INNOVATIVE APPROACH TO PRODUCE SOIL-BASED BUILDING PRODUCTS

Samarappuli Nirosha Malkanthi

(178067M)

Degree of Doctor of Philosophy in Civil Engineering

Department of Civil Engineering

University of Moratuwa Sri Lanka

April 2021

INNOVATIVE APPROACH TO PRODUCE SOIL-BASED BUILDING PRODUCTS

Samarappuli Nirosha Malkanthi

(178067M)

Dissertation submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy in Civil Engineering

Department of Civil Engineering

University of Moratuwa Sri Lanka

April 2021

Declaration of Candidate and Supervisor

"I declare that this is my own work and this thesis/dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books)."

Signature:

Date:27.04.2020

The above candidate has carried out research for the PhD Dissertation under my supervision.

Name of the supervisor: A.A.D.A.J. Perera

Genney

Signature of the supervisor:

Date:

Abstract

Innovative Approach to Produce Soil-Based Building Products

Keywords: Reduced Clay & Silt, Soil Washing, Soil Blocks, Roof Tiles, Burnt-Bricks

Soil as a building material has been used in different forms which include mud, adobe, rammed earth and bricks. Also, Compressed Stabilized Earth Blocks (CSEBs), a form of soil blocks with different additives, including cement, fly ash, and lime, have been investigated by many researchers for their advantageous properties. A literature review established that compressive strength significantly depends on the clay and silt (finer) content and 25% finer content produces the optimum results. However, investigators have not considered the amounts of other large particles. Furthermore, most of the researchers have adopted the method of adding different materials to soil in order to reduce the finer content in the soil. This study focused on an innovative approach to reduce finer content by washing and to utilize finer part of soil for different soil-based products simultaneously. Washing of soil is introduced as a method to reduce the finer content and soil with reduced finer content was investigated for production of compressed stabilized earth blocks. Further, the water recycling and its optimization for the washing process too was investigated. The separated finer content together with fly ash was investigated for the production of other soil-based productions namely roof tiles and burnt-bricks.

This study also investigated the use of theories of particle packing optimization which changed the soil grading while enhancing the properties of CSEBs. It established the changing of soil particles in different ranges to fit the soil grading to an optimization curve. Moreover, the use of fly ash as a finer replacement to the washed soil produced significant improvements in CSEB properties made with washed soil compared to that of CSEB made with un-washed soil. Laboratory testing clearly showed that the use of washed soil with 5%-10% finer content improved the compressive strength of the CSEB by 50% with different percentages of cement stabilization. In addition, significant improvements in dry densities and water absorption ratios of blocks were also observed with this particle size distribution modification. Industrial scaled soil blocks made with the selected optimum finer content of 7.5% and 7% cement stabilization verified that the blocks properties meet the requirements given in the standards SLS 1382 and SLS 855.

The soil washing process reduced the finer content in the soil producing a considerable amount of finer that could be used to produce building materials like roof tiles and burnt bricks. This extracted finer alone was difficult to be used, however adding fly ash gave significant enhancements to properties of roof tiles and burnt bricks. In fact, the study showed that 25% addition of fly ash to the extracted finer was more desirable. Roof tiles made with extracted finer and 25% of fly ash reported that the breaking strength, water absorption and permeability of tiles meet the requirements given in SLS 2. Burnt bricks made with extracted finer and 25% of fly ash also reported that the compressive strength, water absorption, and efflorescence meet the requirements given in SLS 39. Moreover, the properties of wire-cut bricks made with extracted finer and 25% optimization established that up to 60% water can be re-cycled. Cost analysis for the building materials considered in this study showed that the unit price of each product was significantly low compared to the current market price. Therefore, further research could be done to streamline all the processes and products considered in this study.

Acknowledgement

Without the guidance and encouragement of many well-meaning people, this thesis might not be a successful one. First and foremost, I would like to express my heartfelt gratitude to my supervisor, Professor A.A.D.A.J. Perera, for his great teaching, suggestions and comments throughout my research. Professor Perera is a great mentor who guided while giving me all the freedom and encouragement to accompany with my ideas. Next, my deepest gratitude goes to Professor Anura Nanayakkara, and Professor Kumari Gamage for their continuous encouragement, comments and guidance as my examiners of bi-annual review panels.

I graciously acknowledge the support of Senior Professor Sujeewa Amarasena, the Vice-Chancellor of the University of Ruhuna, Senior Professor Gamini Senanayake former Vice-Chancellor of the University of Ruhuna and Dr. Nayana Alagiyawanna, former Deputy Vice-Chancellor of the University of Ruhuna. Further, my sincere gratitude goes to Dr. Chandana Perera, former Dean, Faculty of Engineering and Professor Sudeera De Silva, former Head of the Department of Civil and Environmental Engineering for giving me all the necessary instruction and support. Thanks, are also to Dr. H.P. Sooriyaarachichi, Dean, Faculty of Engineering and Dr. Neetha Dayanthi, Head, Department of Civil and Environmental Engineering for their valuable support.

I wish to extend my sincere thanks for the support I received from all the Technical officers and Lab-Attendant of Department of Civil Engineering, University of Moratuwa. Very special and heartfelt thanks are for the colleagues in the Management Division including Ms. Priyantha, Rukma, Harsha, Sachindra, Rizna, Chameera and Himahamshi, Malsha for their gracious associations throughout the last three years.

Also, I thank all the academic and non-academic staff of the Faculty of Engineering, the University of Ruhuna for their kind-hearted help to fulfil my research work.

I acknowledge the sacrificial dedication of my loving husband Hasantha and our daughter Adithi for their encouragement and corporate by managing all the works while I was busy with my works on this research.

Table of Contents

Declaration of Candidate and Supervisor	i
Abstract	ii
Acknowledgement	iii
Table of Contents	iv
List of Figures	viii
List of Tables	xi
CHAPTER 1 : INTRODUCTION	1
1.1. General Introduction	1
1.2. Research Aim and Objectives	4
1.3. Problem Definition	5
1.4. Expected Advantages of the Research Project	7
1.5. Organization of the Thesis	7
1.6. Summary	8
CHAPTER 2 : LITERATURE REVIEW	9
2.1. General Introduction	9
2.2. Overall View of the Literature Review	9
2.3. Use of Earth as a Building Material	11
2.4. Compressed Stabilised Earth Blocks	12
2.5. Advantages of Compressed Stabilized Earth Blocks	13
2.6. Raw Materials for CSEB Production	15
2.6.1. Clay and Silt	16
2.6.2. Gravel and Sand	
2.6.3. Water Content	
2.6.4. Soil Stabilization	19

2.7. Characteristics of CSEB	21
2.7.1. Compressive Strength	22
2.7.2. Durability	24
2.7.3. Dry Density	26
2.8. Compaction Methods and Production Alternatives	28
2.9. Curing Methods	
2.10. Durability of Walls with CSEB	29
2.10.1. Durability Problems	
2.11. Application of Particle Packing Technology for CSEB	32
2.11.1. Concept of Particle Packing Density	32
2.12. Use of Fly Ash for CSEB Production	37
2.12.1. Use of Fly Ash for Building Materials Production	
2.13. Lime Stabilization for Compressed Stabilized Earth Blocks	40
2.14. Soil Washing Procedure	42
2.15. Clay Roof Tiles and Bricks Production	44
2.15.1. Properties of Roof Tiles and its Raw Materials	44
2.15.2. Properties of Burnt bricks and its raw Materials	46
2.16. Findings from Literature Review	47
2.17. Summary	48
CHAPTER 3 : RESEARCH METHODOLOGY	49
3.1. General Introduction	49
3.2. Overall Study Programme	49
3.3. Soil Washing	51
3.4. Required Materials for CSEB	54
3.5. Mix Proportion for CSEB	54

3.6. Casting of CSEB	.56
3.7. Tests on CSEB	.58
3.8. Manufacturing of Industrial Scaled CSEB	.62
3.9. Required Materials for Roof Tiles	.64
3.10. Production of Roof Tiles	.64
3.11. Tests on Roof Tiles	.65
3.12. Required Materials for Bricks	.67
3.13. Production of Bricks	.68
3.14. Tests on Bricks	.71
3.15. Summary	.76
CHAPTER 4 : RESULTS AND DISCUSSION	.77
4.1. General Introduction	.77
4.2. Soil Washing Procedure	.77
4.3. Properties of Materials	.83
4.4. Applicability of Particle Packing Concept	.84
4.5. Performance of CSEB with Reduced Clay and Silt	.85
4.5.1. Dry Compressive Strength of CSEB with Reduced Clay and Silt	.87
4.5.2. Wet Compressive Strength of CSEB with Reduced Clay and Silt	.93
4.5.3. Dry Densities and Water Absorption of CSEB with Reduced Clay and S	Silt
	.95
4.5.4. Durability Characteristics of CSEB with Reduced Clay and Silt1	100
4.6. Performance of Industrial Scaled Blocks1	102
4.7. Performance of CSEB with Fly Ash Replacement as Finer1	103
4.7.1. Properties of Used Fly ash (Particle size distribution, Specific gravity) 1	104
4.7.2. Mix of Soil and Fly Ash1	104
4.7.3. Compressive Strength of CSEB with Fly Ash Replacement1	105

4.7.4. Comparison with Soil Blocks	107
4.7.5. Comparison with Standards	110
4.8. Performance of Roof Tiles	112
4.8.1. Test Results for Roof Tiles	116
4.9. Performance of Clay Bricks	117
4.10. Summary	126
CHAPTER 5 : COST ANALYSIS OF PRODUCTS	127
5.1. General Introduction	127
5.2. Cost Calculation for Soil Washing	127
5.3. Cost Calculation for CSEB Production	
5.4. Cost Calculation for CSEB with fly ash	131
5.5. Cost Calculation for Burnt Bricks	134
5.6. Cost Calculation for Roof tiles	134
5.7. Summary	135
CHAPTER 6 : CONCLUSIONS AND FUTURE WORKS	136
6.1. General Introduction	136
6.2. Conclusions	136
6.3. Recommendation for further studies	139
REFERENCES	141

List of Figures

Figure 1-1: Overall Study Programme
Figure 2-1: Overall Picture of the Literature Review10
Figure 2-2: Relationship of Dry Compressive Strength and Clay Content as per
Walker [7]
Figure 2-3: Compressive Strength Variation with Clay Content as per Heathcote [17]
Figure 2-4: Effect of Cement Content on Compressive Strength
Figure 2-5: Relationship between Average Drying Shrinkage and Clay Content:
Walker[7]
Figure 2-6: Optimum Densities of Different Types of Soils
Figure 2-7: Illustration of the Particle Packing Concept [80]
Figure 2-8: Graphical Representation of Theoretical Optimization Curves of Particle
Packing
Figure 2-9: Compressive Strength Variation with Fly Ash [90]
Figure 3-1: Overall View of the Experimental Study
Figure 3-2: Use of Concrete Mixer for Soil Washing
Figure 3-3: Used soil (a), Separated Finer (b) and Gravel (c)
Figure 3-4: Sedimentation of Clay
Figure 3-5: Filtering of Clay for Drying
Figure 3-6: (a) Gravel (6-12) mm (b) Gravel (2-6) mm (c) Separated Fines
Figure 3-7: (a) Mix of Soil, (b) Soil Mixing
Figure 3-8: Use of Block Making Machine for CSEB Production
Figure 3-9: Cast Blocks and Compressive Test Procedure
Figure 3-10: Immersing of Blocks in Water
Figure 3-11: Accelerated Erosion Test Setup60
Figure 3-12: Wetting Expansion and Drying Shrinkage Measurements
Figure 3-13: Industrial Scaled Block
Figure 3-14: Use of Amsler Testing Machine for Compressive Strength Testing63
Figure 3-15: Preparation of Clay Mix for Roof Tiles Production
Figure 3-16: Tiles Immersed in Water

