DEVELOPMENT OF ADVANCED DESIGN CRITERIA FOR STRONGER LATTICE TOWERS

Adikari Mudiyanselage Lumbini Nadira Gunathilaka

(118061J)

Degree of Doctor of Philosophy

Department of Civil Engineering

University of Moratuwa

Sri Lanka

March 2021

DEVELOPMENT OF ADVANCED DESIGN CRITERIA FOR STRONGER LATTICE TOWERS

Adikari Mudiyanselage Lumbini Nadira Gunathilaka

(118061J)

Thesis submitted in partial fulfillment of the requirements for the degree Doctor of Philosophy of Engineering in Civil Engineering

Department of Civil Engineering

University of Moratuwa Sri Lanka

March 2021

Declaration of the candidate & Supervisors

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The above candidate has carried out research for the PhD thesis under our supervision.

Name of the supervisors: 1. Prof. M.T.R. Jayasinghe

2. Dr. C.S. Lewangamage

Signature of the supervisors: 1.

Date:

2.

Abstract

The key lateral loads acting on a freestanding telecommunication/broadcasting tower are due to wind effects though occasionally seismic forces also can act. Though earthquake design guidelines are well covered directly or indirectly in many tower designs standards, telecommunication/broadcasting towers in Sri Lanka and in Indian subcontinent are not specifically designed for earthquake induced forces. Therefore, a detailed study was undertaken to determine the probable structural performances that can be expected from commonly adopted Four leg and Three leg self supporting lattice towers. For this study, the earthquake levels that can be possibly expected in Sri Lanka and in the South Asian region have been considered.

A key parameter that can directly affect the seismic performance is subsoil conditions. Hence, a probable range of subsoil conditions have been considered in this study as certain subsoil conditions could amplify seismic waves under certain conditions. For a range of tower heights that are generally used, Response Spectrum analysis techniques have been used to assess the probable performance of lattice towers. An assessment was also made with equivalent static method to determine the applicability of it over a wide range of conditions.

One of the key observations has been that the earthquake induced stresses on key members of lattice towers could be of lower magnitude than due to effects of wind. The parameters that could affect the seismic behaviour of a lattice tower are the subsoil stratum and the natural period of vibration of the lattice tower.

The main finding of seismic analysis of lattice towers is that for the likely seismic hazard levels in Sri Lanka, key elements of towers will be subjected to much lower stress levels than induced by the winds of design magnitudes. However, if more severe earthquakes that could occur in the South Asian region are considered, there is a possibility for the earthquake induced forces to reach structurally significant levels. However, still such forces are less than the wind induced forces.

For both earthquake and wind induced lateral loads, one of the key elements that needs careful attention is the connection of the tower to the foundation through baseplates. Baseplates are crucial elements related to structural stability of self supporting lattice towers. It acts as the interface between the tower body and the foundation.

Due to structural characteristics of towers, uplift forces induced on baseplates govern the design of the baseplates. This is a rare case to occur on baseplate of buildings and other conventional structures. Hence, guidelines published in design codes and standard text books for design of baseplates are not really applicable for self-standing towers. This is a gray area that needs attention. Hence, an extensive study was carried out in this regard using Yield line theory to develop a design guideline. The developed theory was verified through a detailed experimental investigation and a finite element modeling using computer aided non liner modeling techniques. The formulae developed were modified for industrial applications considering all practical deviations which could not be addressed under fundamental theory using extensive parametric analyses carried out with the Finite Element models. The findings have been presented as design guidelines in the form of equations that can be used by structural design engineers undertaking free standing tower designs.

Keywords: Telecommunication towers, earthquakes, response spectrum analysis, baseplates, finite element analysis, design guidelines

Acknowledgments

While working as a Civil/structural engineer in a blue chip company of the country, carrying out PhD level research is always a challenging task. Hence, completion of this challenging task would not be possible without the helpful hand of many individuals.

First, I would like to express my sincere gratitude to my supervisors Prof. M.T.R. Jayasinghe and Dr. C.S. Lewanagamage, whose guidance had been immensely valuable throughout this period. Their guidance, encouragements and invaluable advices at all times became the driving forces throughout this journey. All other academic and non-academic staff (especially the staff of the structural testing laboratory) of Civil Engineering Department have helped me in many ways. I would like to express my gratitude to them.

