Framework for Adaptive Human-Robot Interaction Initiation for Domestic Environments

Hewa Pelendage Chapa Sirithunge

(168060C)

Degree of Doctor of Philosophy

Department of Electrical Engineering

University of Moratuwa Sri Lanka

December 2020

Framework for Adaptive Human-Robot Interaction Initiation for Domestic Environments

Hewa Pelendage Chapa Sirithunge

(168060C)

Thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical Engineering

Department of Electrical Engineering

University of Moratuwa Sri Lanka

December 2020

DECLARATION

I declare that this is my own work and this dissertation does not incorporate any material previously submitted for a degree or diploma in any other university or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgment is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The above candidate has conducted research for the PhD thesis under my supervision.

Signature of the Supervisor(s):

Date:

Prof. A.G. Buddhika P. Jayasekara

DEDICATION

To my beloved family and all the people who strive hard to make the world better than today

Abstract

Intelligent robot companions contribute significantly in improving living standards in the modern society. Therefore human-like decision making skills and perception are sought after during the design of such robots. On the one hand, such features enable a robot to be easily handled by a non-expert human user. On the other hand, the robot will have the capability of dealing with humans without causing any disturbance by the its behavior. Mimicking human emotional intelligence is one of the best and reasonable ways of laying the foundation for such an emotional intelligence in robots. As robots are widely deployed in social environments today, perception of the situation or the intentions of a user prior to an interaction is required in order to be proactive. Proactive robots are required to understand what is communicated by the human body language prior to approaching a human. Social constraints in an interaction could be demolished by this assessment in this regard.

This thesis addresses the problem of perceiving nonverbals in human behavior and fusing human-environment semantic representations with a robot's cognition before interacting with humans. The novelty lies in laying the background to relate nonverbal human behavior and the features of the environment to generate context-aware interactive responses during robot-initiated interaction. That informs the robot about its environment. Toward this end, we introduce novel methods of perceiving human nonverbals and spatial factors in the environment which make up a context in which we integrated that knowledge to determine appropriate responses from a robot to assist its user. Visual information acquired by a vision sensor was analyzed, and the level of emotional engagement demanded by the user's nonverbals was evaluated, before a robot initiates an interaction. After such an analysis, a robot's conversational and proxemic behavior was adjusted to maintain an empathetic relationship between the user and the robot. Our algorithms efficiently sustained the empathy between user and robot so that the interaction resembles human-human interaction to a larger extent. To assist the main problem, we formulated novel methods to recognize human nonverbals such as postures, gestures, hand poses, psychophysiological behavior of humans and human activities, and decode the emotional hints displayed to the outside world. In support of this work, we conducted a series of human studies to explore the patterns in human behavior which could be perceived by a proactive robot using its cognitive capabilities.

We introduce separate systems which can decode the sentiments of humans using observable cues based on accepted social norms. We detail the meanings of human nonverbals by observing human behavior over time and evaluating the context for any patterns in behavior. Ambiguities in human behavior and random, meaningless behaviors could be omitted through this approach. This approach further omits the negative effect of human responses that can be faked, such as facial expressions and words. Finally we introduce an adaptive approach towards robot-initiated human-robot interaction by letting a robot observe a context and generate responses while changing its responses continuously as human behavior changes. We first developed algorithms based on a limited number of observable human cues and decoded their sentiments based on modern psycho-physiological interpretations of human behavior. Next, we expanded such approaches towards multiple observable human cues. Finally we integrated observations from the human and the environment which create the context during HRI (Human-Robot Interaction). Hence we integrated all the recognition approaches to perceive a complete scenario which comprises the user, robot and the environment.

Upon unimodal systems to identify these features independently, we propose a multi modal approach to evaluate above features together to understand a scenario. Through this approach, we took an effort to make proactive behavior of a social robot more instinctive, ethical and socially acceptable or simply, humanlike. We evaluate this approach by means of physical experiments in simulated social and domestic environments and demonstrate its performance in appropriate occasions as determined by a robot according to the formulated criteria of perceiving a context.

Keywords- Nonverbal behavior, Interaction initiation, Proactive robots, Social Human-robot Interaction

ACKNOWLEDGMENT

It is with great pleasure that I acknowledge the support and contribution of all the mentors and colleagues who assisted me in successfully completing my PhD thesis.

First I would like to express my sincere gratitude to my advisor Dr. Buddhika Jayasekara. It was a privilege to work under his guidance and I thank him for his support, encouragement and patience. Without his tireless efforts, this thesis would never have been accomplished. Also I would like to extend my gratitude to my progress review panel, Prof. Ruwan Gopura and Dr. Chandima Pathirana for their insightful comments and helpful suggestions. I specially acknowledge the efforts put by the thesis examination panel.

Furthermore I would like to thank the following people who helped me undertake this research.

- Arjuna Srimal, Sajila Wickramaratne and the members of Intelligent Service Robotics Group (ISRG), especially Gayashan Porawagamage, Viraj Muthugala, Sahan Kodikara, and Ravindu Bandara, Department of Electrical Engineering, University of Moratuwa.

- My parents and Nikolas Dahn for their kind support and patience through out the journey.

- Dear teachers and my dear friends who set me off on the road to this PhD a long time ago should accept my sincere gratitude.

- The staff of the Robotics and Automation Laboratory in the Department of Electrical Engineering -People who were generous with their time and effort in participating in experiments related to research.

- The staff and my friends in the department of Electrical Engineering for their immense support.

- My family, my friends, numerous to mention, and everybody who were with me in making this endeavor a success.

This work was partially supported by the University of Moratuwa Senate Research Grants SRC/CAP/17/03 and SRC/LT/2018/20. Furthermore, some of the publications originated from this thesis were partially supported by travel grants awarded by the National Science Foundation of Sri Lanka, IEEE Robotics and Automation Society and European Association for Artificial Intelligence.

TABLE OF CONTENTS

_

Declaration			i	
Dedication		:	ii	
Abstract		i	ii	
Acknowledgments			v	
Table of Contents		xi	ii	
List of Figures	List of Figures x			
List of Tables			1	
1 Introduction			1	
1.1 Development of assistive robots			1	
1.2 Building Attentive Robots			5	
1.2.1 Study of human behavior			5	
1.2.2 "Meet, Perceive and Act"			7	
1.2.3 Multimodal perception			7	

	1.3	Proble	em Statement	8
	1.4	Thesis	Contributions	8
		1.4.1	Identifying observable human behavior	8
		1.4.2	Recognizing components embodied in a context	9
		1.4.3	Decoding nonverbals to interpret user situation	10
		1.4.4	Adapting to a situation	11
	1.5	Thesis	Overview	11
2	Lite	erature	Review	13
	2.1	Nonve	rbal Interaction during HRI	13
		2.1.1	Features to observe	14
		2.1.2	Earlier Approaches	15
		2.1.3	Modern Developments	17
		2.1.4	Systems with Adaptive Perception of Situation based on	
			Human Cues	19
	2.2	Outloo	ok	26
3	Sys	tem D	esign	28
	3.1	Extrac	cting information	28
	3.2	Robot	Platform	28
	3.3	Overv	iew of the system	29

4 Study of Human Behavior

	4.1	Study	1: Human Interest towards Robot Initiated Human-Robot	
		Intera	$\operatorname{ction} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	33
		4.1.1	Monitoring Human Behavior	33
		4.1.2	Results of the experiment	35
		4.1.3	Observations and Discussion	38
	4.2	Study	2: Conversational Preferences in Social Human-Robot	
		Intera	ction	41
		4.2.1	Setting	42
		4.2.2	Results and discussion	46
		4.2.3	Observations and Discussion	49
		4.2.4	Conclusions and Implications	52
	4.3	Study	3: Human Gaze Behavior	54
		4.3.1	Understanding Human Behavior: Evaluate Attention	54
		4.3.2	Time scales of human actions	54
		4.3.3	Monitoring Gaze Behavior	55
		4.3.4	Results of the experiments and Discussion	57
		4.3.5	Finding Answers to previous questions	64
5	Rec	ogniti	on of nonverbals	66
		_		
	5.1	Psych	ophysiological Aspects of Human Behavior	66