Figure 3-17: Transverse Strength Testing of Tiles	67
Figure 3-18: Clay Brick Making Process	68
Figure 3-19: Wooden Mould for Brick Making	69
Figure 3-20: Prepared Bricks with Wooden Mould	69
Figure 3-21: Burning of Bricks in the Furnace	70
Figure 3-22: Burnt Brick	70
Figure 3-23: Wire-cut bricks with fly ash	71
Figure 3-24: Summary of Tests for Clay Bricks	72
Figure 3-25: Preparation of Bricks for Compressive Test	73
Figure 3-26: Testing of Bricks for Compression Strength	73
Figure 3-27: Testing of Bricks for Flexural Strength	74
Figure 3-28: Schematic Diagram for the Testing of Strength Properties of bricks	74
Figure 3-29: Testing of Efflorescence of Bricks	76
Figure 4-1: Jar Test Procedure	78
Figure 4-2: Change of Sedimentation with Time and Number of Washing Cycle	80
Figure 4-3: Amount of Sedimentation after 30 Minutes for Different Washing	81
Figure 4-4: Gravel Part of Soil after Three Consecutive Washings	82
Figure 4-5: Comparison of Particle Distribution of Used soil with Theoretical	
Distribution	85
Figure 4-6: Compressive Strength Behaviour of CSEB with Varying Cement	
Content for S1 Soil	86
Figure 4-7: Particle Size Distribution of the Modified Soil in Comparison to Particle	le
Packing Models	89
Figure 4-8: 7 days Dry Compressive Strengths of CSEB with Modified Soil	90
Figure 4-9: 28 days Dry Compressive Strengths of CSEB with Modified Soil	91
Figure 4-10: 28-day Wet Compressive Strengths of CSEB with Modified Soil	93
Figure 4-11: Relationship between Dry Density and 28 days Dry Compressive	
Strength	97
Figure 4-12: Relationship between Water Absorption and 28 days Dry Compressiv	e
Strength	99
Figure 4-13: Erosion Test Results (a): Before testing, (b): After 15 minutes spray (c):
After 30 minutes spray, (d): After 45 minutes spray, (e): After 1 hour spray1	01

Figure 4-14: Particle Size Distribution of Fly Ash	104
Figure 4-15: Comparison of Particle Size Distribution	
Figure 4-16: 7 Days Compressive Strength Results of Soil Blocks with	Fly Ash 106
Figure 4-17: 28 Days Dry Compressive Strength Results of Soil Blocks	s with Fly Ash
	106
Figure 4-18: 28 Days Wet Compressive Strength Results of Soil Block	s with Fly
Ash	107
Figure 4-19: 28 Days Dry Compressive Strength of Blocks with Finer I	Replacement
Figure 4-20: (a) Sample Casting and (b) after 24 hours of Casting	112
Figure 4-21: Crack Control Test with Fly Ash Addition	113
Figure 4-22: XRD Pattern on Fly Ash	114
Figure 4-23: Variation of Linear Shrinkage with Fly Ash Content	115
Figure 4-24: Comparison of Particle Size Distribution of Market Clay a	and Extracted
Clay with 25% Fly Ash Addition	116
Figure 4-25: SEM images of clay (a), fly ash (b) and clay mix with fly	ash 20% (c),
25% (d), 30% (e), 40% (f), 50% (g)	118
Figure 4-26: Burnt Bricks with Different Fly Ash Contents	120
Figure 4-27: Dimension Variation of Burnt Bricks with Fly Ash	120
Figure 4-28: Compressive Strengths Variation of Burnt Bricks with Fly	Ash %122
Figure 4-29: Flexural Strengths Variation of Burnt Bricks with Fly Ash	n %122
Figure 4-30: Density Variation of Burnt Bricks with Different Fly Ash	%124
Figure 4-31: Water Absorption Variation of Burnt Bricks with Differen	nt Fly Ash %
Figure 4-32: Wire-Cut Bricks made with Extracted Clay and Fly ash	125

List of Tables

Table 2-1: Energy Emission Comparison between Different Types of Blocks
Table 2-2: Relationship of Compressive Strength and Clay Content as Presented by
Walker[7]
Table 2-3: Physical Characteristics of CSEB (SLS 1382; Part 1) 22
Table 2-4: Summary of Literature Review on Durability of CSEB 31
Table 2-5: Experimental Results by Fennis and Walvaren (2012) 36
Table 2-6: Chemical Composition of Fly Ash 38
Table 2-7: Specific Requirements of Clay Roof Tiles [128] 45
Table 2-8: Specific Requirements of Burnt clay Bricks [133]
Table 3-1: Mix Proportion for Block Casting
Table 4-1: Turbidity Level with Alum and Polymer
Table 4-2: Change of Turbidity with Time
Table 4-3: Change of Sedimentation with Time and Number of Washing
Table 4-4: Cumulative Sedimentation for Different Washing Time and Number of
Washing
Table 4-5: Finer Content of Soil with Consecutive Washing 82
Table 4-6: Atterberg limits and Specific Gravity of Soils 83
Table 4-7: Particle Size Distribution of Soils 83
Table 4-8: Blocks Properties with Different Soil Gradings
Table 4-9: Properties of CSEB with Varying Cement Content for S1 Soil
Table 4-10: Particle Size Distribution of S1 soil and Required Optimization Curve 87
Table 4-11: Amount of Particles of S1 Soil and Modified S1 Soil per 10 kg
Table 4-12: Relationship between 7 days and 28 days Compressive Strengths (%).91
Table 4-13: 28 days Dry Compressive Strengths Comparison with SLS 138292
Table 4-14: -28 days Wet Compressive Strengths Comparison with SLS 138294
Table 4-15: Wet/Dry Compressive Strength Ratio 94
Table 4-16: Dry Densities and Water Absorption of CSEB with Modified Soil96
Table 4-17: Correlation between Dry Density and Dry Compressive Strength98
Table 4-18: Correlation between Water Absorption and Dry Compressive Strength

Table 4-19: Wetting Expansion and Drying Shrinkage of CSEB	
Table 4-20: Properties of Industrial Scaled Blocks	
Table 4-21: Comparison of Compressive Strengths when Fly Ash as a Fi	ner and Silt
& Clay as a Finer	
Table 4-22: Comparison of Dry Density and Water Absorption when Fly	Ash as a
Finer and Silt & Clay as a Finer	110
Table 4-23: Summary of Compressive Strength Results	111
Table 4-24: Densities and Water Absorption Results	111
Table 4-25: Chemical Analysis of Fly Ash	
Table 4-26: Properties of Clay mixed with Fly Ash	
Table 4-27: Plasticity Types	115
Table 4-28: Comparison of Market Roof Tiles and Extracted Clay Roof	Files 117
Table 4-29: Dimension Variation of Bricks	119
Table 4-30: Compressive Strengths and Flexural Strengths of Bricks	
Table 4-31: Density and Water Absorption of Bricks	
Table 4-32: Properties of Wire-cut Bricks	
Table 5-1: Unit Cost of Resources Used for CSEB	
Table 5-2: Cost Analysis of CSEB with 10% Cement	
Table 5-3: Cost Analysis of CSEB with 8% Cement	
Table 5-4: Cost Analysis of CSEB with 6% Cement	
Table 5-5: Cost Analysis of CSEB with Fly Ash for 10% Cement	
Table 5-6: Cost Analysis of CSEB with Fly Ash for 8% Cement	
Table 5-7: Cost Analysis of CSEB with Fly Ash for 6% Cement	
Table 5-8: Summary of Cost Calculation for Soil Blocks	
Table 5-9: Cost of Burnt Bricks with Extracted Clay	134