20,10001/56/10

LIGHTNING PERFORMANCE OF SRI LANKAN TRANSMISSION LINES: A CASE STUDY

LIBRARY URIVERSITY OF MORATUWA, SRI LANKA

A dissertation submitted to the Department of Electrical Engineering, University of Moratuwa in partial fulfillment of the requirement for the Degree of Master of Science

University of Mogatuwa, Sri Lanka. Electronic Theses & Dissertations KANKANAMGE SUJEE WA SUDESH KUMARA

> Supervised by Prof. J.R. Lucas

621.3°09" 621.3(043)

University of Moratuwa 93953

тн

Department of Electrical Engineering, University of Moratuwa Sri Lanka

April 2009

93953

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk đ

Ŧ

ŀ

UNIVERSITY OF 3	MENTERA, DE GA JAARV
ACCESSION NO.	93953
CLASS NO.	<u>621.3"09"</u> 621.3(043)

Declaration

The work submitted in this thesis is the result of my own investigations except where otherwise stated

This subject has not been accepted for any degree, and is also not being concurrently submitted for any other degree by me or any other individual.

UOM Verified Signature

KSS Kumara University of Moratuwa, Sri Lanka. 2009 Actional 2009 Action Contractions www.lib.mrt.ac.lk

I endorse the declaration by the candidate.

UOM Verified Signature

.....

Prof. J.R. Lucas

Lightning Performance of Sri Lankan Transmission Lines : A Case Study | Declaration

Contents

17

^<u>`</u>

4

2

,

Declaration		i
Abstract		v
Acknowledgement		vi
List of Figures	1	vii
List of Tables		viii

Chapter - 1		1
Introduction		1
1.1 Gen	eral	1
1.1.1	Historical Studies	1
1.1.2	Sri Lankan Context	1
1.2 Ligh	tning Phenomena	3
1.2.1	Thunder Clouds	3 3 3
1.2.2	Breakdown Mechanism and Streamers	3
1.2.3		4
1.2.4	Return Stroke	4
1.2.5	Multiple Strokes in Single Lighting Flash	4
	smission System in Sri Lanka	5
	ormance of Transmission System Against Lightning	6
1.4.1	The Probabilistic Nature of Lightning	6 7
1.4.1.1	Charge of the down leader and strike distance	
1.4.1.2	Distribution of charges in a stroke	8 8
1.4.2	Direct Strikes to the Phase Conductor	8
1.4.3 1.5 Tran	Back Flashovers to the Phase Conductor Sri Lanka.	8 9
1.5.1	Tower Heromic Theses & Dissertations	9
1.5.2	Tower Configurations Tower Earthing	9 . 10
1.5.4	Shield Wires, OPGW and Phase Conductors	. 10
1.5.4.1	Shield wires	10
1.5.4.2	OPGW	11
1.5.4.3	Phase conductors	11
1.5.5	Insulators and Accessories	12
1.5.5.1	Arching gaps	12
1.5.6	Identification of Circuits	13
1.6 Tran	smission lines Selected for the Case Study	13
1.6.1	Transmission System Associated with Selected Lines	14
1.6.1.1	Single line diagram of 132kV lines selected	15
1.6.1.2	Single line diagram of 220kV lines selected	16
Chapter - 2		17
Problem Identif	ication	17
	ts of Lightning on Transmission Lines	17
2.1.1	Shielding of Transmission Lines and Shielding Failures	17
2.1.2	Lightning Strikes at Mid Spans or at a Tower	17
2.1.3	Back Flashovers	18
	Reclosing	18
2.3 Goal		18
2.4 Source	ces of Data	19
2.5 Anal	ysis of Number of Outages	19
Chapter - 3		21
Methodology		21
	el Used to Calculate the Failure Rate of Lines	21

Lightning Performance of Sri Lankan Transmission Lines : A Case Study | Contents:

ii

	3.2	Simplified Waveform Used for Calculations	21
	3.3	Calculation Methodology of Transmission Line Lightning Performance	22
	3.3.	0 0	22
	3.3.	2 Lightning Flashover Zones in the Vicinity of a Tower	23
	3.3.		24
	3.4	Calculation Methodology of Shielding Failures	25
	3.5	Calculation Methodology of Back Flashovers	25
	3.6	Steps for Calculation of Flash Incidence and Shielding Failure	27
	3.7	Steps of Calculation for Failures Due to Back Flashover	28
	3.8	Steps and Equations Used in the Model for Direct Flashover Calculations	31
	3.9	Calculation of Back Flashovers of a Transmission Line	42
Cha	apter	- 4	55
Ana	alysis fi	rom the Model	55
	4.1	Analysis of Performance	55
	4.2	Particulars Necessary for Analysis of the Lines	55
	4.2.	· ·	55
	4.2.2	• • •	56
	4.2.	• • • • • •	56
	4.3	Results of the Analysis Using the Model	57
	4.4	Analysis of the Results of the Model	62
	4.4.	•	62
		1.1 Biyagama Kotmale line back flashover rate variation	63
	4.4.		64
		2.1 Athurugiriya Polpitiya 132kV line back flashover rate variation	65
	4.4.		66
		3.1 Avissawella Polpitiya 132kV line back flashover rate variation	67
	4.5	Line Trip Data Analysis	68
	4.5.		68
	4.5.		68
	4.5.	Identification of Faults Due to Lightning	68
	4.5.		68
		4.1 Failures on Biyagama Kotmale transmission line	68
		4.2 Failures on Athurugiriya Polpitiya 132kV line 1 & 2	69
		4.3 Failures on Avissawella Polpitiya 132kV line 3 & 4	70
	4.6	Analysis of Tower Height & Footing Resistance	71
	4.6.3	. 0	71
	4.6.2		73
	4.6.3		73
	4.6.4	•	73
	4.7	Analysis of Maintenance Records	75
	4.7.1		75
	4.7.2		76
	4.7.3	•	77
	4.7.4		77
	4.7.5	=	78
	4.8	Variation of Earth Resistance Along the Line Route	79
	pter		81
Con	clusior		81
		Comparison of Observed Line Failures and IKL	81
		Comparison of Calculated and Observed Line Failures	82
		Results of the Analysis of Maintenance Records	82
		Shielding of the Transmission Lines	83
	5.5	Conclusion	83

References

k 1

ŋ

Lightning Performance of Sri Lankan Transmission Lines : A Case Study | Contents:

iii

Annexes

Annex 1	The Map of Sri Lanka	a Transmission System in 2009.
---------	----------------------	--------------------------------

Annex 2 Single Line Diagram of the Transmission System.

Annex 3 Line Failures and Trip Relay indications.

Annex 4 Fault Recorder Waveform Sample.

- Annex 5 Transmission Line Schedule Data Sample.
- Annex 6 Transmission Line Routes on 1:50,000 Maps.
- Annex 7 Tower Drawings Samples from Central Drawing Office.
- Annex 8 Sample of Maintenance Record.
- Annex 9 Extracts from Master Plan Study.
- Annex 10 Transmission Line Shielding Failure and Back Flashover Calculations.
- Annex 11 Data of 132kV Transmission Lines for Calculations.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Lightning Performance of Sri Lankan Transmission Lines : A Case Study | Contents:

Abstract

The case study is carried out on three important transmission lines of the Ceylon Electricity Board, which transmits hydro generation of Mahaweli complex and Laxapana complex to the load centre. Hence any interruption of these two lines are critical, both system wise and economically.

A transmission line model is implimented in Microsoft Excel which takes the parameters such as tower geometry, conductor information, Insulator string sizes, spans, earth resistance and Isokeraunic level as inputs and calculates the annual shielding failure rate and the back flashover rate of these transmission lines. The caluclations are repeated at different earth resistances and tower heights to simulate the variation encountered in an actual line.

University of Moratuwa, Sri Lanka.

The results are then compared with the transmission line trip records to access the actual performance ib Further the calculated backflashover values are corrected using different tower heights encountered along the line route. Also the distribution of earth resistance values are studied.

After analysis, it is found that the line failures also vary with isokeraunic level. The model provided results compareable with the observations in the 220kV line. The shielding of the tower design is acceptable with improvements to the footing resistance, where the values are very high.

Acknowledgement

My heartfelt thanks also go to my course coordinators and lecturers of postgraduate study course of Department of Electrical Engineering, University of Moratuwa, Sri Lanka, who gave me the theoretical knowledge and encouragement in bringing up this academic work in time with excellent corporation and guidance. I extend my very sincere thanks to my worthy supervisor Prof. J.R. Lucas

My special thanks goes to Dr. Narendra De Silva who spent his time and effort to bring the work to a presentable state.

My sincere gratitude is also extended to the support staff of the Department of Electrical Engineering helping in various ways during the course of study.

I highly appreciate my friends and colleagues at the Library, Drawing office, Transmission Design Branch, Transmission Planning Branch, Maintenance Branch, System Control Centre and Protection Development Branch of Ceylon Electricity Board for their help to collect data and information to carry out the study.

Finally I should thank many individuals, friends and colleagues, who have not been mentioned here personally, for making this educational product a success.

May be I would not have been able to accomplish this task without their support.

vi

List of Figures

Description

.

L

Figure 1-1: Benjamin Franklin	1
Figure 1-2: IKL map of Sri Lanka [14]	1
Figure 1-3: Monthly average number of days of thunder	2
Figure 1-4: IKL map from SLSI	2
Figure 1-5: Laxapana hydro power complex	5
Figure 1-6: Mahaweli hydro power complex	6
Figure 1-7: Charge of the leader and strike distance	7
Figure 1-8: Percentage of strokes exceeding a given charge	8
Figure 1-9: Map of selected transmission lines and other substations	14
Figure 1-10: Selected 132kV transmission lines and bus bars	15
Figure 1-11: Single line diagram of selected line & associated lines	16
Figure 3-1: Voltage waveform used for calculations	21
Figure 3-2: Transmission line performance	22
Figure 3-3: Lightning strike zones of a tower	23
Figure 3-4: Lightning failure zones- plan view	
Figure 3-5: Flow chart for shielding failure calculations	
Figure 3-6: Flow chart for back flashover calculations	30
Figure 3-7: Incomplete shielding width X _s uncovered	37
Figure 3-8: Effective shielding, no uncovered width X _s	38
Figure 3-9: Maximum strike distance possible	38
Figure 3-9: Maximum strike distance possible	45
Figure 3-11: Lowest of Critical Current with power frequency voltagen.	52
Figure 4-1: Variation back flashovers Biyagama Kotmale line	63
Figure 4-2: Variation back flashovers Athurugiriya Polpitiya line	65
Figure 4-3: Variation back flashovers Avissawella Polpitiya line	67
Figure 4-4: Biyagama Kotmale line monthly average of failures	69
Figure 4-5: Athurugiriya Polpitiya line 1 & 2, monthly average of failures	70
Figure 4-6: Avissawella Polpitiya line 3 & 4, monthly average of failures	71
Figure 4-7: Biyagama Kotmale line tower foot resistance	73
Figure 4-8: Tower numbers and body extensions where insulators are damaged	76
Figure 4-9: Locations where insulators are damaged - towers 1 to 100	77
Figure 4-10: Locations where insulators are damaged - towers 101 to 207	77
Figure 4-11: Location of tower numbers 33 to 50	78
Figure 4-12: Location of tower numbers 85 to 95	79
Figure 4-13: Resistance and body extensions of tower no.1 to 103	80
Figure 4-14: Resistance and Body extensions of tower no.104 to 207	80
Figure 5-1: Comparison of monthly line failures with IKL	81

Lightning Performance of Sri Lankan Transmission Lines : A Case Study | List of Figures

vii

List of Tables

Table

Description

Page

viii

Table 1-1: Specifications of a single insulator disk (Bell)	12
Table 1-2: Typical specifications for an insulator string	
Table 3-1: Coupling Factors for earth wires to phase conductors	
Table 4-1: Calculation of Direct flashovers (Shielding failures)	
Table 4-2: Calculation of back flashovers	61
Table 4-3: Back flashovers - Biyagama Kotmale line	62
Table 4-4: Back flashovers - Athurugiriya Polpitiya line	64
Table 4-5: Back flashovers - Avissawella Polpitiya line	66
Table 4-6: Biyagama Kotmale line monthly failures	69
Table 4-7: Athurugiriya Polpitiya line 1 & 2, monthly average of failures	70
Table 4-8: Polpitiya Avissawella Line 3 & 4, monthly failures	
Table 4-9: Tower foot resistance Biyagama Kotmale line	72
Table 4-10: Number of failures based on tower heights	74
Table 4-11: Corrected failure rate	74
Table 4-12: Tower details where insulator string damages have occurred	76
Table 5-1: Monthly failure rate of transmission lines and Isokeraunic level	
Table 5-2: Comparison of observed line failures and calculated values	

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk