Development and Characterization of a Tactile Array Sensor for Parallel Grippers for Use in Object Manipulation

Don Lakmal Madushanka Weerasinghe

(178050F)

Degree of Master of Science by Research

Department of Mechanical Engineering

University of Moratuwa Sri Lanka

February 2020

Development and Characterization of a Tactile Array Sensor for Parallel Grippers for Use in Object Manipulation

Don Lakmal Madushanka Weerasinghe

(178050F)

Thesis submitted in partial fulfillment of the requirements for the degree Master of Science in Mechanical Engineering

Department of Mechanical Engineering

University of Moratuwa Sri Lanka

February 2020

DECLARATION

I hereby declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgment is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The above candidate has carried out research for the MSc thesis under my supervision.

Signature of the Supervisor(s): Date:

Dr. Damith Chathuranga Senior Lecturer Department of Mechanical Engineering University of Moratuwa

Abstract

Within the era of modern robotics, during research as well as in industry, it is often the case to build robots that can mimic human-object interaction closely. To accomplish this goal, excellence is required in many technological aspects, where one is tactile sensing. Tactile sensing is the ability of a system to measure information arising from physical interaction with its immediate environment. These include static & dynamic force/torque sensing, vibrations sensing and thermal sensing. To fulfill these requirements, numerous types of sensors have been developed, which include but not limited to piezoresistive sensors, piezoelectric sensors, capacitive sensors and hall effect based sensors.

With any of the above sensors, it is necessary to accomplish mainly three tasks; at least one, if not all. These include contact point localization, dynamic sensing and tactile force measurement. These functionalities play a crucial role when developing human like grasping and manipulation capabilities. However, many problems arise during the design and manufacturing of these sensors due to the complexity of design, cost and difficulties in practical implementation due to size.

In order to overcome these difficulties and fulfill the above mentioned requirements, this thesis presents a tactile gripper that has been developed based on hall effect. An array of magnets and hall sensors create a unique combination of outputs for each different deformation of the dual layered silicon elastomer which houses the magnets. While allowing the interaction with non-planar surfaces due to the compliant nature of the silicon material, the sensor also facilitates accurate force recognition and contact localization using sensor readings and geometric properties of the silicon layer.

This tactile gripper can be used for object manipulation and many other forms of tactile sensing requirements with necessary modifications. Several experiments have been carried out to test and validate the operation of the sensor with successful results.

This thesis aims to provide the entire design and development of the sensor & gripper, experimentation process, results, limitations and possible future improvements to the reader with the expectation that this development will aid current research in research community and industry. The end goal is to contribute to the process of developing tactile sensors which aids the progression of robotics technology that plays a crucial role in modern scientific advancement.

Keywords-parallel gripper, hall sensor array, flexible silicon elastomer, tactile force sensing

DEDICATION

This dissertation is dedicated to my parents, to whom I can trace my every success to.

ACKNOWLEDGMENTS

First and foremost I offer my sincerest gratitude to my supervisor, Dr. Damith Chathuranga, who has given me the opportunity to follow my M.Sc. in University of Moratuwa and who supported me throughout my thesis with his patience and knowledge whilst allowing me the room to work in my own way. I attribute the level of my Masters Degree to his encouragement and effort and without him this thesis too, would not have been completed or written. One simply could not wish for a better or friendlier supervisor.

Besides my supervisor, I would like to thank Mr. Asitha Kulasekara, my progress review committee: Dr. Buddhika Jayasekara, Dr. Manoj Ranaweera for their insightful comments and encouragement and for the hard questions they have asked which encouraged me to widen my research from various perspectives.

Special gratitude must be given to my lab members in Computational Sensing and Smart Machines Laboratory, Department of Mechanical Engineering; Chanaka Prasad, Rancimal Binoy and to members of Bionics Laboratory, Department of Mechanical Engineering; Sanka Chandrasiri, Isuru Ruhunage and Achintha Mihiran. Gratitude must also be given to the staff of the Machine Workshop in Department of Mechanical Engineering and Mr. Janaka Mangala, Mr. Janath Priyankara at the Die and Mold Center of Department of Mechanical Engineering.

Finally, I thank my wife and parents for supporting me throughout this study at University.

TABLE OF CONTENTS

Declaration		i
$\mathbf{Abstract}$		ii
Dedication		iii
Acknowledgr	nents	iv
Table of Con	tents	viii
List of Figure	es	xiii
List of Table	S	xiv
Abbreviation	IS	xv
1 Introduct	ion	2
1.0.1	Objectives of the Thesis	. 3
1.0.2	Contributions of the Thesis	. 4
1.0.3	Thesis Overview	. 4

2 Literature Review

	2.1	Capacitive Tactile Sensors	7
	2.2	Magnetic Sensors	6
		2.2.1 Hall Effect	6
		2.2.2 GMI (Giant magneto impedance)	8
		2.2.3 Electromagnetic Induction	9
	2.3	Optical Tactile Sensors	3
	2.4	Piezoelectric Tactile Sensors	7
	2.5	Piezoresistive Tactile Sensors	0
	2.6	Tactile Super-resolution 3	4
	2.7	Grippers	6
		2.7.1 Classification of grippers	6
		2.7.2 Grippers used in known environments	8
		2.7.3 Grippers used in unknown environments	9
	2.8	Research Gap	9
	2.9	Proposed Characteristics of the Tactile Sensor	0
3	Des	ign of the proposed tactile sensor array 4	1
	3.1	Application of Transduction Principle	1
	3.2	Design Criteria	3

		3.2.1	Elastomer	43
		3.2.2	Magnet Array	50
		3.2.3	Hall Sensor Array	54
		3.2.4	Aluminum Container	56
		3.2.5	Design of the Amplifier	57
		3.2.6	Signal Analysis and Processing	63
	3.3	Design	of the Parallel Jaw Gripper	72
	3.4	Hardw	vare Setup	72
4	Cha	racter	ization of the sensor array	76
	4.1	Calibr	ation Setup	76
	4.2	Exper	imentation Procedure	78
		4.2.1	Displacement Step Method	80
		4.2.2	Force Step Method	80
	4.3	Analys	sis	87
	4.4	Drift a	and Noise Characteristics	88
	4.5	Super-	$resolution \ldots \ldots$	92
5	Con	clusio	n and Future Directions	97
	5.1	Conclu	nsion	97
	5.2	Future	e Directions	98

Bibliography

100

114

Α	Appendix		115

A.1 Firmware of Sensor - Data Acquisition & Processing: Teensy 3.6 . 115

LIST OF FIGURES

2.1	Textile based capacitive tactile sensor developed by Sergio et al	9
2.2	CMOS Micromachined Capacitive Tactile Sensor developed by Ko	
	et al	10
2.3	Tactile fingertip developed by Schmitz et al	11
2.4	Shear force sensing capacitive tactile sensor designed by Shashank	
	et al	12
2.5	Prototype board with above sensor implemented	12
2.6	Parallel plate capacitor with onion epidermal cells as the dielectric	
	layer by Chen et al	13
2.7	3D force sensing tactile sensor developed by Dobrzynska et al. $$.	14
2.8	3D force sensing tactile sensor developed by Liang et al	14
2.9	3D force sensing tactile sensor developed by Charalambides et al.	15
2.10	Basic principle behind hall effect based tactile sensors	16
2.11	Robotic hand with the sensor developed by Kyberd et al	17
2.12	Flexible tactile sensor developed by Jamone et al	18
2.13	Hall effect based sensors fixed on fingertips and phalanges by Paulino	
	et al	18

2.14	The nanocomposite based cilia tactile sensor	19
2.15	Multi-functional sensor developed by Li et al	20
2.16	Tactile sensor with a LC filter developed by Futai et al	21
2.17	CMC based tactile sensor developed by Chen et al	21
2.18	Tactile sensor with fingerprint shaped surface developed by Chen et al	22
2.19	Electro-magnetic induction based tactile sensor for 3D force mea- surement developed by Takenawa et al	23
2.20	Electro-magnetic induction based tactile sensor with sandwiched layers developed by Wattanasarn et al	23
2.21	Optical tactile sensor developed using conical feelers method by Ohka et al	24
2.22	Optical tactile sensor for underwater applications developed by Tan et al	25
2.23	Three axis optical tactile sensor developed by Kobayashi et al	26
2.24	Optical tactile sensor array developed by Xie et al	26
2.25	Optical tactile sensor with rod structure developed by Ahmadi et al.	27
2.26	MEMS based 3D force sensor developed by Kim et al	28
2.27	Piezoelectric tactile sensor for MIS developed by Sokhanvar et al.	28
2.28	Bio-mimetic piezoelectric tactile sensor array developed by Wettels et al	29
2.29	Piezoelectric tactile sensor array developed by Liu et al	29

