LB/DON/54/10

βò

Design of Thermo Forming Machine

A dissertation submitted to the Department of Chemical Engineering, University of Moratuwa in partial fulfillment of the requirements for the Degree of Master of Science.

> By LIBRARY ELIBRARY ELIBRARY MORATUWA, ELM LACELA MORATUWA H.A. Nuwan Rasanjana Hettiarachchi

Electronic Theses & Dissertations www.lib.mrt.ac.lk

> Supervised by: Dr. P.Y. Gunapala Dr. Olga Gunapala

66°08″ 66(043)

Department of Chemical Engineering University of Moratuwa, Sri Lanka

December 2008

93941

TH

93941

DECLARATION

The work submitted in this dissertation is the result of my own Investigation, except where otherwise stated.

It has not already been accepted for any degree, and is also not being Concurrently submitted for any other degree.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations UOM Verified Signature www.lib.mrt.ac.lk

27/07/2029 Date

<u>~</u> H.A. Nuwan Rasanjana Hettiarachchi

I endorse the declaration by the candidate.

UOM Verified Signature

Dr. Olga Gunapala

Acknowledgement

Thanks are due first to my supervisor, Dr. Olga Gunapala and Dr. P.Y. Gunapala, for his great insights and perspective guidance. My sincere thanks go to the officers in Post Graduate Office, Faculty of Engineering, University of Moratuwa, Sri Lanka for helping in various ways to clarify the things related to my academic works in time with excellent cooperation and guidance. Sincere gratitude is also extended to the people who serve in the Department of Chemical Engineering office.

Then I would like to thanks Mrs. Madhavi Attapattu, GM production and procurement Modernpack Lanka Pvt Ltd who give tremendous support through her 10 years experience in thermo forming.

Finally, I should thank many individuals. friends and colleagues who have not been mentioned here personally in making this educational process a success. May be I could not have made it without your supports.

Abstract of the study

An attempt has been made to design vacuum forming machine which is capable of producing "Small plant growing Horticultural HIPS tray" in a economical speed. these trays has high demand in all over the world's horticultural industry but used thermo-forming as a manufacturing process which tooling cost quite high compared with vacuum forming. at the same time small quantity of product not accepted by the manufactures and simple epoxy moulds and wood mould can't used in this thermoforming machine. at the same time European made thermoforming machine is high expensive compared with normal roll feed vacuum forming machines. so my aim was to design vacuum forming machine which is capable of producing this type of product at a economical way.

This research aimed to design most chical components of this vacuum forming machine with clear understanding of it's practical operational requirement. Basically heater oven ; vacuum www.lib.mrt.ac.lk system ; mold and plug moving system and mould design covered in this research.

High Impact Polystyrene (HIPS) used as the plastic material for this "Horticulture tray production" and this machine capable of using 0.8mm – 0.25mm thick HIPS and PP (polypropylene) sheets reels as input material. Pneumatically operated mould and plug moving system incorporated with chill water cooling jacket as a mould base for each and every mould used.

Electric Infra-red ceramic heaters used as the heating source for sheet heating. These heaters mounted on top and bottom ovens where sheet feeding through these two. Vane type vacuum pump selected according to match the vacuum requirement and this vacuum system consists of vacuum surge tank, vacuum line and operating solenoid valves.

e

Finally moulds were designed according to the product specifications which is more important to get final outcome through this machine. Aluminium alloy grade 5083 used as mould material and "Auto cad" design software used for 2D mould design and solid works for 3D mould design and CNC mould machining program generation.

Finally I come across this study which cover the most important area of vacuum forming machine design. The same time world reputed component manufactures standard product were selected for this machine according to the calculated values and practical requirements.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Contents

Declaration Abstract Acknowledgement List of figures	i ii iii iv
List of tables	v
Chapter 01: Introduction	1-4
1.1. Heating the sheet	2
1.2. Forming	3
1.3. Cooling	4
Chapter 02: Process Description	5-18
2.1. Introduction and historical review	5
2.1.1. Advantages and disadvantages	7
2.1.2. Parts made by thermoforming	8
2.2. Physical description of the process	9
2.2.1. Components of thermoforming	10
2.3. Material properties and hoe they relate to thermoforming	12
2.4. Thermoformable materials and types of thermoplastic isheet ka	14
2.5. Thermoforming machinesconic Theses & Dissertations	15
2.6. Process steps	16
2.6.1. Sheet handling www.lib.mrt.ac.lk	16
2.6.2 Clamping mechanisms	16
2.6.3. Sheet heating	17
2.6.4. Forming	18
2.6.5. Cooling	18
2.6.6. Trimming	18
Chapter 03: Plastic Material selection	19-24
3.1. Properties of Polystyrene	20
3.2. High Impact Polystyrene (HIPS)	20
3.3. PS grades properties comparison	22
3.4. Hot Tensile test data	23
Chapter 04: Heater system Design	25-43
4.1. Sheet heating	25
4.2. Heating systems	28 29
4.3. Efficiencies of radiant heaters	29 31
4.4. Heating process controls	31
4.5. Theory behind heater selection and oven design	32

•

Chapter 09: Conclusion of the study	70-71
Chapter 08: Discussion	70
7.5. Design summary	68
7.4. Vacuum requirement calculation and vacuum pump selection	66
7.3. Sizing vacuum systems-Steady state	65
7.2. Vent holes	64
7.1. Vacuum systems	63
Chapter 07: Vacuum System Design and Calculation	63-68
0.2.7.7.7.4B 440.B.	
6.2.7. Plug design	62
6.2.6. Plug speed and timing	61
6.2.5. Plug temperature	61
6.2.4. Plug material	60 60
6.2.3. Plug stroke www.lib.mrt.ac.lk	60
6.2.2. Plug design properties of the set of Dissertations	58
 6.2. Plug 6.2.1. Variables of plug-assist thermoforming process 6.2.2. Plug design parameters in Theses & Dissertations 	58
6.2 Plug	58
6.1.9. Mould design	56
6.1.8. Mould temperature	55
6.1.7. Matched moulds	55
6.1.6. Male moulds	54
6.1.5. Female moulds	53
6.1.4. Mould cooling	53
6.1.3. Aluminium as mould material	52
6.1.2. Production moulds	51
6.1.1. Prototype moulds	51
6.1. Moulds	49
Chapter 06: Mould and Plug Design	49-62
5.5. Oramping moonanisms	
5.5. Clamping mechanisms	48
5.4. Mould moving system design	47
5.3.1. Pneumatic cylinder selection	45
5.3. Plug moving system	44
5.1. Polymer hot strength 5.2. Standard hot tensile test	. 44
Chapter 05: Forming Station Design	44-40
	44-48
4.7. Design summary	43
4.6. Machine's heater oven design	40

Reference

Þ

Þ

•

.

۲

LIST OF FIGURES

Figure 2.1: historical timeline of thermoforming industry	7
Figure 2.2: Basic single station shuttle machine	16
Figure 4.1: Example sheet heating profile with forming window	25
Figure 4.2: example sheet heating profile with forming window	26
Figure 4.3: example sheet heating profile: temperature gradient through sheet thickness	27
Figure 4.4: Energy absorbed by sheet	30
Figure 4.5: Energy received by finite sheet from uniform energy boutput by heaters	35
Figure 4.6: Far-Infra red spectra for two thicknesses of polystyrene	38
Figure 4.7: Elstein HLF panel radiater	41
Figure 4.8: Temperature curves	42
Figure 4.9:Mounting dimensions and radiator dimensions in mm	42
Figure 6.1: Basic female mould and material distribution for female molded part	54
Figure 6.2: Basic male mould and material distribution for female molded part	55
Figure 6.3 : Mould mounted base University of Moratuwa, Sri Lanka.	56
Figure 6.4 : Mould cavity dimensions nic Theses & Dissertations	57
Figure 6.5 : Complete mould plan view. mrt. ac.lk	58
Figure 6.6 : Mould vacuum line design	58
Figure 6.7: Design of plug in plug-assist thermoforming	59
Figure 6.8: Effect of plug bottom radius R on wall thickness distribution	60
Figure 6.9: Dimension of the plug	63
Figure 7.1: Vacuum system of the machine	66
Figure 7.2: Selected vacuum pump inlet pressure and pumping speed	68

Þ

Þ

LIST OF TABLES

Table 2.1: list of products made by thermoforming	8
Table 2.2: types of thermoplastic sheets used for thermoforming	14
Table 4.1: electrical radiant heater types	29
Table 4.2: Computed data for PVC Heated to 280 0 F using heater at 640 0 F	40
Table 4.3: Computed data for PET Heated to 280 0 F using heater at 640 0 F	40
Table 7.1 Technical data of vacuum pump	69

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk