

39

Synthesis and characterization of Stoving alkyd resin based on oil blends of Karawila seed oil and Coconut oil

LIBRARY UNIVERSITY OF MORATUWA, SRI LANK, MORATUWA

This thesis was submitted to the Department of Chemical and Process engineering of the University of Moratuwa in partial fulfillment of the Electronic Theses & Dissertations requirements for the M.Sc. Degree. N.W. Hornet ac.lk Polymer Science &

D.K.B. Vitharana

University of Moratuwa

Department of Chemical and Process engineering University of Moratuwa Sri Lanka April 2009

93380

technologu

66 °09' 678 (043)

No Commorcial Value

TH

93380

"I certify this thesis does not incorporate without acknowledgement any material previously submitted for any degree or diploma in any university and to the best of my knowledge and belief it does not contain any material previously published, written or orally communicated by another person except where due reference is made in the text".

UOM Verified Signature

Signature of the candidate.

"To the best of my knowledge, the above particulars are correct."

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Supervisor

UOM Verified Signature

Dr. A.D.U.S. Amarasinghe

ABSTRACT

Synthetic resins are used as binders in protective coatings. An alkyd/melamine resin mixture is the usual composition for the preparation of coating called Baking enamel or Stoving enamel cured through functional groups of resin. Mostly these stoving alkyds are short oil alkyd type and synthesized from coconut oil. This research project describes synthetic resins of the alkyd type and synthesize of such resins. Also this research focused on novel modified stoving alkyd resins having improved properties such as Drying time, Film hardness, Adhesion and Gloss which are synthesized using blends of coconut oil and karawila seed oil.

Fatty acid distribution of Coconut oil shows that it is having saturated fatty acids in major quantity and very small amount of oleic and linoleic acids present in the mixture. Coconut oil has an acid value of 3.22 mg g^{-1} and saponification value of 251.9 mg g^{-1} . on the other hand karawila seed (MC43)¹ oil is havig an acid value of 2.87 mg g⁻¹ and saponification value of 203.94 mg g⁻¹ (Karawila seed oil consist conjugated trienoic acid in large quantity and shows good drying properties compared to other drying oils. Blending is done to improve the film properties and to monitor air drying ability of alkyd synthesized by oil blends.

Both the oils are having low acid values and this leads to the selection of monoglyceride process as the method of manufacturing. Better film properties could be obtained when a mixture of Propylene Glycol and Pentaerythritol was used as polyols with excess OH. Film properties were compared by gradually increasing the karawila oil content to a maximum of 10%, since the yield of karawila seed oil is 24%¹ while maintaining the oil length at 45%. Excellent film properties were shown for the oil percentage of karawila seed oil in the total mixture is 10%.

Ι

ACKNOWLEDGEMENT

I convey my gratitude to postgraduate department selecting me for the M.Sc. course in polymer science & Technology. I would like to thank Dr. Shantha Walpalage course coordinator for his hard work to achieve the course this much success and also for the arranging of lectures, course materials, practical sessions and industrial visits.

My heartiest gratitude to my supervisor Dr. Shantha Amarasinghe for his driving force & kind guidance which I had throughout this project. Valuable discussions, brain-storming sessions and suggestions are highly appreciated. His helping hand could be found always and it leads to research this much success.

I am thankful to my supervisor/ Head of the department of Chemical and process engineering, Dr. Jagath Premachandra for his kind guidance and valuable time to help me complete this research project. Also he helped to get the necessary equipments from other institutions and allowed me to work in holidays and late hours to complete the research.

I also thank Dr. M.A.B Pashantha for his kind support and guidance throughout this project. His abundant knowledge on alkyd synthesis always shared with me thus my www.lib.mrt.ac.lk experimental path was smoothly fabricated.

I wish to thank the management of Asianpaints Lanka Ltd. for allowing me to follow this course and to use laboratory facilities.

A special thank should goes to laboratory staff at the department of Chemical and Process engineering. All the workshop staff at Mechanical engineering helped to fabricate the experimental setup. A special note of thank to Mr. Mohomed Dilshan Saibu regarding the above.

I would like to thank my colleagues Miss Yoga milani, Miss Umanga de silva and Mr. LAS Kodikara for their time and valuable discussions help me to achieve good results.

