STUDY ON
 OPTIMIZATION OF RECTANGULAR TYPE GROUND RESERVOIRS

By
U.C Pathiranage

Supervised By
Professor S.M.A Nanayakkara
Department of Civil Engineering

DEPARTMENT OF CIVIL ENGINEERING
UNIVERSITY OF MORATUWA
SRI LANKA

2009

93901

Abstract

At present, there is very few published literature for optimizing of rectangular type ground reservoirs. National Water Supply \& Drainage Board (NWSDB) is the prime national organization responsible for providing safe drinking water to public in the country. Therefore NWSDB has the vested interest to optimize the cost of structures utilized for the water supply schemes in order to give more benefits to the public. Hence it was decided to carry out this research work and to utilize the outcome of the research for the National Water supply \& Drainage Board. Rectangular type ground reservoir was selected in this research as it is the most common type of ground reservoir.

About sixteen numbers of ground reservoirs of four capacities with varying height were analyzed and designed for three cases, namely, tank full without soil pressure, tank empty with soil pressure and tank full with soil pressure acting. In optimizing the tank, roof slab thickness, column spacing, wall thickness and the dimensions of wall base for each and every capacity of ground reservoir were analyzed in order to obtain optimum solution. Costing was done considering cost of materials, i.e, reinforcements, formwork, concrete and labour for the construction of ground reservoirs. Cost estimates were prepared using the rates given in the NWSDB rate book for 2009.

Selection of capacities were mainly based on the past records of the NWSDB. Data collected from the NW,SDB shows that most of the ground reservoirs are of capacity between 100 m ' to 1000 m 3 and therefore research was limited to the capacity up to 1000 rrr'. Four different capacities (i.e 1000 nr', 750 m ', 450 m 3 and 225 rrr ') were selected for the analysis because NWSDB use the ground reservoir of these capacities in their water supply schemes.

The structural arrangement of-the ground reservoir considered consists of cantilevered walls, isolated tank base and flat slab roof.

Tank base was designed as -an-isolated base which bears the water load on it and transfer to the ground. As per the BS 8007, reinforcement steel was provided only to the top zone.

By reviewing the data collected and analyzing the dimensions of the ground reservoirs, it was found that square type ground reservoir has lesser perimeter for a given height than that of rectangular reservoir for the same height. Therefore square ground reservoirs are economical than rectangular ground reservoir.

By analyzing the column spacing for the flat slab roof, it was found that maximum column spacing is 4.25 m for the 200 mm thick slab to satisfy the deflection criteria. Tank wall was designed as a cantilever wall and thickness of wall was decided based on the deflection criteria and checked for shear force.

Wall base was optimized to satisfy the conditions of overturning, no negative stresses to develop at the base and not to exceed the maximum bearing capacity of soil and this gives the location of wall on the wall base and the dimensions of the wall base. Stability of tank wall with respect to sliding and rotation were also checked. Where necessary tie bars were provided to take the balance sliding forces.

The analysis of wall base shows that the length of wall base within the tank is (toe length) smaller than the length outside (Heel length) the tank when tank is full with water and soil pressure is not acting. When tank is empty and soil pressure acting on the wall, the wall base within the tank is higher than that of outer.

Costing was done for concreting, form work, reinforcements and labour. It was found that when height increases, the cost decrease upto a certain height and then increases with the increase of height. Minimum cost was obtained when reservoir heights were $4.0 \mathrm{~m}, ~) . Z L \mathrm{~m}, 3.45 \mathrm{~m}$ and 2.75 m for 1000 m ', 750 m ', 450 m and 225 m 3 respectively. Costing was done based on the rates provided in the NWSDB rate book for year 2009.

The findings of this study are useful in design process to decide on the cost optimized ground reservoirs. These findings can be used for the ground reservoirs in the water supply schemes.

STUDY ON
 OPTIMIZATION OF COST OF RECTANGULAR TYPE GROUND RESERVOIRS

By Eng. U.C Pathiranage

Abstract

This thesis is submitted to the Department of Civil Engineering of the University of Moratuwa. Sri Lanka, in partial fulfillment of the requirements of the Degree of Master of Engineering in Structural Engineering Design.

Department of Civil Engineering University of Moratuwa
Sri Lanka
September 2009

DECLARATION

I hereby declare that the work included in this thesis, in part or whole has not been submitted for any other academic qualification at any institution.

University of Moratuwa, Sri Lanka. Electronic Theses \& Dissertations www.lib.mrt.ac.lk

Eng. U.C Pathiranage
Certified By:
Professor - S.M.A Nanayakkara Project Supervisor,
Department of Civil Engineering University Of Moratuwa
Sri Lanka

ACKNOWLEDGEMENTS

I wish to express my heartiest thanks and gratitude to Professor S.M.A Nanayakkara for his guidance, advices, encouragement and all the supports dedicated personally throughout the course of this research studies.

Also I am grateful to all lectures who lectured me during the series of lectures of this M.Eng. degree course for their valuable teaching.

I am thankful to Deputy General Manager. Eng. D.S.D Jayasiriwardana. Deputy General Manager Eng. (Mrs) M.K Bandara and the Management of the National Water supply \& Drainage Board for sponsoring and granting me leave and the encouragement given to me to follow the course and make it successful.

I wish to extend my gratitude to Eng. Mrs. Thanuja Premarathne, Eng. Lasantha. steno/Typist Ms. Shiroma Rajakumari/ Miss. Iresha Sandamali. Eng. Assts Mrs. Weerarathne and Mrs. Mala Perera. Quantity Surveyors Mrs. Priyanka de Silva, Keshani and Padma and others in the Quantity Surveying section for taking off quantities. costing and helping me.

I pay gratitude to Mrs. Damayanthi. Draughts person for helping me to making sketches. I extend my gratitude to all others who helped me to make this thesis successful.

I am happy to say that my wife Mallika, daughter Isuri and son Deelaka encourage me to complete this course and helped me to prepare this thesis in various ways. I extend my gratitude to them for their fullest support and continuous encouragement.

TABLE OF CONTENTS

CHAPTER TITLE
DECLARATION II
ACKNOWLEDGEMENTS III
ABSTRACT IV
LIST OF TABLES IX
LIST OF FIGURES I
INTRODUCTION 1
1.1 GENERAL 1
1.2 FUNCTION OF GROUND RESERVOIRS 1
1.3 OBJECTIVES 2
1.4 METHODOLOGY 2
1.5 THIS THESIS COVERS CHAPTERS AND THEY ARE GIVEN BELOW 2
2 LITERATURE REVIEW 3
2.1 INVESTIGATION ON THE AVAILABLE SHAPES OF WALLS 3
3. FIELD SURVEY ON EXISTING GROUND RESERVOIRS 5
4 STRUCTURAL OPTIMIZATION 7
4.I INTRODUCTION7
4.2 DESIGN PARAMETERS 7
4.3 OPTIMIZATION OF MAIN DIMENSIONS 7
4.4 OPTIMIZATION OF LENGTH TO BREADTH RATIO 8
4.5 OP'TIMIZATION OF COMPONEN'TS OF GROUND RESER VOIR 9
4.6 OPTIMIZATION OF ROOF SLAB 10
4.7 SELECTION OF WALL THICKNESS. 12
4.8 SELECTION OF LOCATION OF WALL ON THE WALL BASE. 12
4.9 EFFECT OF WALL HEIGHT ON SELECTION OF DIMENSIONS OF THE BASE 17
4.9.1 OPIIMUM BASE WIDTH FOR 3.0 M WALL HEIGHT 17
4.9.2 OPTIMUM BASE WIDTH FOR 3.5 M WALL HEIGHT 19
4.9.3 OPTIMUM BASE WIDTH FOR 3.8 M WALL HEIGHT 20
4.9.4 OPTIMUM BASE WIDTH FOR 4.5 M WALL HEIGHT 21
4.9.3 OPTIMUM BASE WIDTH FOR 3.8 M WALL HLIGHT 20
4.9.4 OPTIMUM BASE WIDTH FOR 4.5 M WAL I HFIGHT 21
4.9.5 OPTIMUM BASE WIDTII FOR 5 M WALL HEIGHT 22
5.0 DESIGN OF GROUND RESERVOIRS 39
5.1 DESIGN PROCEDURE 39
5.2 ROTATION OF WALL 40
5.3 SLIDING OF WALL 40
5.4 DESIGN OF STRUCTURAL ELEMENTS 40
6. RESULTS \& DISCUSSION 43
7. CONCLUSIONS AND RECOMMENDATIONS 53
REFERENCES 55

University of Moratuwa, Sri Lanka. Electronic Theses \& Dissertations www.lib.mrt.ac.lk

LIST OF TABLES

Table 3.1. Dimension of Existing Ground Reservoirs 6
Table 3.2. Dimension of Wall Base 6
Table 4.1. Values of LI and L 2 for 3.0 m wall height 19
Table 4.2. Values of L_{1} and L_{2} for 3.5 m wall height 20
Table 4.3. Values of L_{1} and I_{2} for 3.8 m wall height 21
Table 4.4. Values of L_{1} and L_{2} for 4.5 m wall height 22
Table 4.5. Optimum Values for L1 \& L2 for All Considered, Wall Heights 23
Table 6.1. Wall Thickness for Different Height 44
Table 6.2. Cost of Ground Reservoirs 46
Table 6.3. Optimum Wall Height for each Capacity of Ground Reservoir 47
Table 7.1. Optimum Wall Height 53

LIST OF FIGURES

Figure 2.1. Completely Tapered Wall 3
Figure 2.2. Stepped Wall 3
Figure 2.3. Partially Tapered Wall4
Figure 3.1. Typical Section of Wall Base 6
Figure 4.1. Least Perimeter of Ground Reservoir 9
Figure 4.2. Tank full with no soil pressure acting 14
Figure 4.3. Tank empty with soil pressure acting 15
Figure 4.4. Tank Full Soil Pressure acting 16
Figure 4.5. 3m Wall Height, Case 1 (Tank Full. No Soil Pressure Acting) 24
Figure 4.6.3m Wall Height, Case 2 (Tank Empty, Soil Pressure Acting) 25
Figure 4.7 .3 m Wall Height. Case 3 (Tank Full. Soil Pressure Acting) 26
Figure 4.8. 3.5 m Wall Height, Case 1 (Tank Full, Soil Pressure Not Acting) 27
Figure 4.9. 3.5 m Wall Height, Case (Tank Empty, Soil Pressure Acting) 28
Figure 4.10 .3 .5 m Wall Height. Case 3 (Tank Full, Soil Pressure Acting) 29
Figure 4.11 .3 .8 m Wall Height, Case 1 (Tank Full, No Soil Pressure Acting) 30
Figure 4.12. 3.8 m Wall Height. Case 2 (Tank Empty, Soil Pressure Acting) 31
Figure 4.13. 3.8 m Wall Height, Case 3 (Tank Full, Soil Pressure Acting) 32
Figure 4.14. 4.5 m Wall Height, Case 1 (Tank Full, No Soil Pressure Acting) 33
Figure 4.15 .4 .5 m Wall Height, Case 2 (Tank Empty, Soil Pressure Acting) 34
Figure 4.16. 4.5 m Wall Height, case 3 (Tank Full, Soil Pressure Acting) 35
Figure 4.17. 5 m Wall Height. Case 1 (Tank Full, Soil Pressure Not Acting) 36
Figure 4.18 .5 m Wall Height. Case 2 (Tank Empty, Soil Pressure Acting) 37
Figure 4.19 .5 m Wall Height, Case 3 (Tank Full, Soil Pressure Acting) 38
Figure 6.1. Cost VS Height for 1000 cu.m Capacity 48
Figure 6.2. Cost VS Height for $750 \mathrm{Cu} . \mathrm{m}$ Capacity 48
Figure 6.3. Cost VS Height for $450 \mathrm{cu} . \mathrm{m}$ Cpacity 49
Figure 6.4. Cost VS Height for 225 cu.m Capacity 50
Figure 6.5. Capacity VS Optimum Height of Ground Reservoirs 51
Figure 7.1. Capacity Vs Optimum Wall Height of Ground Reservoirs 54