2.30	Flexible piezoelectric transducer array developed by Seminara et al.	30
2.31	Three axis tactile sensor developed by Wen et al Sensing Beam	31
2.32	Three axis tactile sensor developed by Wen et al Sectional Views	32
2.33	CNT–PDMS composite-based tactile sensor developed by Pyo et al.	33
2.34	Modular tactile sensor developed by Schurmann et al	33
2.35	Force Sensing Resistor array developed by Heever et al	34
2.36	Capacitive tactile sensor array developed by Lepora et al	35
2.37	Super resolution based applications of the above sensor $\ . \ . \ .$	35
2.38	2-jaw and 3-jaw Grippers	37
2.39	4DOF sensorised surgical forceps for MIS developed by Kim et al.	39
3.1	Basic design of the proposed tactile sensor	42
3.2	Exploded view of the sensor	44
3.3	3D Model of Outer Layer	46
3.4	3D model of Intermediate layer	47
3.5	3D Model of Inner Layer	48
3.6	Exploded view of the elastomer	48
3.7	Sectional view of the elastomer	49
3.8	3D Model of the mold for outer layer	49
3.9	3D Model of the mold for intermediate layer	50
3.10	3D Model of the mold for inner layer	51

3.11	Steps in developing the elastomer	51
3.12	3D Model of the simulated setup	52
3.13	Simulation Results-no load	53
3.14	Simulation Results–full load	54
3.15	ss39et sensor in SOT-23 package	55
3.16	Circuit for one hall sensor	56
3.17	Hall sensor array	56
3.18	Exploded view of the complete construction	58
3.19	Typical arrangement for a Differential Operational Amplifier	60
3.20	Op-Amp circuit for one hall sensor	61
3.21	Op-Amp Array for Tactile Sensor	62
3.22	Signal output waveforms from sensor	65
3.23	FFT for hall sensor output	66
3.24	Filtered signal from sensor output	69
3.25	Parallel Jaw Gripper - Assembled View	72
3.26	Parallel Jaw Gripper - Exploded View	73
3.27	Hardware setup	74
3.28	The complete experimental setup	75
4.1	A taxel	77
4.2	Universal Testing System	78

4.3	Tactile Sensor fixed to the Universal Testing Machine	79
4.4	Using the Universal Testing Machine to Characterize the Tactile Sensor	81
4.5	Sensor Reading, Load Cell Reading vs. Time: Displacement Step Method	82
4.6	Sensor Reading, Load Cell Reading vs. Time: Force Step Method	83
4.7	Sensor Reading vs. Load Cell Reading: Displacement Step Method	84
4.8	Sensor Reading vs. Load Cell Reading: Force Step Method	85
4.9	Generalized Characterization for the Sensor	86
4.10	Acquisition and Recording of Data	87
4.11	Sensor Drift - No load	91
4.12	Sensor Drift - 0.5N Force	92
4.13	Actual location of contact vs. Gap between taxels	93
4.14	Tactile image	94
4.15	Graphical User Interface	96

LIST OF TABLES

2.1	Properties of the mechanoreceptive afferents of glabrous skin of the	
	human hand	7
2.2	Transduction techniques and their relative advantages and disad-	
	vantages	8
4.1	Tactile Sensor: Hysteresis values of each taxel	89
4.2	Tactile Sensor: R-Squared values of regression lines	89
4.3	Coefficients list for the quadratic regression functions obtained for	
	loading and unloading phases of displacement step method $\ . \ . \ .$	90
4.4	Coefficients list for the quadratic regression functions obtained for	
	loading and unloading phases of force step method	90
4.5	Hysteresis and R-Squared values calculated from the mean of all	
	data	91
4.6	Coefficients of the quadratic regression function obtained using the	
	mean of all data	91

LIST OF ABBREVIATIONS

- **CNC** Computer Numerical Control
- $\mathbf{D}\mathbf{C}$ Direct Current
- Vdc DC Voltage
- **PDMS** Polydimethylsiloxane
- ${\bf CNT}\,$ Carbon Nano Tubes
- \mathbf{EMI} Electromagnetic Induction
- **EMF** Electromotive Force
- **PVDF** Polyvinylidene fluoride
- **PVDF-TrFE** poly[vinylidenefluoride-co-trifluoroethylene]
- **CCD** Charge-Coupled Device
- CMOS Complementary Metal-Oxide-Semiconductor
- **SEM** Scanning Electron Microscope
- **CMC** Carbon Micro Coils
- **MIS** Minimally Invasive Surgery
- ${\bf FFT}\,$ Fast Fourier Transform
- **SNR** Signal-to-Noise Ratio
- CoG Center of Gravity

$\mathbf{PCB}\,$ Printed Circuit Board

- **IC** Integrated Circuit
- ${\bf SOT}\,$ Small Outline Transistor
- VCC Supply Voltage
- ${\bf GND}\,$ Ground Connection
- **SIL** Single in Line
- **THT** Through Hole Technology
- **SMT** Surface Mount Technology
- ${\bf ADC}\,$ Analog to Digital Converter
- op-amp Operational Amplifier
- **EMA** Exponential Moving Average
- ${\bf RMSE}\,$ Root Mean Square Error
- **GUI** Graphical User Interface
- ${\bf USB}\,$ Universal Serial Bus