

MODELING OF BIPEDAL ROBOT NEGOTIATING SLOPES

A dissertation submitted to the Department of Electrical Engineering, University of Moratuwa in partial fulfilment of the requirements for the Degree of Master of Science

> by M.G.A.P. ABEYRATNE

Supervised by: Prof. Lanka Udawatta

Department of Electrical Engineering University of Moratuwa Sri Lanka

2010

94547

Abstract

This research shows how the robotics theories are applied to model the bipedal walking robot. Utilizing the direct kinematics and inverse kinematics, the kinematic model for the robot is developed. The derivation of joint angle equations for 6 links Robot, walking on a slopping surface, is a direct approach in this research. The development of hip trajectory is another important invention specific to this research.

The dynamic stability is analyzed by utilizing ZMP criteria. The calculation of ZMP for this model is very complex and based on mechanics theories. The selection of iteration method to calculate linear accelerations of each link (which are used to calculate ZMP) is guaranteed by simulation results.

The dynamic stability is analyzed for lower body using ZMP simulation results. For this case the "Dynamic" Balance Margin (DBM) is introduced and requirement for stability is also introduced.

The methods or precautions that can be used to improve ZMP are identified. The most effected method for improve the stability is selected as control of torso angle. Finally, the modified ZMP is re-derived with the term of torso angle and it is found that the ZMP can be moved to safe margin by controlling torso angle. The results show the effectiveness of the proposed methodology.

DECLARATION

The work submitted in this dissertation is the result of my own investigation, except where otherwise stated.

1

It has not already been accepted for any degree, and is also not being concurrently submitted for any other degree.

UOM Verified Signature

Name of Candidate - M.G.A.P. Abeyratne Date – 8th February 2010

We/I endorse the declaration by the candidate.

UOM Verified Signature

Name of the Supervisor – Prof. Lanka Udawatta

C	on	ten	ts

Declaration	i
Abstract	iv
Acknowledgement	V
List of Figures	vi
List of Tables	vii
Chapters	
1. Introduction	1
1.1 General introduction to robotics	1
1.1.1 What is and what is not a robot	2
1.1.2 Laws of robotics	4
1.1.3 Robotic anatomy	4
1.1.4 Robot applications	5
1.2 Robot locomotion	6
1.2.1 Key issues of locomotion	8
1.3 Legged mobile robot	8
1.3.1 Leg configuration and stability	9
1.3.2 Biped robot	9
1.3.3 Biped walking	9
1.4 Research objectives 1.5 Overview	11
1.5 Overview	11
2. Literature review and Problem Statement	12
2.1 Literature Review University of Moratuwa, Sri Lanka.	12
2.2 Problem Statement Electronic Theses & Dissertations	16
2.2.1 Preliminaries	16
2.2.2 Problem Identification	16
2.2.3 New suggestions	16
3. Swing leg kinematics for Biped robot	17
3.1 Preliminaries	17
3.1.1 Manipulator kinematics	17
3.1.2 Link descriptions	17
3.1.3 Link parameters	19
3.1.4 Derivation of link transformations	20
3.1.5 Concatenating link transformations	21
3.2 Derivation of joint angle equation for swing leg	22
3.2.1 Derivation of equation for joint angle θ_2	24
3.2.2 Derivation of equation for joint angle θ_1	25
4. Gait development	26
4.1 Intuitive approach	27
4.2 Periodic function approach	27
4.3 Foot trajectory	28
5. Stance leg kinematics	29
5.1 Stance leg modeling	29
5.2 Mathematical modeling	29

ii

	5.2.1 DH parameters for stance leg	29
	5.2.2 Link transformation, homogeneous transformation and	
	End effector matrices for stance leg	30
	5.2.3 Derivation of joint angle equations	31
	5.3 Modification of swing leg kinematics	32
	5.3.1 Trajectory planning of hip	33
	5.3.2 Rimless wheel simulation	33
	5.3.3 Calculation of hip movement	34
6. Dy	ynamic stability analysis for lower body	35
	6.1 Methods for stability analysis of bipedal robots	35
	6.1.1 Zero moment position	35
	6.2 ZMP calculation for lower body	38
	6.2.1 Calculation of inertia term	38
	6.2.2 Calculation of angular acceleration term	39
	6.2.3 Finding of mass-centre coordinates	41
	6.3 Calculation of individual link accelerations	42
	6.3.1 Newton Euler formulation	42
	6.3.2 Kinematics of links	44
	6.3.3 Link accelerations	45
	6.3.4 Recursive Newton Euler formulation	45
	6.3.5 Forward iteration	46
	6.4 Application of NE recursive iteration to biped robot	48
	6.4.1 NE forward iteration for swing leg	48
	6.4.2 NE forward recursive iteration for stance leg Sri Lanka.	53
	6.5 Dynamic stability analysis for robot lower body Dissertations	56
	6.5.1 Dynamic balance margin	56
	6.5.2 Simulation result on stability- Robot lower body	57
7.	ZMP calculation after adding torso	59
	7.1 Modification of ZMP	59
	7.1.1 Method for improving the ZMP	59
	7.2 Calculation of improved ZMP	59
	7.2.1 Calculation of linear acceleration terms	60
	7.3 Stability Analysis from simulation results	62
	7.3.1 ZMP variation with slope angle	63
	7.3.2 ZMP variation with step length	64
	7.3.3 ZMP variation with mass of torso	66
	7.3.4 ZMP variation with torso angle	66
	7.3.5 Variation of ZMP with step time	67
	7.3.6 ZMP variation with link length L_1 and L_2	67
	7.4 Application of simulation results	68
8.	Conclusion	69
	8.1 Derived kinematic model	69
	Future work	70
Ref	erences	71

