

SYNTHESIS OF ALKYD RESIN BASED ON BLEND OF NAHAR SEED OIL AND KARAWILA SEED OIL

This thesis was submitted to the Department of Chemical & Process Engineering at University of Moratuwa in partial fulfillment of the requirement for the degree of MSc.

LIBRARY DELVEDSITY OF MONATUWA, SEI LACICIA MORATUWA

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations M.D.Y. Milani www.lib.mrt.ac.lk

> University of Moratuwa 93379

No Commercial Vale,

Department of Chemical & Process Engineering, University of Moratuwa, Sri Lanka. April 2009.

23379

66 "09" 678 (8-13)

93379

I certify that this thesis does not incorporate without acknowledgement any material previously submitted for any degree or diploma in any university and to the best of my knowledge and belief it does not contain any material previously published, written or orally communicated by another person except where due reference list made the test.

UOM Verified Signature

Signature of the candidate (M.D.Y. Milani)

A

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

To the best of my knowledge above particulars are correct.

UOM Verified Signature

Supervisor (Dr. S. Amarasinghe)

Abstract

Blend of seed oil; Mesua ferrea and Momodica charantia (50:50 w/w %) as a potential source of fatty oil in manufacturing air drying long oil alkyd resin was investigated. Monoglyceride process at a temperature of 240 °C was used in the synthesis process due to relatively low acid values of the oils. Alkyd resins were prepared using various proportions of fatty oil, pentaerythritol and phthalic anhydride. Physicochemical properties of oils and prepared alkyd were determined. Film properties of alkyd resins were examined. All films of the resins were shown reasonably low drying time. Water resistance, acid resistance and hardness of the films of the resins were improved with increase of molar percentage of OH groups from 12% to 24% above stoichiometric amount.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

i

Acknowledgement

First I wish to express my deepest and sincere gratitude to my supervisors Dr. Shantha Amarasinghe and Dr. Jagath Premachandra for their invaluable advices, guidance, and encouragements extended through out this research project. I very much appreciate their constructive comments, which have been received during the preparation of this manuscript.

I also take this opportunity to thanks MSc Course Coordinator Dr. Shantha Walpolage who was arranged this opportunity for me.

A special word of thanks also goes to Dr. P.A.B. Prashantha for his guidance to success this research project.

I take this opportunity to convey my sincere thanks to Dr. Weerasooriya and his laboratory staff at ICI paints, Ratmalana for their willing help given to me for carrying out testing using their laboratory facilities.

Special word of thanks is for Mr. Mohamed Dilshan and Mechanical Department at University of Moratuwa for their support to fabricate the set up used for the synthesis process.

I wish to extend my special thanks to laboratory staff at University of Moratuwa and library staff at ITI, University of Moratuwa and University of Colombo for their support to success this work.

I also give my grateful thanks to my colleagues Ms.Umanga De Silva, Mr.K.Vitharana and Mr.L.A.S.Kodikara for their kind cooperation given to me through out this research project.

At last, I extend my gratitude for my parents, sisters and especially Mr. S.G. Thilakarathna who help me in all the way at the beginning till send of this research work.

<u></u>			_	 *
υJ	11	L	e	 L

Abstract	i
Acknowledgment	ii
Content	iii
List of tables	vi
List of figures	vii
List of figures	VII

Chapter1 Introduction

1.1 Introduction	1
1.2 Objective and justification	3
1.3 Outline of thesis	4

Chapter2 Diversity of plant Mesua ferrea and Memodica charantia

2.1	Plant Mesua ferrea	5
2.2	Bio-diversity and medicinal properties of Mesua ferrea	5
2.3	Plant Momodica charantia	7
2.4	Bio-diversity and medicinal properties of Momodica charantia	7
2.5	Oil extraction method	8
	2.5.1 Solvent extraction method	8

Chapter 3

Alkyd resins University of Moratuwa, Sri Lanka.	
3.1 Historical development attyarresinsheses & Dissertations	10
3.2 Classification of alkyd resinsib.mrt.ac.lk	12
3.3 General reaction mechanism of alkyd resins	12
3.4 Specific reactions applied for the synthesis of alkyd resins	13
3.4.1 Direct esterification	14
3.4.2 Transesterification	15
3.4.3 Polyesters from anhydrides	17
3.4.4 Polyester from acid chlorides	17
3.5 Raw material used for alkyd synthesis	18
3.5.1 Polyhydric Alcohol	18
3.5.2 Polybasic Acids	20
3.5.3 Fatty acids and oils	21
3.5.3.1 Fatty acid composition	22
3.6 Synthetic procedure for oil modified alkyd resins	26
3.6.1 Fatty acid process	27
3.6.2 Monoglyceride process	28
3.6.3 Acidolysis process	30
3.6.4 Fatty acid/oil process	31

3.7 Modifications of alkyd resins	31
3.7.1 Modification with Nitrocellulose	32
3.7.2 Amino resin modification	32
3.7.3 Chlorinated rubber modification	32
3.7.4 Modification with phenolic resins	32
3.7.5 Modification with vinyl resins	33
3.7.6 Modification with polyisocyanate and epoxy resins	33
3.7.7 Silicon modification	33
3.7.8 Modification of alkyd with polyamides	33
3.7.9 Other modifications	34
3.8 Air drying alkyd resins	34
3.9 Drying mechanism of air drying alkyds	35
3.9.1 Air drying mechanism in conjugated double bonds	37
3.9.2 Air drying mechanism in non conjugated double bonds	39
3.10 Driers	40
3.11 Alkyd constant	41
3.12 Gel formation during polyesterification reaction	41
Iniversity of Moratuwa Sri Lanka	

