DECOLOURIZATION OF TEXTILE DYES AND TEXTILE INDUSTRY EFFLUENT IN A FIXED BED BIOFILM REACTOR USING NATIVE MICROORGANISMS

Hewayalage Gimhani Madhushika

(158038H)

Degree of Doctor of Philosophy

Department of Chemical and Process Engineering

University of Moratuwa Sri Lanka

May 2021

DECOLOURIZATION OF TEXTILE DYES AND TEXTILE INDUSTRY EFFLUENT IN A FIXED BED BIOFILM REACTOR USING NATIVE MICROORGANISMS

Hewayalage Gimhani Madhushika

(158038H)

Dissertation submitted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy

Department of Chemical and Process Engineering

University of Moratuwa Sri Lanka

May 2021

DECLARATION OF THE CANDIDATE AND SUPERVISOR

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

antra Signature:

H.G.Madhushika Department of Chemical & Process Engineering University of Moratuwa Sri Lanka

The above candidate has carried out research for the PhD thesis/ dissertation under my supervision.

Signature of the supervisor:	Date:02/05/2021
Supervisor (PI): Dr. S.H.P.Gunawardena	
Department of Chemical & Process Engineering	
University of Moratuwa	
Sri Lanka	
Signature of the supervisor: <u>P.u.</u> Anyuda Supervisor: Dr. H.L.T.U. Ariyadasa Department of Chemical & Process Engineering	Date: .02/05/2021
University of Moratuwa	

Abstract

Textile and apparel industry produces huge quantities of wastewater with unfixed dyes, which generate colour and toxicity in discharged water, creating environmental pollution. Physical and chemical effluent decolourization techniques are widely used at present to remove colour in effluents in textile industries, however, they have several drawbacks and therefore not productive. Compared to physical and chemical methods, biological treatments have gained much attention globally as environmental-friendly and cost-effective techniques to decolourize textile industry effluent. Hence, in this work, decolourization potential of textile dyes by microbial strains, which were isolated from local-environment, and their applicability in industrial wastewater decolourization were investigated.

Five bacterial strains, with dye decolourizing potential were isolated from an effluent treatment facility of a local textile industry and identified using 16S rRNA gene sequencing analysis. Ability of these strains to decolourize selected textile dyes as individual strains and in a bacterial consortium was investigated using free bacterial cells cultured in 250 ml Erlenmeyer flasks containing 100 ml of decolourization media. Out of the isolated bacteria, *Proteus mirabilis* showed the highest capability to decolourize all dyes and was able to decolourize 50 ppm dye solutions of Yellow EXF, Red EXF, Blue EXF, Black WNN and Rhodamine under static conditions at 35 °C. Colour removal of 96, 94, 83, 95 and 30% respectively was observed after 72 h of treatment when decolourization media was inoculated with 2% (v/v) of bacterial culture. The developed bacterial consortium composed of *Proteus mirabilis, Morganella morganii* and *Enterobacter cloacae*, decolourized more than 90% of all four reactive dyes and 36% of Rhodamine dye after 72 h of incubation. Furthermore, the developed bacterial consortium was able to decolourize more than 83% of the synthetic dye mixture and 60% of the textile industry effluent, respectively after 46 h and 138 h of incubation at 35 °C temperature under static condition.

Effects of physico-chemical parameters (pH, temperature, concentration of dye, agitation and sources of carbon) for biological decolourization of dyes were studied in batch cultures with free cells. It was observed that dye decolourization was more effective under oxygen-limited, static conditions than shaking conditions and the maximum decolourization of dyes was observed at 40 °C and pH 7-8 in the media containing yeast extract as the carbon source.

Dye decolourization was further investigated in a fixed bed biofilm reactor where the biofilm was composed with the developed bacterial consortium. Decolourization of the synthetic dye mixture was done with three different concentrations of yeast extract in the feed and more than 90% decolourization of the synthetic dye mixture was observed when the concentration was 2 and 1 g/l in batch operation of the reactor. However, even when the concentration was reduced to 0.25 g/l, 75% decolourization of synthetic dye mixture was achieved in both batch and continuous operation of the reactor. Results showed that dye decolourization was more effective with attached cells (bacterial consortium) in the reactor than with free cells (used in flasks). Stability of the dense microbial communities in biofilms and their ability to survive and degrade dyes at extreme conditions could be the reason for observed high colour removals in the decolourization studies conducted in the reactor. Structural changes occurred in dyes due to biological treatments were studied using ultraviolet-visible spectral and high-performance liquid chromatography analyses. Metabolites formed due to biological degradation were analyzed using gas chromatography-mass spectrophotometry and found to be non-toxic and benign.

A maximum of 45% colour removal was observed when the diluted textile effluent was treated in the fixed bed biofilm reactor operated in continuous mode whereas 70% colour removal was achieved in 48 h with undiluted textile wastewater treated in batch mode. This shows the ability of the developed bacterial consortium to endure in highly complex and toxic environment in the fixed bed biofilm reactor and the potential application in textile industry wastewater treatment.

Key words: biological, decolourization, dyes, fixed bed biofilm reactor, textile effluent

DEDICATION

Dedicated to my parents and husband for their unconditional love, endless support and encouragement.

ACKNOWLEDGEMENTS

I wish to express my most sincere gratitude to my supervisors, Dr. S.H.P. Gunawardena and Dr. H.L.T.U. Ariyadasa for their guidance, continuous support, supervision, assistance, motivation, and encouragement given throughout this period of study. I am also immensely thankful to the Senate Research Grant Committee for providing me with a valuable research grant (SRC/CAP/15/03) and all the academic staff at the Department of Chemical and Process Engineering, University of Moratuwa for their guidance.

I am thankful to Mrs. I.K Athukorala, Ms. P.D.M Rodrigo, Mrs. W.S.M De Silva, Mr. B. Karunathilaka, Mr. H. L. G. S. Peiris, Mr. M. P. A. J. Kumara and all the nonacademic staff in the Department of Chemical and Process Engineering, University of Moratuwa for their support to succeed this research work. I would like to thank Mr. M.A.P.C. Gunawardana, Mr. M.T.M.R. Jayaweera from the Department of Material Science and Engineering and Mrs. S.M.N.D. Matino from the Department of Chemical and Process Engineering for their assistance in analytical studies.

Further, I would like to express my gratitude to Intertek Lanka (Pvt.) Ltd, Battaramulla for their support in sample analysis. My sincere thanks go to all my friends and staff members working in textile industry and Central Environmental Authority who have supported me to gather information for the industrial survey questionnaire.

I would also like to express my sincere gratitude to Rex Industries (Pvt) Ltd, Negombo, Sri Lanka for providing the plastic biofilm carrier materials required for this study. I am also thankful to the management of textile dyeing facilities for providing dyes and textile effluents required for this study. I am thankful to the progress review committee for their insightful comments and encouragement to carry out this work successfully.

I would like to thank the head and the staff of the Faculty of Graduate Studies, University of Moratuwa for facilitating this research degree. I would further express my most sincere gratitude to the Department of Civil Engineering, University of Moratuwa for allowing me to follow and complete subjects from their MSc. taught courses. I would like to thank my fellow lab mates and my friends for giving me hand whenever I needed. Finally, I must express my profound gratitude to my family, for having great faith and encouraging me to succeed in this study.

TABLE OF CONTENTS

Declaration of the candidate and supervisor
Abstracti
Dedicationiv
Acknowledgements
Table of contents
List of figuresx
List of tablesxvi
List of figures in appendicesxiz
List of abbreviationsxx
1 Introduction
1.1 Background to the research problem1
1.2 Problem statement
1.3 Research objectives
2 Literature Review
2.1 Textile industry
2.2 Textile dyes
2.3 Environmental hazards and health issues caused by textile dyes
2.3.1 Impact on aquatic environment
2.3.2 Impact on vegetation
2.3.3 Impact on human health10
2.4 Effluent decolourization techniques11
2.4.1 Chemical and physical treatments
2.4.2 Biological treatments
2.5 Reactor studies
2.5.1 Decolourization of textile dyes in reactors
2.5.2 Biofilm
2.5.3 Decolourization of textile dyes in fixed (packed) bed biofilm reactors . 24
3 Materials and methods
3.1 Industrial survey questionnaire
3.2 Chemicals and reagents

3.2.1 Dyes used
3.2.2 Chemicals used
3.3 Dye stock solution preparation
3.4 Luria–Bertani medium (LB) preparation
3.5 Agar plate preparation
3.6 Decolourization media preparation
3.7 Isolation of indigenous microbial strains that have potential in dye
decolourization
3.7.1 Effluent and sludge collection
3.7.2 Co-incubation of effluent samples in the nutrient medium
3.7.3 Isolation of bacterial species
3.8 Nutrient broth screening for dye decolourizing isolates
3.9 Preservation of bacterial strains
3.10 Identification of isolated dye decolourizing strains
3.10.1 Gram staining
3.10.2 Capsule staining
3.10.3 Endospore staining
3.10.4 Catalase test
3.10.5 Polymerase chain reaction (PCR)
3.10.6 Agarose gel electrophoresis
3.10.7 Identification of microbial isolates
3.11 Dye decolourization
3.12 Determination of cell growth
3.13 Determination of dye category
3.14 Dye decolourization by bacterial consortium
3.15 Optimization of decolourization conditions
3.15.1 Effect of agitation
3.15.2 Effect of temperature
3.15.3 Effect of pH
3.15.4 Effect of initial dye concentration
3.15.5 Effect of carbon source
3.16 Decolourization of Malachite green

3.17 Decolourization of textile industry effluent by the bacterial consortium 39
3.18 Yellow EXF degraded compounds analysis40
3.18.1 HPLC analysis
3.18.2 Gas chromatography-mass spectroscopy (GCMS) analysis 40
3.19 Decolourization of textile dyes and effluent in a reactor
3.19.1 Reactor seeding material preparation
3.19.2 Reactor design and fabrication
3.19.3 Biofilm formation on carrier materials in the fixed bed biofilm reactor
(FBBR)
3.19.4 Decolourization of synthetic dye mixture in batch FBBR
3.19.5 Decolourization of synthetic dye mixture in continuous FBBR
3.19.6 Decolourization of textile industry effluent in batch and continuous
FBBR
3.20 Analysis of biofilm on carrier materials in FBBR
3.20.1 Quantification of dry weight of biofilms
3.20.2 Scanning electron microscopy analysis
3.20.3 FTIR analysis of biofilm
3.21 Determination of the quality of water treated in FBBR
3.21.1 COD analysis
3.21.2 Phytotoxicity studies
3.21.3 Analysis of the metabolites formed by biological degradation of dye
mixture in FBBR
4 Results and Discussion
4.1 Industrial survey questionnaire
4.1.1 Identification of the most widely used category of dyes in Sri Lankan
textile industry
4.1.2 Water consumption in textile dyeing and washing process
4.1.3 Textile effluent decolourizing methods used in Sri Lanka
4.1.4 Textile effluent characteristics
4.2 Isolation of indigenous microbial strains with dye decolourization potential . 65
4.2.1 Isolation of microorganisms by spread and streak plate techniques 65
4.3 Nutrient broth screening for dye decolourizing isolates

4.4 Identification of dye decolourizing bacterial strains	69
4.4.1 Biochemical tests and morphological characteristics	69
4.4.2 16S rRNA gene sequencing analysis	71
4.5 Dye decolourization	73
4.5.1 Decolourization of individual textile dyes by isolated bacteria.	73
4.5.2 UV- visible spectrophotometric analysis of dye decolourization	178
4.6 Determination of dye category	
4.7 Dye decolourization by bacterial consortium	
4.7.1 Decolourization of individual dyes	
4.7.2 Decolourization of dye mixture	85
4.8 Parameter optimization	
4.8.1 Dye decolourization under shaking conditions	88
4.8.2 Effect of ph on dye decolourization	91
4.8.3 Effect of temperature on dye decolourization	94
4.8.4 Effect of dye concentration	
4.8.5 Effect of carbon sources on dye decolourization	97
4.8.6 Decolourization of Malachite green	101
4.9 Textile effluent decolourization by bacterial consortium	102
4.10 Yellow EXF degraded compounds analysis	106
4.10.1 HPLC analysis	106
4.10.2 GCMS analysis	108
4.11 Decolourization of textile dyes and effluent in FBBR	
4.11.1 Reactor seeding material preparation	112
4.11.2 Decolourization of synthetic dye mixture in batch FBBR	117
4.11.3 Decolourization of synthetic dye mixture in continuous FBBF	R 120
4.11.4 Decolourization of textile effluent in batch and continue	ous FBBR
modes	122
4.12 Analysis of the biofilm formed on the carrier materials in FBBR	126
4.12.1 Biofilm formation on the carrier materials in the fixed bed biof	ilm reactor
(FBBR)	126
4.12.2 FTIR analysis of biofilm	128
4.13 Determination of quality of treated water in FBBR	129

	4.13.1 COD analysis	129
	4.13.2 Phytotoxicity analysis	130
	4.13.3 Analysis of the metabolites formed by biological degradation of s	synthetic
	dye mixture in FBBR	133
5	Conclusions	139
6	Recommendations and future work	141
Refe	rences	143
Appe	endix A	167
Appe	endix B	170
List o	of publications	173

LIST OF FIGURES

Figure 2.1: Examples for azo dyes [29] (a) C.I. Solvent Yellow 14 (b) C.I. Disperse
Red 13 and (c) C.I. Acid Black 17
Figure 2.2:C.I. Disperse Red 60 dye with anthraquinone structure [29]7
Figure 2.3: Indigo dye with indigoid structure [29]7
Figure 2.4: Xanthene dye C.I. Acid Red 52 [29]
Figure 2.5: Triarylmethane dye C.I. Acid Blue 93 [29]8
Figure 3.1: Structure of major dye in Black WNN
Figure 3.2: Biofilm support material
Figure 3.3: Laboratory set-up for biofilm growth
Figure 3.4: 3D drawing of the reactor
Figure 3.5: Male female connectors
Figure 3.6: Schematic diagram of the reactor
Figure 3.7: Conceptual diagram showing major experiments conducted in the study
Figure 4.1: Temperature variation of textile industry effluent60
Figure 4.2: pH variation of textile industry effluent being discharged into the inland
surface waters
Figure 4.3: pH variation of textile industry effluent being discharged into the common
wastewater treatment plant61
Figure 4.4: COD variation of textile industry effluent being discharged into the
common wastewater treatment plant
Figure 4.5: COD variation of textile industry effluent being discharged into the inland
surface waters
Figure 4.6: BOD variation of textile industry effluent being discharged into the
common wastewater treatment plant
Figure 4.7: BOD variation of textile industry effluent being discharged into the inland
surface waters
Figure 4.8: Colour variation of textile industry effluent (where, AT: after the
treatments, BT: before the treatments)

Figure 4.9: Bacterial growth on dye-amended nutrient agar medium (a) Yellow EXF
(b) Red EXF (c) Blue EXF (d) Black WNN and (e) Rhodamine65
Figure 4.10: Agar plates streaked with some of the isolated bacteria
Figure 4.11: Yellow EXF dye-containing nutrient media inoculated with isolates 1, 2,
3, 4, 18, 19 and 20 after 4-days of incubation and control (first tube starting from left
hand side)
Figure 4.12: Red EXF dye-containing nutrient media inoculated with isolates 5, 6, 7,
18 and 19 after 8-days of incubation and control (first tube starting from left hand side)
Figure 4.13: Blue EXF dye containing nutrient media inoculated with isolates 8, 9, 10,
11, 18, 19 and 20 after 10 days of incubation and control (first tube starting from left
hand side)
Figure 4.14: Nova Black WNN dye-containing nutrient media inoculated with isolates
12, 13, 18, 19 and 20 after 10-days of incubation and control (first tube starting from
left hand side)
Figure 4.15: Rhodamine dye-containing nutrient media inoculated with isolates 14, 15,
16, 17 and 20 after 10-days of incubation and control (first tube starting from right
16, 17 and 20 after 10-days of incubation and control (first tube starting from right hand side)
hand side)
hand side)69Figure 4.16: Capsule-staining image of isolate 20 (x100)70Figure 4.17: Gram-staining response of isolate 19 (x100)70Figure 4.18: Endospore staining image of isolate 1 (x100)71Figure 4.19: Gel image of the amplified DNA samples of the isolated bacteria71Figure 4.20: Effect of bacterial isolates and incubation time on decolorization of73Figure 4.21: Effect of bacterial isolates and incubation time on decolorization of Red74Figure 4.22: Effect of bacterial isolates and incubation time on decolorization of Blue74EXF dye75
hand side)