	5.1.1	Simple Human Activities	66
	5.1.2	Criteria used to analyze activity space	67
	5.1.3	Analyzing Extracted Information	69
	5.1.4	Decision Evaluation	70
5.2	Hand	pose	75
	5.2.1	Recognizing hand pose	75
	5.2.2	Experiment and results	79
5.3	Pose r	ecognition and robot-initiated interaction	81
	5.3.1	Interpretation of Fuzzy Information	85
5.4	Interp	preting movements of the body	90
	5.4.1	Measuring Behavioral Responses	90
	5.4.2	Observable Nonverbal Human Behavior	91
	5.4.3	Decision Making Criteria	93
	5.4.4	Monitoring Human Behavior	95
	5.4.5	Experiment 1	98
	5.4.6	Experiment 2	98
	5.4.7	User Responses Towards Robot	99
5.5	Recog	nition of Hand and Body Pose	103
	5.5.1	Changes in Behavior	106
	5.5.2	Mechanism used to differentiate postures	108

	5.5.3	Behavior Evaluation Model	113
	5.5.4	Posture based Interaction Decision Making	114
	5.5.5	Valence of a situation	115
	5.5.6	Decision-making in dynamic user behavior	117
	5.5.7	Experiment and Results	118
	5.5.8	Results and Discussion	122
5.6	Recog	nition of complex human activities	127
	5.6.1	Robot, user and the context	127
	5.6.2	Features of an activity	131
	5.6.3	Recognition of activities	132
	5.6.4	Learning new activities	135
	5.6.5	Experiment and Results	137
	5.6.6	Setting	137
	5.6.7	Results	139
	5.6.8	Conclusion	144
Dec	coding	nonverbals and Modelling User Behavior	145
6.1	Identi	fication of Gaze	145
	6.1.1	Determination of Gaze direction and Gaze time	146
	6.1.2	Return of Gaze	146

6

	6.2	dentification of Friendly Gestures
	6.3	Identification of Changes in Pose
		5.3.1 Evaluation of attention
		5.3.2 Interpretation of Fuzzy Parameters
		5.3.3 Decision Making
		5.3.4 Experiment and Results
		$5.3.5$ Conclusions \ldots 156
7	Det	rmining Robot's Proactive Behaviors: Proxemics 157
	7.1	Probabilistic analysis
	7.2	Decision making criteria
	7.3	Results and Discussion
		7.3.1 Observations and discussion
		7.3.2 Conclusions $\ldots \ldots 167$
8	Mo	eling a context: Autoregressive Model 168
U	1110	
	8.1	Level of Interest
	8.2	AR model to calculate LOI
	8.3	Decision making criteria
	8.4	Results and Discussion
	8.5	Observations and Discussion

8.6	Concl	usions	. 180
9 A	Social 1	Robot with Experience and Learning	181
	9.0.1	Semantic Mapping of the features	. 183
	9.0.2	Robot behavior	. 184
	9.0.3	Selection of participants and creating training data	. 184
9.1	Concl	usions	. 187
10 Co	nclusio	ns	189
10.	1 Implie	cations for Theory	. 193
10.	2 Implie	cations for Design	. 195
10.	3 Consi	derations for future	. 196

