

INVESTIGA TION OF NERDC COMPOSITE FLOOR SLAB SYSTEM

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering in Structural Engineering Design

> By W.W.P.K.Perera

Supervised by Professor S.M.A.N anayakkara

Department of Civil Engineering University of Moratuwa Moratuwa

2009

93908

Abstract

NERD composite floor slab system is widely used in Sri Lanka to construct concrete floors specially by the low and middle income families. The system has considerable advantages over the traditional construction methods. One of the major drawback of this cost effective slab system is the unavailability of sound theoretical basis for the structural behavior of the system. Even though the slab system is used in this country over the past twenty years, this drawback has not yet been fulfilled. The aim of this research is to fill this timely needed gap by investigating the structural behavior of this slab system and optimize the system.

The proposed method of structural analysis using first principle and the subsequent spread sheet calculation is presented. The spread sheet can be used to select the depth of the prestressed beam required, if the customer knows the imposed load and the span of the slab. According to the results of the spread sheet analysis, the present detailing of prestressed beams is to be changed. The new detailing can be implemented at the existing licensed prestressing yards in operation all over Island without much difficulties.

The slab is presently constructed as unpropped construction. However it was identified '. that, by constructing as a propped construction, the moment carrying capacity can be increased significantly. However, by using props, the advantage "bottom space is available to use on the following day" will be lost. The customer can decide whether to use propped or unpropprd construction by considering the advantages and disadvantages of the method selected.

The most important outcome of this research is the discovery of under utilization of strength of prestressing wires. The strength of wires cannot be fully utilized until the facilities available at the rural yards are improved up to the required standard. The capital investment to improve the facilities of the prestressing yards can be recovered

very quickly as one third of the cost of prestressing steel can be saver by fully utilizing the strength of the prestressing steel.

ACKNOWLEDGEMENT

First of all I would like to express my sincere gratitude to Professor S.M.A. Nanayakkara, my research supervisor, for his invaluable guidance, very kind hearted co-operation and the encouragement extended throughout this study. If not for his continued interest and involvement in this research and his patience over the last two years this research would not have been a reality. The knowledge and experience which I obtained during this period will prove to be a valuable asset for handling any real world problems with greater confidence and precision.

Special thanks should goes to management of my work place; National Engineering Research and Development Centre of Sri Lanka (NERD Centre) for providing me the opportunity to study for the M.Eng. Degree in Structural Engineering Design at the University of Moratuwa and providing the financial assistance for the same. NERD Centre also provides me the opportunity to carry out this research as an internal research of the Organization which make my task easy.

www.lib.mrt.ac.lk

The contribution given by the technical staff and the skilled team of workers of the Department of Civil Engineering at the NERD Centre is very much appreciated. Without their fullest support and skillful assistance the experiment part of this research would not have been successful. Special note of thank are due to Mr. We rasinghe for his invaluable input, help and friendship for the experiment part of this research.

I would appreciate everybody, who helped me in numerous ways at different stages of this project which are of utmost importance in bringing out of this a success.

Last but not least, my wife Lakmali deserves a big thank for freeing me and taking all the hard work of the family, looking after our gorgeous little daughters, who inspired my world, and also for being a pilor of support and encouragement at times of my lows.

TABLE OF CONTENT

Item	Page No
ABSTRACT	i
ACKNOWLEDGEMENT	ii
TABLE OF CONTENT	iii
LIST OF FIGURES	vi
LIST OF TABLES	viii
NOTATIONS	ix
CHAPTER 1: INTRODUCTION	1
1.1 BACKGROUND	2
1.2 PRESENT METHOD OF CONSTRUCTION	5
1.2.1 Stressing of Prestress Wires	5
1.2.2. Casting of Concrete Beams	6
1.2.3 Transfer of Prestressing force	7
1.2.4 Transport and Handling of Beams	7
1.2.5 Placing of Beams to construct floor slab	7
1.2.6 Making the Insitu Topping	8
1.3 OBJECTIVES	9
1.4 METHODOLOGY	9
CHAPTER 2: LITERATURE REVIEW	11
2.1 PRECAST AND PRESTRESSED CONCRETE	12
2.2 COMPOSITE CONSTRUCTION OF PRESTRESSED AND	
INSITU CONCRETE	14
2.2.1 Method of Construction	16
2.3 DIFFERENT TYPES OF FLOOR SLAB SYSTEMS	16
2.3.1 Hollow Core Concrete Floor Slab	17
2.3.2 Bondek Slab	18