Figure 4.25: Variation of UV-visible spectra of Yellow EXF dye solutions treated with
P. mirabilis for different time intervals under static conditions
Figure 4.26: Variation of UV-visible spectra of Red EXF dye solutions treated with <i>P</i> .
mirabilis for different time intervals under static conditions
Figure 4.27: Variation of UV-visible spectra of Blue EXF dye solutions treated with
P. mirabilis for different time intervals under static conditions
Figure 4.28: Variation of UV-visible spectra of Black WNN dye solutions treated with
P. mirabilis for different time intervals under static conditions
Figure 4.29: Variation of UV-visible spectra of Rhodamine dye solutions treated with
<i>P. mirabilis</i> for different time intervals under static conditions
Figure 4.30: UV-visible spectra of Yellow EXF dye solutions decolourized with <i>P</i> .
mirabilis in glucose containing medium
Figure 4.31: FTIR spectra of Yellow EXF, Red EXF, Blue EXF and Black WNN83
Figure 4.32: Effect of bacterial consortium on dye decolourization over time
Figure 4.33: Effect of I_1 and the bacterial consortium on Rhodamine dye
decolourization over time
Figure 4.34: Time dependent cell growth and dye mixture decolourization by bacterial
consortium
Figure 4.35: UV–visible spectra of the dye mixture decolourization with the bacterial
consortium
Figure 4.36: Dye containing nutrient media in flasks before biological treatments 87
Figure 4.37: Dye containing nutrient media in flasks after 48 h biological treatments
Figure 4.38: Bacterial cells and the supernatants of decolourized dye samples separated
by centrifugation
Figure 4.39: Effect of aeration on time-dependent cell growth and decolourization of
Yellow EXF dye by <i>P. mirabilis</i>
Figure 4.40: Effect of aeration on time-dependent decolourization of Red EXF, Blue
EXF and Black WNN dyes by <i>P. mirabilis</i>
Figure 4.41: Effect of aeration on time-dependent decolourization of synthetic dye
mixture by <i>P. mirabilis</i>

Figure 4.42: Effect of pH on time dependent decolourization of Yellow EXF dye by
P. mirabilis
Figure 4.43: Effect of pH on time dependent decolourization of Red EXF dye by <i>P</i> .
mirabilis
Figure 4.44: Effect of pH on time dependent decolourization of synthetic dye mixture
by bacterial consortium
Figure 4.45: Effect of temperature on time dependent decolourization of Yellow EXF
dye by P. mirabilis
Figure 4.46: Effect of temperature on time dependent decolourization of Red EXF dye
by P. mirabilis
Figure 4.47: Effect of temperature on time dependent decolourization of synthetic dye
mixture by bacterial consortium
Figure 4.48: Effect of dye concentration on decolourization of Yellow EXF by P.
mirabilis after 72 h of incubation
Figure 4.49: Effect of carbon sources on Yellow EXF decolourization by <i>P. mirabilis</i>
Figure 4.50: Effect of yeast extract concentration in decolourization of the synthetic
Figure 4.50. Effect of yeast extract concentration in decolourization of the synthetic
mixture of dyes and cell growth by bacterial consortium 100
mixture of dyes and cell growth by bacterial consortium
mixture of dyes and cell growth by bacterial consortium
mixture of dyes and cell growth by bacterial consortium
mixture of dyes and cell growth by bacterial consortium
mixture of dyes and cell growth by bacterial consortium
mixture of dyes and cell growth by bacterial consortium
mixture of dyes and cell growth by bacterial consortium
mixture of dyes and cell growth by bacterial consortium
mixture of dyes and cell growth by bacterial consortium
mixture of dyes and cell growth by bacterial consortium