My workplace superiors and colleagues at Sri Lanka Telecom PLC, especially Mr. N.S. Geethajan, who is my immediate superior, provide constant support in numerous ways.

My family is one of the main pillars of this whole process. My mother was always there throughout this long journey as a great adviser. My charming wife extended her fullest support over the years, being a part of my life. Though young sons did not like their father being too much attached to research, their affection helped me to keep my mindset balanced to carry out the worthy research. Well wishes of my parents in law were always with me during the whole work.

Finally, there is one outstanding person behind my whole successful journey even though he is not physically present now. It is his vision and passion that drove me to this peak. I dedicate this thesis to him, to my dear farther.

Content

	Page No
Declaration of the candidate & Supervisors	i
Abstract	ii
Acknowledgement	iv
Content	V
List of tables	viii
List of Figures	ix
List of Abbreviations	xiii
Chapter 1 : Introduction	
1.1 Background	1
1.1.1 Seismic effect on towers	2
1.1.2 Baseplate design of lattice towers	4
1.2 Objectives	5
1.3 Methodology	5
1.4 Significance and innovation of the research	6
1.5 Outline of the thesis	6
Chapter 2: Literature review	
2.1 Structural aspects of telecommunication/ broadcasting towers	8
2.1.1 Guy Masts	8
2.1.2 Monopoles	9
2.1.3 Poles with supporting struts	10
2.1.4 Self supporting lattice towers	11
2.2 Seismic effects on telecommunication/broadcasting towers	12
2.2.1 Seismic hazard levels in Sri Lanka and South Asia	
2.2.1.1 Seismic hazard levels in Sri Lanka	13
2.2.1.2 Seismic hazard levels in South Asia	17

	Page No.
2.2.2 Previous studies of seismic effects on telecommunication/	
broadcasting towers	19
2.2.3 Seismic analysis procedures in tower design codes	24
2.3 Wind data of Sri Lanka and South Asia	25
2.4 Base connections of towers	
2.4.1 Different type of connections	28
2.4.2 Failures of towers at base connection	30
2.4.3 Design code formulae for baseplate design	32
2.4.4 Present practice of baseplate design of transmission towers and	
research work on baseplates under uplift	33
2.5 Summary	38
Chapter 3: Seismic analysis of lattice telecommunication towers	
3.1 Seismic analysis procedure	40
3.1.1 Development of response spectrum curves	41
3.2 Seismic analysis of four leg and three leg towers under normal soil	
condition	
3.2.1 Analytical approach	44
3.2.2 Results and discussion	49
3.3 Seismic analysis of four leg and three leg towers under different sub	
soil conditions	
3.3.1 Analytical approach	58
3.3.2 Results and discussion	59
3.4 Summary	68
Chapter 4: Investigation on behaviour of lattice tower baseplates	
under uplift forces	
4.1 Structural behaviour of lattice tower baseplates	69
4.2 Yield line theory for tower baseplate subjected to uplift	70
4.3 Experimental Investigation	

Page 1	No.
--------	-----

4.3.1 Scope of investigation and test setup	75
4.3.2 Results of testing	79
4.3.3 Tensile testing of baseplate samples	81
4.4 Development of Finite element modeling for baseplates	
4.4.1 Introduction	82
4.4.2 Characteristics of Finite element models	83
4.4.3 Results of Finite element modeling and discussion	
4.4.3.1 Deflection data and deformation patterns	84
4.4.3.2 Strain data results	89
4.5 Summary	91
Chapter 5: Development of design formulae for lattice tower	
baseplates	
5.1 Characteristics of Actual tower baseplate	93
5.2 Parametric analysis	94
5.3 Results and discussion	96
5.4 Simplification of developed formulae for design applications	101
5.5 Summary	
Chapter 6: Conclusion and recommendations	
6.1 Conclusion	107
6.2 Recommendations	110
References	111
Annexure 1 – Drawings of towers	
1. 30m Four leg tower drawing	117
2. 50m Four leg tower drawings	118
3. 80m Four leg tower drawings	129
4. 30m Three leg tower drawing	136
5. 45m Three leg tower drawing	137
6. 60m Three leg tower drawing	138

List of tables

	Page No.
2.1 PGA values for Sri Lanka (Dananjaya et al, 2014)	16
2.2 PGA values of cities of South Asia given in design codes	18
2.3 Design wind speed of Sri Lanka (Design of buildings for high winds, Sri Lanka ,1980)	26
2.4 Basic design wind speed for zones proposed by Maduranaga Lewanagamage, 2018	& 27
2.5 Design wind data in South Asian countries	28
2.6 Present design theory of baseplate subjected to uplift	35
3.1 Height limitations of analysis procedures (ANSI/TIA-222-G-	-2005) 41
3.2 Details of soil conditions	44
3.3 Design details of considered towers	45
3.4 Seismic parameters considered for development of Response	;
Spectrum Curves	46
3.5 Considered wind speed data	47
3.6 Natural period of vibrations of 1 st modes of towers	66
4.1 Details of parametric analysis	75
4.2 Actual dimensions of samples	76
5.1 Data set of actual baseplates selected for parametric study	95
5.2 Results of parametric analysis	97
5.3 Variation of v1 of developed formula and liner equation with	n r/b 103
5.4 Variation of v2 of developed formula and liner equation with	n r/b 105

List of Figures

Pag	e No.
1.1 Deformation of Tokyo tower due to earthquake 2011 (www.Jurilog.jp)	03
1.2 A tower reported to be collapsed in Pandang earthquake 2009,	
Indonesia (Razak, 2015)	03
1.3 Typical tower baseplate	04
1.4 Failed power transmission tower at Washington, USA	
(Eidiger and Kemper, 2012)	05
2.1 A typical Guy mast (at Anamaduwa SLT premises)	08
2.2 A typical monopole at Jaffna	09
2.3 A typical pole with supporting struts (SLT rooftop tower at Galle) 10
2.4 A typical self supporting tower (at Kilinochchi SLT premise)	11
2.5Collapse self supporting tower at Hambantota, Sri Lanka in 2004 Tsunami (www.hikenew.net)	12
2.6 Earthquakes reported in and around Sri Lanka (Peiris, 2007)	14
2.7 Zonal distribution of PGA values for Sri Lanka (Dananjaya et al, 2014)	16
2.8 Tectonic plate map of South Asia (www.geologyin.com)	17
2.9 Global seismic hazard map relevant to South Asia prepared by GSHAP (www.gfz-postdam.den/en/GSHAP)	18
2.10 Schematic representation of the method developed by Khedr, 1999)	23
2.11 Design wind zones of Sri Lanka (Design of buildings for high winds, Sri Lanka, 1980)	26
2.12 Wind loading zones proposed by Maduranaga & Lewanagamage, 2018	27
2.13 Base connection of towers	29
2.14 Main forces at Base connection	30
2.15 A failed power transmission tower at Washington, USA (Eidiger and Kemper, 2012)	30

2.16 A Collapsed directly embedded power transmission tower of 765 KV Anta-Phagis S/C line in India (Standing Committee report on Failures of tower, CEA, India, 2016)	31
2.17 Failed PG & E electrical transmission tower located in Moss Landing, CA, 2015 (Brian and Rayan, 2015)	31
2.18 Baseplates of Extra High Voltage (EHV) transmission towers	
(Liu et al, 2018)	37
2.19 Design formula for rigid EBBP connections (Liu et al, 2018)	37
2.20 Design formula for flexible EBBP connections (Liu et al, 2018)	38
3.1 Response spectrum curve given in with ANSI/TIA-222-G with relevant parameters	42
3.2 Response spectrum curves under soil Class C	46
3.3 Locations were maximum leg member forces were reported	49
3.4 Compressive and Tensile force in leg members under seismic loading with soil class C in Four leg towers	50
3.5 Compressive and Tensile force in leg members under wind loading &seismic loading with soil class C in Four leg towers	51
3.6 Compressive and Uplift reactions under seismic loading with soil class C in Four leg towers	52
3.7 Compressive and Uplift reactions under wind & seismic loading with soil class C in Four leg towers	52
3.8 Ultimate deflection under wind and seismic loading with soil class C in Four leg towers	53
3.9 Compressive and Tensile force in leg members under seismic loading with soil class C in Three leg towers	54
3.10 Compressive and Tensile force in leg members under wind & seismic loading with soil class C in Three leg towers	54
3.11 Variation of self-weight of towers	55
3.12 Compressive and Uplift reactions under seismic loading with soil class C in Three leg towers	56
3.13 Compressive and Uplift reactions under wind & seismic loading with soil class C in Three leg towers	56

3.14 Ultimate deflection under wind and seismic loading with soil class C in Three leg towers	57
3.15 Response Spectrum curves under different sub soil conditions	58
3.16 Base shear and Base Moment under wind and seismic loading in Four leg towers3.17 Base shear and Base Moment under wind and seismic loading	60
in Three leg towers	61
3.18 Base shear and Base Moment variations under different sub soil conditions of Four leg towers	63
3.19 Base shear and Base Moment variations under different sub soil conditions of Three leg towers	64
3.20 Typical Responses under different mode shapes	65
3.21 Response spectrum curves with natural periods of vibration of first modes of selected towers	67
4.1 Typical baseplate of a lattice tower	70
4.2 Three (03) selected yield line patterns for detail analysis	71
4.3 Typical test sample	76
4.4 Locations of transducer and strain gauges on test samples	77
4.5 Physical setup with pulling mechanism and Data logger	78
4.6 Deflection curves as per data measured by transducer	79
4.7 Curves developed based on data recorded from the strain gauge	80
4.8 Deformed samples at the end of test	81
4.9 Stress - strain curve of tensile testing	82
4.10 Three dimensional view of the numerical model developed in SAP 2000	84
4.11 Three dimensional view of the numerical model developed in ABAQUS	85
4.12 Three dimensional view of the numerical model developed in ABAQUS with element mesh	86
4.13 Top most point of SAP2000 and ABAQUS models	86
4.14 Nodal displacements of top most points of SAP2000 and ABAQUS models	86

4.15 Deflection results of physical tests and numerical analyses	87
4.16Comparison of deformation results in graphical form	88
4.17 Strain results of physical tests and numerical analyses relevant to the strain gauge	89
4.18Yield contours in ABAQUS and governing yield line pattern	
identified	90
4.19 Yield contours in SAP2000 and governing yield line pattern	
identified	91
5.1 Typical view of a tower baseplate	93
5.2 Stress contours of actual tower baseplate modelled in SAP2000	94
5.3 Vertical deflection curves of Case no.05	96
5.4 Variation of YS/YF and YA/YF against r/b ratios of baseplates	99
5.5 Variation of YS/YF and YA/YF against r/b ratios of baseplates	
when r/b>0.25	99
5.6 Screenshot of developed Microsoft excel spreadsheet to calculate	
Baseplate thickness	101
5.7 Variation of v1 of developed formula and linear equation with	
r/b in graphical form	104
5.8 Variation of v2 of developed formula and linear equation with	
r/b in graphical form	105

List of Abbreviations

Abbreviation	Meaning
4G	Fourth generation of broadband cellular network technology
5G	Fifth generation of broadband cellular network technology
ANSI	American National Standards Institute
BNBC	Bangladesh National Building Code
BS	British Standards
GDP	Gross domestic product
EHV	Extra High Voltage
GSHAP	Global Seismic Hazard Assessment Programme
GSM	Global System for Mobile Communications
GSMB	Geology Survey and Mining Bureau of Sri Lanka
IS	Indian Standards
LTE	Long-Term Evolution
NBC	National Building Code of Nepal
MMI VIII	Modified Mercalli intensity scale 8
PGA	Peak Ground Acceleration
PSHA	Probabilistic Seismic Hazard Assessment
SODF	Single Degree of Freedom
SPT	Standard Penetration Test
SRSS	Square Root Sum of Squares
TRCSL	Telecommunication Regulatory Commission of Sri Lanka
TIA	Telecommunications Industry Association