A Model for Predicting the Stretch and Recovery Test Results of Single Jersey Fabric

Submitted by A.A.T.D. Amarasinghe (168301T)

A thesis submitted to the Department of Textile & Clothing Technology, University of Moratuwa in fulfillment of the requirements for the degree of Master of Science in Textile and Clothing Management

October 2020

Declaration

"I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text".

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signed _____

Date: 13/10/2020

The above candidate has carried out research for the Masters Dissertation under my Supervision.

Name of the supervisor:

Signature of the supervisor:

Date :

Acknowledgements

I would like to express my special thanks to my supervisor, Eng. S. N. Niles, for his mentoring, encouragement, and inspiration during my research study, I am massively obligated to him for his suffering help and tolerance which made the culmination of this exploration conceivable. Then, my special thank goes to Mr. Yapa and the team in Hayleys Fabric Mill for providing fabric samples to me. Next, I would like to thank my employer SGS Lanka (Pvt) Ltd. for the grate help given in conducting the Stretch and Recovery test in the textile laboratory. Finally, I would like to thank my family for their unconditional support during my study. They have always been my source of energy.

Table of Content

Declaration	1
Acknowledgements	2
Table of Contents	3
List of Keywords	4
List of Tables	5
List of Figures	6
Abstract	1
Chapter 1: Introduction	_ 9
1.1 Background	9
1.2 Motivation for the Research	_10
1.3 Aims and Research Questions	_10
1.4 Methodology of the Research	_11
1.5 The Thesis Structure	_12
Chapter 2: Literature Review	_14
2.1 Single Jersey Fabric	_14
2.2 Stretch and Recovery Test for Single jersey Fabric	_15
2.3 Related Studies	_18
Chapter 3: Theoritical Framework	_21
3.1 Selection of Stretch and Reveoery test results for the impleementation of Theoritical	
Framework	_ 21
3.2 Development of the Theoritical Framework	_22
Chapter 4: Methodology of the Research	_25
4.1 Research Strategy followed in the study	_25
4.2 Construction of the Research Instrument	_ 27
Chapter 5: Data Analysis and Results	_31
5.1 Introduction	_31
5.2 Descriptive Statistics	_31
5.3 Data Analysis	_32
5.4 Research Findings	_59
Chapter 6: Conclusion	_65
6.1 Introduction	_65
6.2 Reexamine the Research Questions	_65
6.3 Shortcomes	_67
6.4 Limitations	_67
6.5 Suggestions for Future Work	_67
References	_68
Appendix	

List of Keywords

ANalysis Of VAriance (ANOVA)

Constant Rate of Extension (CRE)

Elongation

Elongation

Elustane

Extension

Fabric

Growth

Modulus

Recovery

Single Jersey

Stitch

Stretch and Recovery

Tensile Testing

Visual Studio (VS)

Warp

Weft

List of Tables

Table 4.1: Details of single jersey fabric use for the sample	28
Table 4.2: Details of the data set	29
Table 5.1: Descriptive Statistics of Variables of Warp Direction Test	31
Table 5.2: Descriptive Statistics of Variables of Weft Direction Test	32

List of Figures

Figure 1.1 Methodology of the Research	_12
Figure 2.1: Single jersey Stitch	_14
Figure 2.2: Tuck Stitch	_15
Figure 2.3: CRE Machine	_15
Figure 2.4: Elongation Property	_16
Figure 2.5: Un- recovered Elongation Property	_16
Figure 2.6: Tensile Testing Test Procedure	_17
Figure 3.1: Theoritical Framework of the Research	22
Figure 4.1: Flow of the Research	_26
Figure 4.2: Fabric Specimen for warp and weft	27
Figure 5.1: Correlation Analysis for Elustane variable and Modulus2	32
Figure 5.2: Regression Output of Modulus2- Warp variable	_33
Figure 5.3: Boxcox Transformation for Modulus2	_33
Figure 5.4: Regression Output of Modulus2 - Wrap Variable After the Transformation	34
Figure 5.5: Anova Test of Modulus2 - Wrap Variable	34
Figure 5.6: Normality Test of Residuals in Modulus2 - Wrap Variable	_35
Figure 5.7: Correlation Analysis for Elustane variable and Modulus5	_36
Figure 5.8: Regression Output of Modulus5- Warp variable	_36
Figure 5.9: Boxcox Transformation for Modulus5	37
Figure 5.10: Regression Output of Modulus5 - Wrap Variable After the Transformation	_37
Figure 5.11: Anova Test of Modulus5 - Wrap Variable	38
Figure 5.12: Normality Test of Residuals in Modulus5 - Wrap Variable	_38
Figure 5.13: Correlation Analysis for Elustane variable and Extention	_39
Figure 5.14: Regression Output of Extention - Warp variable	_39
Figure 5.15: Boxcox Transformation for Extention	_40
Figure 5.16: Regression Output of Extention - Wrap Variable After the Transformation	_40
Figure 5.17: Anova Test of Extention - Wrap Variable	41
Figure 5.18: Normality Test of Residuals in Extention - Wrap Variable	41
Figure 5.19: Correlation Analysis for Elustane variable and Growth	42
Figure 5.20: Regression Output of Growth - Warp variable	43
Figure 5.21: Boxcox Transformation for Growth	43
Figure 5.22: Regression Output of Growth - Wrap Variable After the Transformation	44
Figure 5.23: Anova Test of Growth - Wrap Variable	44
Figure 5.24: Normality Test of Residuals in Growth - Wrap Variable	
Figure 5.25: Correlation Analysis for Elustane variable and Modulus2	_46
Figure 5.26: Regression Output of Modulus2- Weft variable	_46
Figure 5.27: Boxcox Transformation for Modulus2	47
Figure 5.28: Regression Output of Modulus2 - Weft Variable After the Transformation	47
Figure 5.29: Anova Test of Modulus2 - Weft Variable	_48
Figure 5.30: Normality Test of Residuals in Modulus2 - Weft Variable	
Figure 5.31: Correlation Analysis for Elustane variable and Modulus5	
Figure 5.32: Regression Output of Modulus5- Weft variable	_50
Figure 5.33: Boxcox Transformation for Modulus5	_50
Figure 5.34: Regression Output of Modulus5 - Weft Variable After the Transformation	_51
Figure 5.35: Anova Test of Modulus5 - Weft Variable	_51

Figure 5.36: Normality Test of Residuals in Modulus5 - Weft Variable	52
Figure 5.37: Correlation Analysis for Elustane variable and Extention	53
Figure 5.38: Regression Output of Extention - Weft variable	53
Figure 5.39: Boxcox Transformation for Extention	54
Figure 5.40: Regression Output of Extention - Weft Variable After the Transformation _	54
Figure 5.41: Anova Test of Extention - Weft Variable	55
Figure 5.42: Normality Test of Residuals in Extention - Weft Variable	55
Figure 5.43: Correlation Analysis for Elustane variable and Growth	56
Figure 5.44: Regression Output of Growth - Weft variable	57
Figure 5.45: Boxcox Transformation for Growth	57
Figure 5.46: Regression Output of Growth - Weft Variable After the Transformation	58
Figure 5.47: Anova Test of Growth - Weft Variable	58
Figure 5.48: Normality Test of Residuals in Growth - Weft Variable	59
Figure 5.49: Trend on elstaine & modulus at 2 nd load curve	60
Figure 5.50: Trend on elastain & modulus at 5 th load curve	61
Figure 5.51: Trend on elastain & extension	62
Figure 5.52: Trend on elastain & growth	63
Figure 5.53: Stretch and Recovery Tool	64

Abstract

In the Textile Testing field fabrics are tested based on the international standards recorded in test methods. The stretch and recovery test is one of the important textile tests used to measure the extension and recovery of a fabric under a target load. This test is performed using a tensile testing machine, usually of the Constant Rate of Extension (CRE) type. The time allocated to complete the test is considerably high due to the high time requirement for preconditioning, conditioning, sample preparation and testing. The stretch and recovery test report results are very critical and urgent most of the time. However, due to the time constraint, it may not be possible to deliver the reports to the customers on time. Therefore, this research has been carried out to predict the stretch and recovery test results for single jersey fabric without performing the physical test procedures.

This research aims to design a mathematical model to predict the stretch and recovery for single jersey fabric. In achieving this objective, the quantitative method was applied. A theoretical framework was constructed grounded on a comprehensive analysis of the related literature. Resultant models derived during the analysis stage, then validated, and a simple tool has been implemented to be used by the laboratory staff. The model has shown more than 76% of accuracy, but it could be further validated by increasing the sample size and by revising the assumptions made during the study.

This research has a great benefit to textile laboratory staff since they can utilize minimum resources for Stretch and Recovery Test. As the CRE machine requires more duration for the test specimen preparation and more time to complete the test, testing staff will be able to use the simple application developed based on the model derived as the result of this study.