2.3.3 Transfloor Slab	18
2.3.4 U Beam Slab	19
2.3.5 Concrete Steel Composite Slab	19
2.3.6 Single and Double T Beam Slab	20
2.4 DISCUSSION ON PROVISIONS MADE IN THE BRITISH	
STANDARD FOR STRUCTURAL USE OF CONCRETE	
RELATED TO NERDC COMPOSITE SLAB	21
CHAPTER 3: STRUCTURAL ANALYSIS	23
3.1 DETAILED EVALUATION OF LOSSES	24
3.1.1 Losses due to Elastic Deformation	24
3.1.2 Losses due to Steel Relaxation	26
3.1.3 Losses due to Creep of Concrete	27
3.1.4 Losses due to Shrinkage	27
3.2 SPECIMEN CALCULATION OF LOSSES OF PRERSTRESSING	20
FORCES Electronic Theses & Dissertations	28 30
3.3 ANALYSIS OF STRESSES	30
3.4 STRESS CRITERIA FOR DESIGN	35
	35 36
3.5.1 Calculation of Longitudinal Stresses	43
3.5.2 Results of Analysis of Longitudinal Stresses	
3.5.3 Construction of Magnel diagram	54
3.5.4 Findings of the Magnel diagram	60
3.5.5 Horizontal Shear Transfer in Composite Beams	61
3.5.6 Calculation of Prop Spacing for Propped Construction	63
3.5.7 Design of 50 mm thick Slab in Transverse Direction	64
3.5.8 Comments on Analysis	67
CHAPTER 4: EXPERIMENTAL INVESTIGATION	70
4.1 CASTING OF PRESTRESSED BEAMS	71
4.2 CASTING OF SLAB PANELS	73

4.3 LOADING OF SLAB PANELS	75
4.4 RESULTS OF LOAD TESTING	76
CHAPTER 5: DISCUSSION AND CONCLUSIONS	80
REFERENCES	82

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

......

LIST OF FIGURES

Fig. No

Chapter 1		
1.1 First slab constructed at NERD Centre		2
1.2 Original slab system	2	3
1.3 Modified slab system		4
1.4 Stressing wires		5
1.5 Long line method of casting		6
1.6 Two end plate types		7
1.7 Making the insitu topping		8

Chapter 2

2.1 Hollow core slab		17
2.2 Bondek slab	University of Moratuwa, Sri Lanka.	18
2.3 Transfloor slab	Electronic Theses & Dissertations	18
2.4 U Beam slab		19
2.5 Single and double T be	eam slab	20

Chapter 3

3.1 Stresses at transfer and service (at support)	33
3.2 Stresses at service at mid span (propped and unpropped condition)	34
3.3 & 3.4 Resultant stresses at important stages	46
3.5 & 3.6. Screen image of spread sheet forms for input variables	48
3.7 Magnel diagram for unpropped construction	58
3.8 Magnel diagram for propped construction	59

Chapter 4

4.1 Casting of prestressed beams at the yard	71
4.2 Concreting of type-3 beams	71

4.3 Vibrating of type-3 beams	72
4.4 Placing of wires using new end plates	72
4.5 Placing of beams on support	73
4.6 Placing of plywood shutter and mesh	73
4.7 Concreting the slab	74
4.8 Compacting the slab	74
4.9 Curing the slab	74
4.10 Weighting of sand bags	75
4.11 Loading of sand bags	75
4.12 Arrangement of dial gauges	76
4.13 Load deflection curves for slab panels	77
4.14 Appearance of first crack	79
4.15 Crack pattern	79

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

1.00

LIST OF TABLES

Table No

Page No

Chapter 1	
1.1 Variation of beam depth with span	3
Chapter 3	
3.1 Relaxation factors given in Table 4.6/BS 8110/Part 1	26
3.2 1000 hr. Relaxation value given in Table 4/BS 5896:1980	26
3.3 Design Guide Lines for selection of beams for Propped Construction	44
3.4 Design Guide Lines for selection of beams for Unpropped Construction	44
3.5 Results of spread sheet analysis for 4" & 5" thick beams	50
3.6 Results of spread sheet analysis for 6" & 7" thick beams	51
3.7 Results of spread sheet analysis for 2 wires case for 4" & 5" thick beams	52
3.8 Results of spread sheet analysis for 2 wires case for 6" & 7" thick beams Electronic Theses & Dissertations www.lib.mrt.ac.lk	53
Chapter 4	
4.1, 4.2 & 4.3 Mid span deflection for load testing of slabs	78

NOTATION

Es	= Young's modulus of the steel tendon
A_{ps}	= Cross sectional area of the prestress steel
L	= Initial length of the tendon
e	= Elongation
\mathbf{f}_{cu}	= Characteristic strength of concrete
\mathbf{f}_{ei}	= Concrete strength at transfer
E _{c.28}	= Static modules of elasticity at 28 days
$E_{e,t}$	= Modules of elasticity of concrete at transfer
Ko	= Constant closely related to the modules of elasticity of the aggregate
f _{cu,28}	= Characteristics cube strength at 28 days
$\mathbf{f}_{cu,t}$	= Characteristics cube strength of the age of t
f_{co}	= concrete stress
f_y	= tensile stress of steel
Δf_{ps}	= change in the stress in steely of Moratuwa, Sri Lanka.
\mathbf{P}_{j}	= Jacking force Electronic Theses & Dissertations
Pe	= Effective prestress force
\mathbf{P}_i	= Initial prestress force
А	= Cross sectional area of the prestress beam
I	=Second moment of area
M_{d}	= Moment due to dead weight of prestress beam
Φ	= Creep coefficient for the period considered
I _{beam,na}	= Second moment of area of the beam about neutral axis
I comp. n	a = Second moment of area of the composite section about neutral axis
Z _b	= Section modulus of the beam section below neutral axis
Z_t	= Section modulus of the beam section above neutral axis
Wi	= Imposed load
Wd	= Dead weight of prestress beam
W _{ds}	= Dead weight of insitu concrete
Z _{b. com}	_p = Section modulus of the composite section below neutral axis

 $Z_{t. comp}$ = Section modulus of the composite section above neutral axis = Moment due to Dead weight of prestress beam M_{d} $M_{d,avg}$ = Average Moment due to Dead weight of prestress beam = Moment due to Dead weight of insitu concrete Mds $M_{i max}$ = Maximum moment due to imposed load = Allowable compressive stress f_{a max} = Allowable tensile stress f_{a min} $f_{a maxt}$ = Allowable compressive stress at transfer = Allowable tensile stress at transfer f_{a mint} = creep strain in concrete Ecc = modular ratio between steel and concrete n = horizontal shear force $V_{\rm h}$ = width of the insitu topping(compression zone) b = depth of the insitu topping above the interface h = contact width at the interface b = beam length between the point of maximum and zero moments 1 = length of the prestress beam ac.1k Lb = horizontal shear force V_{h} $(v_h)_{avg}$ = average horizontal design shear stress = design shear stress \mathbf{v}_{h} =area of interface steel A_h =overall depth Н =effective depth d =design shear stress at a cross section V = design concrete shear stress Vc

1.