Acknowledgement

I express my gratitude to my supervisor, Professor Lanka Udawatta, for his great supervision, guidance and support provided to me to do this research. My sincere thanks go to the officers in Post Graduate Office, Faculty of Engineering, University of Moratuwa, Sri Lanka for helping me in various ways to clarify the things related to my academic works in time with excellent assistance. Sincere gratitude is also extended to the people who serve in the Department of Electrical Engineering office for their immense support provided to me.

I extend my sincere appreciation to Dr. Thrishantha Nanayakkara in Kingston College, London for his valuable support and for furnishing new information in the field of biped robot. Also, thanks are due to Mr. S.M. Welihinda, who helped me by simulating the derived model and showing the correctness of the derivations.

An especial thank is due to my spouse, Mrs. H.M.S.N. Kularatne, for providing utmost support in preparing this dissertation properly.

Sincere thanks are due to many individuals, friends and colleagues who helped me in various ways to complete this project. May be I would not be able to made it without the support of you all.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

List of Figures

Figu	ligure	
1.1	Picture of auto assembly plant- Spot welding robot KUKA	1
1.2	An industrial robot that least looks like a human	2
1.3	The base, arm, wrist, and end-effector forming the mechanical structure	
	of a manipulator	4
1.4	Approximated bipedal walking system	7
1.5	Stability in static walking	10
2.1	A photograph of shadow biped robot	15
2.2	A photograph of wabian robot	15
3.1	Relationship of link length and link twist	18
	Parameters used to describe the connecting between neighbouring links	19
3.3	Attachment of frame $\{i\}$ rigidly to the link <i>i</i>	20
3.4	Robot lower body and nomenclature	22
4.1	Illustration of the gait cycle and dynamic biped walking	26
5.1	Stance leg and nomenclature	29
5.2	Robot lower body with moving hip	32
5.3	The simulation of rimless wheel	33
6.1	Single support phase	35
6.2	The velocity distribution of swing leg	40
6.3	Mass centre coordinates of each linkersity of Moratuwa, Sri Lanka.	41
6.4	The geometry and kinematics of link <i>i</i> for NE formulation issertations	42
6.5	Characterization of two adjutant links forming the joint <i>i</i> for NE formulation	44
6.6	Two-pass recursive NE formulation of dynamic equation	46
	Initial position of the swing leg	48
6.8	Initial and final position of the stance leg during one gait cycle	53
	DBM for single support phase	56
	0 DBM for double support phase	57
	1 Variation of ZMP vs time of lower body for one gait cycle	58
	Variation of ZMP with torso angle at slope angle equal to 5°	63
	Variation of ZMP with torso angle at slope angle equal to 10 ^o	63
7.3	8 · · · · · · · · · · · · · · · · · · ·	64
7.4	ZMP variation with torso angle when step length is 700mm	64
7.5	8F8FF	65
7.6	\mathbf{b} 1 \mathbf{b} \mathbf{b}	65
7.7		66
7.8		66
7.9	· ····································	67
7.1	0 Variation of ZMP with different values of L_1 and L_2	67

List of Tables

	Page
Table	22
3.1 DH parameters of swing leg	
5.1 DH parameters of stance leg	30
7.1 Selected physical parameters for simulation	58
7.1 Physical parameters for simulation 1	63
7.2 Physical parameters for simulation 2	63
7.3 Physical parameters for simulation 3	64
7.5 Physical parameters for simulation 5	64
7.4 Physical parameters for simulation 4	65
7.5 Physical parameters for simulation 5	
7.6 Physical parameters for simulation 6	65
7.7 Physical parameters for simulation 7	66
7.8 Physical parameters for simulation 8	66
7.0 Di la commetera for simulation 9	67
7.9 Physical parameters for simulation 9	67
7.10 Physical parameters for simulation 10	07

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk