A Novel Behavior Based Mobile Robotic Platform for Landmine Detection

By: Ampikathasan Aravinthan

This thesis was submitted to the department of Electrical Engineering of University of Moratuwa in partial fulfillment of the requirements for the Degree of Master in Science

Department of Electrical Engineering University of Moratuwa Sri Lanka

December 2004

Supervisor: Thrishantha Nanayakkara PhD Co-Supervisor: Chatura De Silva PhD

Abstract

Humanitarian demining is an urgent and necessary activity to be carried out to resettle in places where the civilians were used to live before the war. Humanitarian mine clearance technology currently used in various parts of the world is based on the use of very basic equipment, techniques, and procedures developed in early years. Robotics has come into all aspects of life today. It has come into the industrial aspect, the biological and practical sciences aspect, everyday life, and especially in the rescue aspect. Humanitarian Demining is one of the areas where the robots can be used to reduce risk and speed up the process.

A novel behavior based mobile robotic platform for landmine detection is proposed in this thesis. A fully autonomous wheeled mobile robot called Autonomous Mine Detecting Robot(AMDR) was designed and developed for this purpose. A microcontroller based system was developed for processing sensor signals and driving actuators. Networks of microcontrollers were used to implement the whole system while reducing complexity of algorithm. Bumper switches, photoreflectors and sonar sensor were used in the robot to sense the world and two DC motors were used for locomotion.

A Subsumption based behavior based controller was implemented to enable the robot to do simple search operation to detect landmines. Six behaviors were arranged according to its priority level. Behaviors were tuned to give better performance.

This thesis explains about Humanitarian Demining in the first chapter. The design of the robot and design of the proposed controller are explained in consecutive chapters. In the final chapter the results of experiments are summarized.

Declaration

The work submitted in this thesis is the result of my own investigations, except where stated.

It has not already been accepted in substance for any degree, and also not being concurrently submitted for any other degrees.

Ann

A. Aravinthan Candidate

UOM Verified Signature Moratuwa, Sri Lanka. neses & Dissertations

d ge

£

Dr. D P T Nanayakkara^{v w w.110.1111.ac.lk} Supervisor

UOM Verified Signature

Dr Chathura De Silva Co Supervisor

Acknowledgement

The first person I would like to thank is my supervisor Dr Thrishantha Nanayakara.. During the last two years I have known Dr. Thrishantha as a determined and principlecentered person. His overly enthusiasm and integral view on research and his mission for providing 'only high-quality work and not less', has made a deep impression on me. I owe him lots of gratitude for having me shown this way of research. He could not even realize how much I have learned from him

I would like to thank my co supervisor Dr. Chathura De Silva who kept an eye on the progress of my work and always was available when I needed his advises. I would also like to thank the other members of my review committee who monitored my work and took effort in reading and providing me with valuable comments, Prof H. Sriyananatha, Dr. HYR Perera and Dr L Udawatta.

This research has been supported and funded by ADB and NSF. I thank them for their confidence in me. I take this opportunity to Prof (Mrs) N. Ratnayake for the extra effort taken on behalf of me in awarding the scholarship. I also thank director post graduate studies Dr. N. Munasinghe and his staff for the guidance and support given to me.

I am grateful for Prof JR Lucas, former head of the department and Dr. Ranjith Perera, head of the department for their valuable guidance and the support given to me during difficulties. I also thank the technical officers from the department for their support given to me. My sincere thanks to technical staff from Mechanical Engineering department who gave their hands in fabricating the AMDR.

iv

My colleagues of the demining project, Kumarathasan and Aravinthan, both gave me the feeling of being at home, many thanks for being my colleague.

Last but not least I thank my mother for her unconditional support to lift me whenever I underwent difficulties and for her love

A. Aravinthan 1st October 2004

University of Moratuwa, Sri Lanka Electronic Theses & Dissertations www.lib.mrt.ac.lk

Contents

		Page
	Declaration	i
	Dedication	ii
	Abstract	iii
	Acknowledgement	iv
	List of Figures	viii
C	apptor	
CI	napter	
1.	Introduction	1
	1.1 Humanitarian Demining	1
	1.2 Humanitarian Demining Technologies	2
	1.3 Demining Robots	4
	1.4 Problems in Humanitarian Demining	7
	1.5 Goal of the Thesis	9
	1.6 Outline of the Thesis	10
	University of Moratuwa, Sri Lanka.	
2.	Behavior Based Control WWW.lib.mrt.ac.lk	11
	2.1 Hierarchical Control	. 11
	2.1.1 Hierarchical Control Architecture	12
	2.2 Behavior Based Control	14
	2.2.1 Characteristics of Behavior based Control	15
	2.2.2 Behavior selection	16
	2.2.3 Behavior expression and encoding	17
	2.2.4 Behavior Coordination	19
	2.3 Behavior-Based Control Architectures	19
	2.3.1 Subsumption Architecture	20
	2.3.2 Schema-Based Approach	21
		and the
3.	Design of Autonomous Mine Detecting Robot - I	23
	3.1 Physical Characteristics	🖦 · 24
	3.2 The Mother Board	25
	3.2.1 PIC18F452 Microcontroller	- 25
	3.3 Sensors	27
	3.3.1 Sonar Sensor	28
	3.3.2 Photo-Reflector	30
	3.3.3 Bumper switches	32

vi

4.	Design of Autonomous Mine Detecting Robot - II	34
	 4.1 Alphanumeric Liquid-Crystal Display 4.2 Microcontroller Network - Serial Peripheral Interface 	34 36 37
	4.3 DC Motors 4.3.1 Motor Control	39
	4.3.2 Motor Driver	41
5.	The Proposed Controller	42
	5.1 The Behavior Based Controller 5.2 Behavior Implementation	42 45
6.	Results and Discussion	52
	6.1 Autonomous Mine Detecting Robot	52
	6.2 Experiments results with Rug Warrior PRO	53
	6.3 Simulation Results of the Controller	58
	6.4 Future Extension	65
7.	Conclusions University of Moratuwa Sri Lanka	66

University of Moratuwa, Sri Lanka Electronic Theses & Dissertations www.lib.mrt.ac.lk

vii

List of Figures & Tables

Figure(1.1) Metal Detectors for Demining	2
Figure(1.2) Dogs in Demining	3
Figure(1.3) High tech machines are used for Demining	4
Figure(1.4) The ARIEL, a hexapod crablike robot	5
Figure(1.5) The STAR robot	5
Figure(1.6) The MR1 robot	6
Figure(1.7) The MR-2 robot	6
Figure(1.8) The DERVISH robot	7
Figure(2.1) Hierarchical Control structure	12
Figure(2.2) Structure of Behavior Based Controller	15
Figure(2.4) FSA for a simple behavior	18
Figure(2.5) Augmented Finite State Machine used in Subsumption Architecture	20
Figure(2.6): Simple Subsumption based Control architecture	21
Figure(2.7) Simple Schema based Control architecture	22
Figure(3.1) The front and top views of AMDR	23
Figure(3.2) The PCB drawings of AMDR mother board	24
Figure(3.3) Hardware Architecture of AMDR motherboard	26
Figure(3.4) The Devantech SRF04 sonar sensor	28
Figure(3.5) Timing Diagram for generating Trigger to Sonar Sensor	29
Figure(3.6) Sonar sensor driver Flowchart	30
Figure(3.7) The Hamatsu P306201 photoreflector	30
Figure(3.8) Pulse Accumulator Driver Flowchart	31
Figure(3.9) The Bumper Switch	32
Figure(3.10) Bumper switch collision detector Algorithm	33
Figure(4.1) The 16X1 Liquid-Crystal Display	34
Figure(4.2) LCD Driver Flowchart	35
Figure(4.3) SPI Driver Flowchart	37

Figure(4.4) Simple DC Motor model	38
Figure(4.5) PWM singles for duty cycle 50% and 25%	39
Figure(4.6) Registers and functions - PWM module PIC18F452	40
Figure(4.7) H Bridge	41
Figure(5.1) Proposed Behavior Based Controller	43
Figure(5.2) Detail Diagram of the Behavior Based Controller	44
Figure(5.3) State Transition Diagram for each Behavior	47
Figure(5.4) The Coordinator Algorithm	48
Figure(6.1) AMDR	53
Figure(6.2) The Simulated Environment	54
Figure(6.3) The robot path with open loop controller	54
Figure(6.4) The Robot Positions – Avoid Obstacle Behavior	55
Figure(6.5) Robot Path – Avoid Obstacle Behavior	55
Figure(6.6) Robot Positions(Large Obstacle) – Avoid Obstacle Behavior	56
Figure(6.7) Robot Path(Large Obstacle) – Before Tuning	57
Figure(6.8) Robot Path(Large Obstacle) - After Tuningva, Sri Lanka.	57
Figure(6.9) Simulated Environment Terrain Conditions Dissertations	58
Figure(6.10) Schematic Diagram of a Robot ac. k	59
Figure(6.11) Robot path with Search Mine Behavior	60
Figure(6.12) Robots Torque, Rotational Velocity during Search Mine Behavior	60
Figure(6.13) Robot path with Excess Torque Behavior	61
Figure(6.14) Robots Torque, Rotational Velocity during Excess Torque Behavior	62
Figure(6.15) Robot path with Avoid Obstacle Behavior	62
Figure(6.16) Robots Torque, Rotational Velocity during Avoid Obstacle Behavior	63
Figure(6.17) Robot path with all behaviors are active at different positions	64
Figure(6.18) Robots Torque, Rotational Velocity when all behaviors are active	64

Table(6.1) AMDR Specifications

ix

53

ah.