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations

Chapter 4

Recipes & Methodology for the synthesis of alkyd resins based on	Nahar &
Karawila seed oils	
4.1 Synthesis of alkyd resins from a blend of Nahar and karawila seed oil	42
4.2 Determination of Physicochemical properties of seed oils and resulted	
alkyd resins	44
4.2.1 Acid value	44
4.2.2 Saponification value	44
4.2.3 Viscosity	45
4.2.4 Clarity	45
4.2.5 Colour	45
4.2.6 Non Volatile Matter content	45
4.2.7 Specific gravity	45
1.7 Testing of film properties	45
4.3 resulting of him properties	45
4.3.1 Testing of drying properties	46
4.3.2 set-to-touch drying time	46

iv

4.3.3 Dry-to-touch drying time	46
4.3.4 Testing of Hardness of dried film	46
4.3.5 Testing flexibility of dried film by conical mandrel	47
4.3.6 Testing of solvent resistance properties	47
4.4 Calculation procedure of recipes	47
Chapter 5	
Results and Discussion	51
Chapter 6 Conclusion and future work	
6.1 Conclusion	65
6.2 Future work	66
6.3 References	67

.

1

and	University of Moratuwa, Sri Lanka.
	Electronic Theses & Dissertations
	www.lib.mrt.ac.lk

۰.

List of	Tables
---------	--------

٩.

Table number	Торіс	Page
Chapter 1		[
Table 1.1	usages of fats and oil in surface coating	2
Table 1.2	Custom statistics of alkyd resins imported to Sri Lanka	3
Chapter 3		
Table 3.1	Physicochemical data of some fatty oils	23
Table 3.2	Unsaturated fatty acids in fatty oil & some common sources	24
Table 3.3	Fatty acid composition of some fatty oils	25
Table 3.4	Order of catalytic activity of catalyst	29
Chapter 4	University of Moratuwa Sri Lanka	
Table 4.1	Calculation procedure of recipe Dissertations	49
Table 4.2	Recipe of each alkyd resin	50
Chapter 5		
Table 5.1	Physicochemical properties of Nahar & Karawila seed oil	51
Table 5.2	Experimental data obtained for resulted alkyd resins	60
Table 5.3	Physicochemical properties of resulted alkyd resins	60
Table 5.4	Film properties of resulted alkyd resins	62
Table 5.5	Solvent resistance properties of resulted alkyd resins	63

vi

List of figures

.*

_ *

.

, *****

۰.

•

Figure number	Торіс	Page
Chapter3		
Figure 3.1	Reaction between ethylene glycol and phthalic anhydride	10
Figure 3.2	Reaction between phthalic anhydride and glycerol	11
Figure3.3	Reaction between triglyceride in fatty oil and glycerol	11
Figure 3.4	Generalized reaction mechanism of alkyd resins	13
Figure 3.5	Direct esterification between same molecules	14
Figure 3.6	Direct esterification between different molecules	14
Figure 3.7	Reaction between diester and polyol	16
Figure3.8	Polycondensation reaction via removal of polyol	16
Figure 3.9	Reaction between carboxylic acid and acetate ester	16
Figure 3.10	Reaction between carboxylic ester and glycol Electronic Theses & Dissertations	16
Figure 3.11	Reaction between acid anhydride and polyol	17
Figure 3.12	Reaction between acid chloride and polyol	17
Figure 3.13	Reaction between pentaerythritol and formaldehyde	18
Figure 3.14	Chemical structures of polyol	19
Figure 3.15	Chemical structures of polybasic acids	21
Figure 3.16	Glycerol molecule	27
Figure 3.17	Reaction between fatty oil and pentaerythritol	28
Figure 3.18	Etherification of polyols	30
Figure 3.19	Reaction between isophthalic acid and triglyceride	30
Figure3.20	Oxygen attack to the conjugated double bonds	38
Figure3.21	Oxygen attack to the non conjugated double bonds	39

vii

Chapter4		
Figure 4.1	Reaction between free fatty acid and pentaerythritol	47
Figure 4.2	Reaction between triglyceride and pentaerythritol	48
Chapter5		
Figure 5.1	Acid value & temperature Vs Time during oil upgrade process for NK12	53
Figure 5.2	Acid value & temperature Vs Time during oilupgrade process for NK18	53
Figure 5.3	Acid value & temperature Vs Time during oil upgrade process for NK24	54
Figure 5.4	Acid value & temperature Vs Time during oil upgrade process for NK30	54
Figure 5.5	Temperature profile for NK12	55
Figure 5.6	Temperature profile for NK18	56
Figure 5.7	Temperature profile for NK24	56
Figure 5.8	Temperature profile for NK30 University of Moratuwa, Sri Lanka.	57
Figure 5.9	Acid Value & temperature Vs Time during S polyesterification reaction for NK12	58
Figure 5.10	Acid value & temperature Vs Time during polyesterification reaction for NK18	58
Figure 5.11	Acid value & temperature Vs Time during polyesterification reaction for NK24	59
Figure 5.12	Acid value & temperature Vs Time during polyesterification reaction for NK30	59

....

æ

viii