References

LIST OF FIGURES

1.1	An example of a cooking robot	2
1.2	An airport cleaning robot	2
1.3	Example scenarios where the required level of situation-awareness differs.	4
1.4	An example domestic environment is shown.	10
1.5	Different types of settings and components associated with HRI $$.	11
3.1	Hardware setup used in experiments	29
3.2	Overall system	31
4.1	Poses used as behavioral changes	36
4.2	An example scenario during the experiment	36
4.3	A comparison of the types of behavioral changes observed during a relaxing task	38
4.4	A comparison of the types of behavioral changes observed while user was engaged	38
4.5	A typical conversation between the robot and its user	44
4.6	An example scenario during the experiment	47

4.7	A situation in which the user was having a drink	47
4.8	A stacked graph drawn for the comparison of conversational preferences with the two conditions; when the user is alone and when surrounded by few people	51
4.9	conversational preferences during the selected tasks while the domestic area and people in the surrounding were kept constant .	53
4.10	Phases in a typical encounter prior to an interaction	55
4.11	Two scenarios during the experiment	57
4.12	Existence or nonexistence of gaze during HHI is plotted against each user	58
4.13	The percentage (%) of encounters with any kind of gaze plotted againt each occasion	59
4.14	The average duration of existed gaze was plotted against the delay	59
4.15	The average delay of gaze was plotted against the occasion $\ . \ . \ .$	60
4.16	The delays of encounters where an averted gaze was present $\ .$.	60
4.17	The delays of encounters where a continued gaze was present	61
4.18	The delays of encounters where an averted gaze was present $\ . \ .$	62
4.19	Responses observed from users during HHI are plotted against each individual	63
5.1	Arrangement of activity zones near a person	67
5.2	Dimensions and joints used to separate zones	68
5.3	Approach of QASA	70

5.4	Various occasions tested with the 2 systems: ASA and OASA $\ .$	72
5.5	Boxplot from the results obtained for ASA and QASA $\ . \ . \ .$.	74
5.6	Criteria used to determine length, width and height of the mesh $% \mathcal{L}^{(n)}$.	76
5.7	The 3D mesh created out of the 'activity zones' established around a human	77
5.8	Utilization of zones during a certain gesture	77
5.9	The set of gestures used to recognize using the proposed approach	78
5.10	Depth images corresponding to the gestures from a-k $\ . \ . \ . \ .$	78
5.11	Types of Standing poses used in the experiment	82
5.12	Types of Sitting poses used in the experiment	82
5.13	Routes followed by robot during various situations	85
5.14	Input and output membership functions used to find the interaction demanding	86
5.15	An occasion with 'high' interaction demanding	88
5.16	An occasion with 'low' interaction demanding $\ . \ . \ . \ . \ .$.	89
5.17	Skeletals extracted from a standing and a seated person	92
5.18	Nonverbal behavioral responses observed during the experiment .	93
5.19	The decision grid	95
5.20	Two occasions from the experiment	99
5.21	Two occasions in which adaptive approach behavior was implemented	100

5.22	A comparison between the average feedback scores received for	
	direct approach and adaptive behavior	100
5.23	Two occasions from the experiment	102
5.24	Overview of the system	105
5.25	A set of body postures encountered daily	107
5.26	A set of arm postures encountered daily	107
5.27	Body angles derived from the limbic vectors of a person with	
	stretched hands	109
5.28	Limbic vectors of a seated person	109
5.29	Body angles derived from limb vectors of a seated person as in	
	Fig. 5.28	112
5.30	A semantic map illustrating the components that make valence;	
	hand and body poses	115
5.31	Marginal values chosen for the valence to determine appropriate	
	approach behavior of the robot	117
5.32	A comparison of the limbic arrangement for regular sitting posture	
	with different chairs	121
5.33	Two occasions during experiment 3	125
5.34	This box and whisker plot shows the mean values of feedback scores	
	received from users for the robot's proactive behavior with IDMM	
	and without IDMM	125
5.35	A semantic map which shows the co-relation between various	
	aspects of a human activity	128

5.36	Objects and aspects related to each semantic feature	129
5.37	The relationship between various steps involved in an activity $\ . \ .$	129
5.38	The decision flow of the approach during learning and recognizing activities.	130
5.39	Upper and lower limits of speeds related to each speed range $\ . \ .$	131
5.40	A typical conversation between the robot and its user while learning an activity	135
5.41	A map of the domestic area used for the study	137
5.42	Different occasions encountered during the experiment $\ldots \ldots$	140
5.43	Recognition accuracies of the 4 occasions considered in the experiments	143
5.44	Recognition accuracies when two occasions considered	143
6.1	Change of behavior encountered before and after approaching a human	148
6.2	Spatial vectors related to the body joints used to differentiate two poses	149
6.3	Input membership functions of the gaze parameters	150
6.4	Input membership functions of the gesture parameters	151
6.5	Output membership functions of each parameter	151
6.6	Output Membership Functions of second fuzzy evaluation	151
6.7	Rule Base to evaluate Gaze Level	152

6.8	Rule base for Attention level evaluation	152
6.9	Two occasions from a typical domestic environment $\ . \ . \ . \ .$	155
7.1	Approach of QASA	158
7.2	The top view of the HRI scenario	160
7.3	Distances marked considering maximum occupancy regions of the selected set of tasks	164
7.4	Two occasions encountered during PHN	165
7.5	This graph shows the mean values of feedback scores received from users for the robot's behavior in the three considered occasions	166
8.1	A semantic map which shows the co-relation between various aspects in human behavior	169
8.2	Features used as the inputs to the AR model are shown. \hdots	171
8.3	Marginal values to choose the <i>nature of conversation</i> and <i>proxemics</i> of the robot	173
8.4	Marginal values to choose the <i>orientation</i> of the robot	173
8.5	Values obtained for LOI_1 , LOI_2 and LOI_3 during ordinary situations encountered $\ldots \ldots \ldots$	175
8.6	Occasions involved during SEA	179
8.7	The mean values of feedback scores received from users for the acceptance of robot's behavior in three occasions	179
9.1	The action-state model	182

9.2	Decision flow of the robot platform	182
9.3	The interrelations of semantic features during the Observation	
	Plan and the Monitoring Plan	183
9.4	Observational parameters considered in the system for robot	
	decisioning. \ldots	184
9.5	Q-value test for 4 occasions while training	186
9.6	Q value tests for 3 occasions during training are shown. (The user	
	feedback scores plotted against each user	187

4.1	Results of the experiment	36
4.2	T-Test for the comparison among each situation: while relaxing and while engaged when the person initiating the interaction was the robot and another human.	37
4.3	Some of the tasks selected for the study	43
4.4	A comparison of conversational preferences by the type of interaction when the user was alone and when with few people around	46
4.5	ANOVA test for the comparison of percentage frequencies of each interaction type in each area of the social environment	48
4.6	t- Test for the comparison among each type of interaction when the user was alone and with few people around	49
4.7	ANOVA test for the comparison of the frequencies of each conversational preference during each task	52
4.8	T-test for the comparison of gaze parameters among HHI and HRI-week 3	64
5.1	Experiment results	73

5.2	Results of the experiment obtained for two occasions: while users were posing for the sensor and recognition accuracy of hand pose	
	while the users were seated.	80
5.3	Results of the experiment	87
5.4	An analysis of the confusion matrix generated from the results of experiment 2	102
5.5	Observations made through time	112
5.6	Valence assigned for each hand and body posture depending on the general interpretation of emotional state behind each posture	116
5.7	Results of experiment 01	119
5.8	Results of experiment 03	123
5.9	Observations made through time	141
6.1	Experiment Results	154
7.1	The set of zones and their corresponding probabilities of occupancy obtained for each task	161
7.2	Results of ten scenarios during the experiment and average feedback score received for each task	165
7.3	T-test for the comparison of user feedback scores in initial and final attempts	166
8.1	Calculated values based on observations	177
8.2	Results of the experiment	178