Figure 4.57: Decolourization of textile effluents obtained from company (a) A (b) Z
and (c) D (study I) (d) D (study II)
Figure 4.58: HPLC chromatogram of Yellow EXF dye 107
Figure 4.59: HPLC chromatogram of dye degraded compounds 107
Figure 4.60: Gas chromatogram of the dye degraded compounds formed after static
treatment
Figure 4.61: Gas chromatogram of the mineralized degraded compounds formed after
both static and shaking treatments
Figure 4.62: GC-mass spectra of degraded compounds of Yellow EXF by P. mirabilis
for the peaks corresponding to RT value of (a) 4.825 (b) 11.521 (c) 12.208 and (d)
10.604
Figure 4.63: Detection of biofilm formation by each microorganism by microtiter plate
method (wells 1A to 1E: P. mirabilis, 2A to 2E: M. morganii, 3A to 3E: E. cloacae
and 4A to 4E: control)
Figure 4.64: SEM image of biofilm support material (x7500) (control) 115
Figure 4.65: SEM images of <i>P. mirabilis</i> biofilms at (a) 2500x and (b) 7500x
magnifications
Figure 4.66: SEM images of <i>M. morganii</i> biofilms at (a) 2500x and (b) 7500x
magnifications
Figure 4.67: SEM images of <i>E. cloacae</i> biofilms at (a) 2500x and (b) 7500x
magnifications
Figure 4.68: Fixed bed biofilm reactor
Figure 4.69: Effect of the concentration of yeast extract on decolourization of the
synthetic dye mixture after 44h in batch FBBR118
Figure 4.70: Decolourization of synthetic dye mixture in FBBR in continuous mode
Figure 4.71: a) Influent (50 mg/l synthetic dye mixture containing medium) and b)
treated water obtained during phase III operation of FBBR
Figure 4.72: Decolourization of 50% diluted textile effluent in continuous FBBR 122
Figure 4.73: a) Feed (Undiluted textile effluent containing medium) and b) 48 h treated
water obtained from the batch FBBR

Figure 4.74: UV-visible spectra of undiluted textile effluent before and after treat in Figure 4.75: Biofilms formed on the plastic carrier material after (a) one month and Figure 4.76: SEM images of a) carrier material (x5000) and b) biofilms grown on the Figure 4.77: a) biofilm attached on carrier particle (dried) and control b) biofilms Figure 4.78: SEM image showing the adherence of bacterial cells on to the surface of Figure 4.80: Germination of cowpea seeds watered with (a) control water (b) treated Figure 4.81: Growth of cowpea seeds watered with (a) control water (b) treated Figure 4.82: UV-visible spectra of reactor feed (2 g/l yeast extract containing media with 50 mg/l synthetic dye mixture) and treated water samples obtained from FBBR Figure 4.83: UV-visible spectra of reactor feed (1 g/l yeast extract containing media with 50 mg/l synthetic dye mixture) and treated water samples obtained from FBBR Figure 4.84: UV-visible spectra of reactor feed (0.25 g/l yeast extract containing media with 50 mg/l synthetic dye mixture) and treated water samples obtained from FBBR Figure 4.85: HPLC chromatogram of the reactor feed that containing 50 mg/l of Figure 4.86: HPLC chromatogram of the feed treated in FBBR in batch mode..... 136 Figure 4.87: GC- mass spectra of compounds present in the biologically treated synthetic dye mixture (a) phenol, 4-methyl- (b) 1H-Indole, 3-methyl 138

LIST OF TABLES

Table 2.1: Classification of dyes according to usage [28] 6
Table 2.2: Chemical and physical dye decolourization methods widely used in industry
Table 2.3: Decolourization of textile dyes using bacteria and algae
Table 2.4: Decolourization of textile dyes using fungi and yeast
Table 2.5: Dye decolourization studies conducted using different biological reactors
Table 2.6: Dye decolourization studies conducted in packed bed biofilm reactors with
natural support materials
Table 3.1: Composition of LB medium [107]
Table 3.2: Composition of agar medium
Table 3.3: Composition of decolourization medium [13]
Table 3.4: Reagents used for PCR master mix preparation
Table 3.5: PCR cycling conditions
Table 3.6: Dimensions and details of the reactor components
Table 3.7: Different phases of synthetic dye mixture decolourization in continuous
FBBR
Table 4.1: Consumption of dyes in textile processing companies in Sri Lanka (from
industrial survey)
Table 4.2: Water consumption and wastewater generation in textile processing
companies in Sri Lanka
Table 4.3: Distribution of textile-related industries in Sri Lanka according to EPL
listed classification
Table 4.4: Effluent treatment techniques used in textile dyeing facilities in Sri Lanka
Table 4.5: Tolerance limits for the textile industry effluents discharges (for the selected
quality parameters) in Sri Lanka
Table 4.6: Bacteria isolated from each dye-amended medium with code numbers65
Table 4.7: Bacterial isolates capable of decolourizing each dye as per the nutrient broth
screening