My special thank to Industrial Technology Institute & National Science Foundation for allowing me to use their library facility.

Also I wish to thank Mr. Thilakarathne and Mr. Advin for the contribution of their valuable support on repairing glass items and highly appreciated.

My heartiest gratitude to my Wife and children for their help and patience for me to complete this course.

At lasts no least I would like to convey thank to all of my teachers, friends, and all others who directly or indirectly helped me to accomplish my goal.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

CONTENT

Abstract	i
Acknowledgement	i
Content	iii
List of tables	viii
List of figures	ix
Chapter 1 Introduction	
1.1 Introduction	1
University of Moratuwa Sri Lanka	2
1.3 Objectives and justification lib mrt oo llo	3
1.4 Outline of the thesis	3
	U
Chapter 2	
Coconut oil and Karawila oil Blend	
2.1 Coconut Oil	5
2.1.1 Coconut Oil in Sri lanka	5
2.1.2 Coconut in Traditional Medicine	6
2.1.3 Fatty acid profile of Coconut oil	7
2.2 Karawila seed oil	8
2.2.1 Herbal Medicinal Uses	8
2.2.2 Fatty acid profile of karawila seed oil	8
2.3 Other natural oils	9
2.4 Oil extraction	9
2.4.1 Expeller Processing	9

2.4.2 Supercritical fluid extraction	9
2.4.3 Solvent extraction method	9
Chapter 3	
Alkyd Resins	
3.1 Alkyd resins	13
3.2 Classification of Alkyd resin	14
3.2.1 Oil length	14
3.2.2 Oil type	15
3.2.2.1 Short oil alkyds	15
3.3 Reaction mechanism of alkyd resin	16
3.4 Reactions applied for the synthesis of alkyd resins	17
3.4.1 Direct esterification	17
3.4.2 Transesterification	17
3.4.3 Polyesters from anhydrides	18
3.4.4 Polyester from acid chlorides Moratuwa, Sri Lanka.	18
3.5 Raw materials in alkyd synthesis www.lib.mrt.ac.lk	18
3.5.1 Polyhydric alcohol	18
3.5.2 Polybasic Acids	19
3.5.3 Glyceride Oils	20
3.5.3.1 Drying of Glyceride Oils	25
3.6 Techniques Used in Alkyd Manufacture	25
3.6.1 Alcoholysis of the Oil	26
3.6.2 Acidolysis o the oil	. 27
3.6.3 The Fatty Acid Process	27
3.7 Alkyd drying	28
-3.8 Modifications of alkyd resins	3.1
3.9 Coatings	32
3.9.1 Definition & uses	32
3.9.2 History	32
3.9.3 Composition of coatings	33

ļ

R

. .

v

3.9.3.1 Binders	33
3.9.3.2 Pigments	33
3.9.3.3 Volatile components	34
3.9.3.4 Additives	34
3.9.4 Film formation	35
3.9.5 Properties of coatings	35
3.9.5.1 Rheology	35
3.9.5.2 Adhesion	36
3.9.5.3 Hardness	37
3.9.5.4 Abrasion resistance	37
3.9.5.5 Formability & flexibility	38
3.9.5.6 Gloss	38

Chapter 4

Met	hod	lology
-----	-----	--------

4.1 Short oil alkyds, University of Moratuwa, Sri Lanka.	39	
4.2 Amino resin modified alkyds www.lib.mrt.ac.lk	39	
4.3 Preparation of alkyd resins	40	
4.3.1 Blending of oils	41	
4.4 Determination of Physicochemical properties of	41	
seed oil and prepared alkyd resins		
4.4.1 Acid value	41	
4.4.2 Saponification value	42	
4.4.3 Viscosity	42	
4.4.4 Clarity & Color	42	
4.4.5 Non volatile matter & specific gravity	42	
4.5 Performance characteristics of the alkyd resin	43	an in ann
4.5.1 Testing of drying properties	43	
4.5.1.1 Set to touch time	43	
4.5.1.2 Dry to touch time	43	

. 1:

4.5.1.4 Adhesion Test	44
4.5.1.3 Testing of hardness of dried film	44
4.5.1.5 Testing flexibility of dried film by conical mandrel	44
4.5.1.6 Testing of solvent resistance properties	44
4.6 Calculation procedure of the alkyd recipe	45
4.6.1 Actual Functionality	⁻ 45
4.6.2 Alkyd constant	46
4.6.3 Alkyd calculations	46
4.7 Stoving clear varnish and white paint formulation	49
Chapter 5	
Results & Discussion	52
Chapter 6	
Conclusion & future work	
(1. Original Interview of Moratuwa Sri Lanka	()

6.1 Conclusion	University of Moratuwa, Sri Lanka.	60
6.2 Future work		60
6.3 References	www.lib.mrt.ac.lk	61

List of tables

.

.

Ò

Table	Торіс	Page
Number		
Chapter 2		
Table 2.1	Coconut Extent & Mean Production (mln nuts) by different countries (1998 - 2004)	5
Table 2.2	Fatty acid profile of karawila seed oil	8
Chapter 3		
Table 3.1	Commercially important glyceride oils	20
Table 3.2	Saturated fatty acids commonly found in glyceride oils	22
Table 3.3	Unsaturated fatty acids commonly found in glyceride oils	23
Table 3.2	Fatty acid compositions and physical properties of the oils	24
Table 3.5	Order of catalytic activity of catalyst	27
Chapter 4		
Table 4.1	Oil Blends University of Moratuwa, Sri Lanka.	41
Table 4.2	symbols used in calculation procedure ssertations	47
Table 4.3	Alkyd recipevw.lib.mrt.ac.lk	48
Table 4.4	Other theoretical constant of prepared alkyd resin.	49
Table 4.5	Varnish formula with metal driers	50
Table 4.6	Varnish formula with amino resin	50
Table 4.7	Stoving white paint formula	51
Chapter 5		
Table 5.1	Physico-chemical properties of karawila seed oil.	54
Table 5.2	Physico-chemical properties of Coconut oil	54
Table 5.3	Physico-chemical properties of finished alkyds	55
Table 5.4	Air Drying properties of resins as it is and with metal driers	55
Table 5.5	Film properties prepared stoving varnish & Paint samples	56
Table 5.6	Resistant to water and Acetone	56

List of Figures

.

. -

Figure	Торіс	Page
Number		
Chapter 2		
Figure 2.1	schematic representation of a Soxhlet extractor	11
Chapter 3		
Figure 3.1	Reaction between phthalic anhydride and glycerol	14
Figure 3.2	Generalized reaction mechanism of alkyd resins	16
Figure 3.3	Reaction between diester and polyol	17
Figure 3.4	Reaction between two diesters	17
Figure 3.5	Reaction between acid anhydride and polyol	18
Figure 3.6	Chemical structures of polyol	19
Figure 3.7	Chemical structures of polybasic acids	20
Figure 3.8	Chemical structures of polybasic acids University of Moratuwa, Sri Lanka The reaction of glycerol with fatty acids to form glyceride oil. Electronic Theses & Dissertations	20
Figure 3.9	Atcoholysis reaction mrt.ac.lk	26
Figure 3.10	Acidolysis reaction	27
Figure 3.11	Esterification reaction	28
Figure 3.12	Hydroperoxide formation	29
Figure 3.13	Decomposition of hydroperoxides and possible intermolecular	29
	linkage reactions.	
Figure 3.14	Reaction of oxygen with the oil having conjugated fatty acid.	30
Figure 3.15	Formation of crosslink in conjugated systems	30
Figure 3.16	Schematic representation of the crosslinked film.	31
Figure 3.17	Schematic plots of flow of different types of liquids.	36
Figure 3.18	Three main types of reflection A: Ideal mirror reflection B: Ideal	38
	diffuse or matt reflection C: Sheen (luster)	
Chapter 5		
Graph 5.1	Temperature profile for alkyd with No Karawila seed Oil	53

IX

Graph 5.2	Temperature profile for alkyd with 5% Karawila seed Oil	53
Graph 5.3	Temperature profile for alkyd with 10% Karawila seed Oil	53
Graph 5.4	Acid value Vs Time of alkyd without karawila seed oil	54
Graph 5.5	Acid value Vs Time of alkyd with 5% karawila seed oil	54
Graph 5.6	Acid value Vs Time of alkyd with 10% karawila seed oil	54

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

