor Priyantha D.C. Wijayatunga (Professor in Electrical Engineering, University of Moratuwa) for proposing this interesting research idea as a timely important topic and for guiding me through out the research.

At the same time I would be thankful to Prof. Ranjith Perera (Head- Dept. of Elect. Engineering, University of Moratuwa), Prof. J.R. Lucas (Professor of Electrical Engineering, University of Moratuwa), Dr. D.P.N. Nanayakkara (Senior Lecturer), Dr. D.P.T. Nanayakkara (Research coordinator), Dr. Tilak Siyambalapitiya (Consultant-Resource Management Associate, Sri Lanka) and Engineers in Ceylon Electricity Board, specially Tariff Branch and System Control Center who gave assistance during my research.

And also, I would like to thank Asian Development Bank (ADB), Post Graduate Division of University of Moratuwa and all who decided to award a full scholarship to me for my Masters Degree.

Finally, all my friends and post graduate students in University of Moratuwa and all the others who helped me in various ways through out my research are also appreciated.

W. D. Asanka Sanjeewa Rodrigo Department of Electrical Engineering University of Moratuwa, Sri Lanka. October 2004.

Table of Contents

Executiv	ve Summaryi				
Acknowledgementiii					
Chapter	[.] 1				
Introdu	ction 1				
1.1	Embedded Generators 1				
1.2	Current Status of Embedded Generation in Sri Lanka				
1.3	Embedded Generation Tariff3				
1.3	.1 India				
1.3	.2 Europe				
1.3	.3 Germany				
1.3	.4 China				
1.4	Present Embedded Generation Pricing Mechanism in Sri Lanka 5				
	The sector CM sector - Cail				
Chapter	2				
Method	ology				
2.1	Concept of Marginal Cost Electricity Pricing7				
2.2	Opportunity Cost Electricity Pricing				
2.3	Cost the Externalities of Energy 11				
2.4	Impact Path Way Approach14				
2.4.2 Dispersion					
2.4	.3 Impact				
2.4	.4 Economic Valuation 21				
2.5	Mathematical Representation of Impact Pathway Approach				
2.6	Costing of Avoided Network Loss				
2.7	Proposed Embedded Generation Pricing Mechanism				
Chapter	⁻ 3				
Case St	udy for Sri Lanka System 29				
3.1	Estimation of Fraction of Time the Plant is in Margin				
3.2	Estimation of Environment and Social cost in Sri Lanka				

3	3.3	Avoided Energy Cost Calculation 34				
3	8.4	Avoided Network Loss Calculation				
3	8.5	Embedded Generator Price at Node 40				
Cha	apter	4				
Ana	Analysis and Discussion					
4	1.1	Damage Estimation 42				
4	1.2	Network Loss Estimation 46				
4	1.3	Comparison With Present Tariff 47				
4	1.4	Economic Objectives of Tariff 48				
Cha	apter	5				
Cor	nclusi	ns and Recommendations50				
Bib	liogra	bhy and References				
		University of Moratuwa, Sri Lanka.				
AP	PEND	XESElectronic.Theses & Dissertations				
A	Appen	lix I Variable Cost Calculation for Thermal Plant				
A	Appen	lix II Avoided Cost Calculation without Environment Cost 56				
A	Appen	lix III Avoided Cost Calculation with Social & Environment Cost 57				
A	Appen	lix IV Sri Lanka Transmission Network 58				
A	Appen	lix V Sri Lanka Transmission Network Parameters				
A	Appen	lix VI Nodal Incremental Loss61				
A	Appen	lix VII Embedded generation Price at Node				

List of Figures

Figure 2.1	Marginal Cost Concept7
Figure 2.2	Avoided Cost Calculation Concept9
Figure 2.3	Cost Relationship of Power Generation 10
Figure 2.4	Illustration of top down approach for externalities estimation. 13
Figure 2.5	Impact Pathway Approach 15
Figure 2.6	Gaussian plume models17
Figure 2.7	Secondary Pollutants 19
Figure 2.8	Dose-respond functions 20
Figure 2.9	Illustration of Proposed Tariff Methodology 28
Figure 3.1	Load Duration Curve 31
Figure 3.2	Illustration of Normalized External Oil Cost Variation
Figure 3.3	Total Variable Cost of Thermal Plants 35
Figure 3.4	Load Duration Curve
Figure 3.5	Percentage Network Avoided Cost
Figure 4.1	Illustration of Total Variable Cost Variation
Figure 4.2	Percentage Variable cost Variation 44
Figure 4.3	Illustration of Avoided Cost Variation with External Cost 45
Figure 4.4	Illustration of Contribution of External Cost to Avoided Cost 45
Figure 4.5	Percentage avoided cost at the Node 47
Figure 4.6	Comparison of the present tariff with proposed tariff 48

List of Tables

Table 1.1	Existing Embedded Generation in Sri Lanka	2
Table 1.2	Small Power Purchase Tariff (1997-2003)	6
Table 2.1	pollutant mitigating cost	12
Table 3.1	Marginal Fraction of Thermal Power Plants	30
Table 3.2	Damage estimation	32
Table 3.3	Normalized External Cost	33
Table 3.4	Variable cost of Thermal Power plants	34
Table 3.5	Total Variable cost	35
Table 3.6	Avoided Cost of Each Thermal Plant	36
Table 3.7	Total Avoided Cost	37
Table 3.8	Avoided Network Losses	39
Table 3.9	Embedded Generation Price at each node	41

University of Moratuwa, Sri Lanka Electronic Theses & Dissertations www.lib.mrt.ac.lk

Abbreviations

IPP		-	Independent Power Produces
SPP		-	Small Power Produces
CEB		-	Ceylon Electricity Board
SRMC		-	Short Run Marginal Cost
LRMC		-	Long Run Marginal Cost
ECU		-	European Currency Unit
Incr.		-	Incremental
DSCR		-	Debt Service Coverage Ratio
ROE		-	Rate On Equity
INR		-	Indian Rupees
Rs.		-	Sri Lankan Rupees
n/a		-	Not Applicable
LDC		-	Load Duration Curve
O&M			Operation and Maintenance
WTP		-wv	Willingness to Pay
WTA		-	Willingness to Accept
GNP		-	Gloss National Product
GTR		-	Kelanitissa Gas Turbines
GTNW		-	Kelanitissa New Gas Turbine
KPST		-	Kelanitissa Steam Turbines
DLTL		-	Lakdhanavi (Pvt) Ltd., Diesel Power Plant
APPL		-	Asia Power (Pvt) Ltd., Diesel Power Plant
DSP		-	Sapugaskanda Diesel
DSPX		-	Sapugaskanda Diesel (Extension)