Table 4.8: Description of the identified bacterial isolates
Table 4.9: Biochemical test results of isolated bacterial strains 72
Table 4.10: Comparison of Rhodamine dye decolourization results of <i>P. mirabilis</i> with
effluent discharge limits77
Table 4.11: Percentage decolourization of textile effluents at different wavelengths
Table 4.12: Percentage decolourization of effluent obtained from company D by
bacterial consortium after 48 h of incubation105
Table 4.13: Optical density values measured from ELISA reader at 595 nm wavelength
Table 4.14: Maximum spectral absorption coefficient of reactor feed (influent), treated
water samples (effluents) and the permissible discharge limits
Table 4.15: COD of the water samples collected from FBBR130
Table 4.16: Effect of effluent on cowpea seed germination. 131
Table 4.17: Results of the plant growth assay

LIST OF FIGURES IN APPENDICES

Appendix B Figure 1: Sectional view of the reactor lid	170
Appendix B Figure 2: Sectional view of the reactor base	170
Appendix B Figure 3: Sectional view of the reactor column	171
Appendix B Figure 4: Bonding of the reactor column to the reactor base	172
Appendix B Figure 5: Fixing of the reactor base to the reactor holding stand	172
Appendix B Figure 6: Fixing of the reactor lid to the reactor column	173

LIST OF ABBREVIATIONS

AEBR	Anaerobic expanded bed reactor
AQDS	Anthraquinone-2, 6-disulfonate
AQS	Anthraquinone-2-sulfonate
BLAST	Basic local alignment search tool
BOD	Biochemical oxygen demand
CEA	Central environmental authority
COD	Chemical oxygen demand
DNA	Deoxyribonucleic acid
dNTP	Deoxynucleoside triphosphate
EDTA	Ethylenediaminetetraacetic acid
ELISA	Enzyme-linked immunosorbent assay
EPL	Environmental protection license
EPS	Extracellular polymeric substances
EtBr	Ethidium bromide
FAD	Flavin adenide dinucleotide
FADH	Reduced form of flavin adenide dinucleotide
FBBR	Fixed bed biofilm reactor
FBR	Fluidized bed reactor
FMN	Flavin adenide mononucleotide
FTIR	Fourier-transform infrared spectroscopy
GCMS	Gas chromatography-mass spectroscopy
GOTS	Global organic textile standards
HDPS	High density polystyrene
HPLC	High performance liquid chromatography
HRT	Hydraulic retention time
IV	Intravenous tubing
LB	Luria–Bertani
MBBR	Moving bed biofilm reactor
MRSL	Manufacturing restricted substances list
MSDS	Material safety data sheets

MTBE	Methyl tertiary butyl ether
MTP	Microtiter plate
NADH	Reduced form of nicotinamide adenine dinucleotide
NADPH	Reduced form of nicotinamide adenine dinucleotide phosphate
NCBI	National center for biotechnology information
NIST	National institute of standards and technology
OD	Optical density
PCR	Polymerase chain reaction
PE	Polyethylene
PMMA	Poly (methyl methacrylate)
PP	Polypropylene
PTFE	Polytetrafluoroethylene
PU	Polyurethane
PVC	Polyvinyl chloride
RBC	Rotating biological contactors
rRNA	Ribosomal ribonucleic acid
SAMBR	Submerged anaerobic membrane bioreactor
SBR	Sequencing batch reactor
SEM	Scanning electron microscope
TAE	Tris-acetate-EDTA
UASB	Up-flow anaerobic sludge blanket
US EPA	United States environmental protection agency
UV	Ultraviolet
ZDHC	Zero discharge of hazardous chemicals