

SEISMIC ANALYSIS AND DESIGN OF POLWATHUMODARA HIGHW AY BRIDGE IN SOUTHERN TRANSPORT DEVELOPMENT PROJECT

By

S Withanage

The thesis submitted to the Department of Civil Engineering of the University of Moratuwa in partial fulfillment of the requirements for the Degree of Master of Engineering in Structural Engineering Design.

> Research Supervised Dr. C.S. Lewanagamage Senior Lecturer

DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MORATUWA SRI LANKA.

2009

93897

Abstract

The natural phenomena 'earthquakes' can not be prevented but the damage caused by earthquakes can be minimised mainly by having structures to resist earthquakes. The seismic performance of bridge is important as bridges playa key role in the transportation system. Hence this research is focused on the vulnerability of a bridge based on a major highway bridge namely Polwathumodara bridge to withstand an earthquake.

Selection of a suitable code of practice to be used, selection of appropriate earthquake loading is discussed in the report as earthquake data is not available in Sri Lanka. Then both the dynamic analysis (response spectrum analysis and time history analysis) and the static analysis are performed on the three dimensional model of the bridge using SAP 2000 to evaluate the design load effects. Based on the maximum design load effects a design capacity check is performed on all superstructure and substructure elements.

DECLARATION

I, S. Withanage, hereby declare that the content of this thesis is the original work carried out by me. Whenever others' work is included in this thesis, it is appropriately acknowledged as a reference.

Signature	:	tillige
Name of the Student	•	5. Withanage
Date	:	30/09 /2009

Signature	:	UOM Verified Signature
Name of the Supervisor	:	Dr. C.S. Lewangemage
Date	:	30/09/2009

ACKNOWLEDGEMENT

I am immensely grateful to my supervisor, Dr. C.S. Lewanagamage, for his invaluable guidance and support through out my research project. I am particularly indebted to the department of civil engineering, University of Moratuwa, for the opportunity provided to the practicing engineers to gain theoretical and research experience.

I also thank Prof. M.T.R. Jayasinghe of the department for his valuable advice which helped to make the research a success. I wish to thank Dr. Mrs. P. Hettiarachchi for encouragement given as coordinator of the research project.

I wish to thank Engineer Mr. K.L.S. Sahabandu; Additional General Manager of CECB, permitting me to participate the M. Eng. Degree course and acquire the data for research case study. Further I would like to thank all the library staff of CECB, library staff of IESL for there fullest corporation in my research work.

Electronic Theses & Dissertations

Last but not least my special gratitude goes to my husband, daughter and parents for being with me in making this study a success.

S. Withanage September 2009

Contents

		page
Chapter	Item	
	Decleration	(i)
	Acknoledgement	(ii)
	Abstract	(iii)
	Contents	(iv)
	List of Figures	(vi)
	List of Tables	(vii)
	List of Annexes	(viii)
1	Introduction	1
	1.1 General	1
	1.2 The Main Objectives	2
	1.3 The Methodology	2
	1.4 The Main Findings	3
	1.5 Arrangement of the Report	3
2	Literature Review	6
	2.1 General	6
	2.2 Bridges in Sri Lanka loratuwa, Sri Lanka.	6
	2.3 Why We Need Earthquake Analysis and Earthquake History in Sri Lanka	7
	2.4 Selection of Earthquake Loading for Sri Lanka	10
	2.5 Use of Australian Code for Analysis	11
	2.6 Use of Australian Code for Design	15
	2.7 Southern Transport Development Project	15
	2.8 Summary	16
3	Detail Description of Selected Bridge Analysis & Modelling	18
	3.1 General	18
	3.2 Site Condition	21
	3.3 Concrete Outline Drawings & Reinforcement Details	23
	3.4 Applied Earthquake Loading	47
	3.5 Mathematical Modelling	48
4	Response Spectrum Analysis	51
	4.1 General	51
	4.2 Response Spectra	51
	4.3 Analysis	52
	4.4 Results	60
	4.5 Summary	75

5	Time History Analysis	76
	5.1 General	76
	5.2 Time History	76
	5.3 Analysis	77
	5.4 Results	83
	5.5 Comparison of Time History with Response Spectra	96
	5.6 Summary	96
6	Equivalent Static Method	97
	6.1 General	97
	6.2 Static Analysis	91
	6.3 Analysis	98
	6.4 Results	102
	6.5 Comparison of Live Loads to Earthquake Loads	100
	6.6 Summary	11
7	Design Check with Austrailian Code	112
	7.1 General	112
	7.2 Design Check of 25m Span girder	114
	7.3 Design Check of Deck Slab	12:
	7.4 Design Check of 25m Span End diaphragm	12
	7.5 Design Check of 25m Span Intermediate diaphragm	13
	7.6 Design Check of 25m Span Pier diaphragm	13
	7.7 Design Check of Bearing Pads on Abutment Al	13
	7.8 Design Check of Abutment A1	14
	7.9 Design Check of Pier P2	14
	7.10 Design Check Summary	15
8	Proposed Retrofiting to Case Study Bridge	15
9	Conclusion	15
	References	16
	Annex I	
	Annex II	V
	Annex III	xi

List of Figures

Figure No.	Title	page
2.1	Major techtonic plates	8
2.2	Seismic lines in Central Indian Ocean	9
2.3	Notation for description of earthquake location	13
2.4	Peak ground acceleration (m/s^2) with 10% probability	14
	of exceedance in 50 years	
3.1	Polwathumodara Bridge Typical Details	20
3.2	Polwatumodara Bridge at construction stage	21
3.3	Subsurface profile of the site	22
3.4	Typical longitudinal details of Superstructure	24
3.5	Typical details of Abutment A1	25
3.6	Typical details of Pier P2	26
3.7	Typical details of Pier P3	27
3.8	Typical details of Pier P4	28
3.9	Typical details of Pier P5	29
3.10	Typical details of Abutment A6	30
3.11	Pile Layout at Abutment A1	31
3.12	Pile Layout at Pier P2 Moratuwa, Sri Lanka.	32
3.13	Pile Layout at Pier P3 _{Deses} & Dissertations	33
3.14	Pile Layout at Pier P4	34
3.15	Pile Layout at Pier P5	36
3.16	Pile Layout at Abutment A6	37
3.17	Typical 25m span girder details	39
3.18	Typical 40m span girder details	40
3.19	Typical 30m span girder details	41
3.20	Schematic reinforcement arrangement of deck slab	42
3.21	Schematic reinforcement arrangement of 25m span diaphragms	43
3.22	Schematic reinforcement arrangement of 30m span diaphragms	44
3.23	Schematic reinforcement arrangement of 40m span diaphragms	45
3.24	Schematic reinforcement arrangement of pier diaphragm	46
3.25	Mathematical model of the bridge	50
4.1	Response spectrum plots with 5% damping	54
4.2	Basic modes shapes of free vibration of the bridge	61
4.3	Graphical Representation of Results for Response Spectrum	62
	Analysis	
5.1	Time History plots	78
5.2	Graphical Representation of Results for Time	83
	History Analysis	
6.1	Graphical Representation of Results for Eqivelant Static method	102

List of Tables

Table No	Title	page	
3.1	Discription of bridge elements	19	
3.2	Structural Idealization of bridge elements	49	
4.1	Model contribution to participation mass ratio		
4.2	Model contribution to participation mass ratio60Maximum load effects - Response spectrum analysis -64Combination 164		
4.3	Maximum load effects - Response spectrum analysis - Combination 2	67	
4.4	Maximum load effects - Response spectrum analysis - Combination 3	70	
4.5	Maximum load effects of Response spectrum analysis	73	
5.1	Maximum load effects - Time history analysis - Combination 1	85	
5.2	Maximum load effects - Time history analysis - Combination 2	88	
5.3	Maximum load effects - Time history analysis - Combination 3	91	
5.4	Maximum load effects of Time history analysis	94	
6.1	Maximum load effects of Equivelent Static Method	104	
6.2	Maximum Design Load Effects due to Nominal Live Loads (HA udl + HA KEL) - Frame Elements	107	
	Maximum Design Load Effects due to Nominal Live Loads (HA udl + HA KEL) - Shell Elements	108	
	Maximum Design Load Effects due to Earthquake Loads - Frame Elements	109	
	Maximum Design Load Effects due to Earthquake Loads - Shell Elements	110	
7.1	Critical load combination for maximum load effects	113	
7.2	Design Adequecy check summary	157	

List of Annexes

Annex No	Title	page
I	Calculation of spring constants	i
II	Tables of Response spectrum data	vii
III	Tables of Time History data	xiii

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk