DEVELOPMENT OF CONDUCTIVE AND BIODEGRADABLE NANOFIBROUS YARNS: STUDY OF ELECTRICAL AND MECHANICAL PROPERTIES

Puwakdandawe Vishakha Thilini Weerasinghe

(188058V)

Degree of Master of Science

Department of Textile and Clothing Technology

University of Moratuwa Sri Lanka

January 2020

DEVELOPMENT OF CONDUCTIVE AND BIODEGRADABLE NANOFIBROUS YARNS: STUDY OF ELECTRICAL AND MECHANICAL PROPERTIES

Puwakdandawe Vishakha Thilini Weerasinghe

(188058V)

Thesis submitted in partial fulfillment of the requirements for the degree Master of Science in Textile and Clothing Technology

Department of Textile and Clothing Technology

University of Moratuwa Sri Lanka

January 2020

Declaration

"I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books)."

Signature:

Date:

"The above candidate has carried out research for the Master's thesis under my supervision."

Name of the supervisor:	
Signature of supervisor:	Date:
Name of the supervisor:	
Signature of supervisor:	Date:

Abstract

Electrically conductive and biodegradable materials are desired for a vast array of applications in wearable and flexible electronic areas to address the growing ecological problem of e-waste. Herein, we report on the design and fabrication of all-organic, conductive and biodegradable yarn using polyaniline (PANi) and polycaprolactone (PCL). The process of PANi incorporation is achieved in two ways; i) electrospinning a blend of PANi and PCL solution ii) in-situ polymerization of PANi on the nanofibrous surface of PCL electrospun fibers. The electrospun PANi incorporated webs are cut into ribbons and twisted to develop twisted yarns. A customized setup was used to produce continuous electrospun yarns. The effect of different degrees of PANi blended into PCL was investigated. Moreover, the effect of an array of aniline concentrations in coated fibers were studied. PCL/PANi blended solution with 2% PANi resulted in nanofibers with resistance of 10 ± 4 M Ω /cm. Fibers coated with 1% aniline concentration resulted in the core-shell fibers with of $50 \pm 8 \text{ k}\Omega/\text{cm}$. Increasing the number of plies of yarn to 3 plies resulted in a 3-fold reduction of the resistance. The twisted plied yarns were incorporated into fabric by stitching or weaving to demonstrate the stability of conductivity over mechanical forces. Both PANi blended and PANi coated yarns were found to be biodegradable in controlled environmental conditions. The use of PANi blended yarn as a biomaterial for tissue engineering and PANi coated yarns as a wearable electrode for capacitive sensors were demonstrated. The electromechanical behavior of PANi coated varn is expected to provide inspiration for the production of highly sensitive strain sensors. This approach presents an early step on the way to the realization of all organic conductive biodegradable nanofibrous yarns for sustainable smart textiles.

Key words: Conductive polymers, nanofibrous yarns, biodegradable, electrospinning, polyaniline

Dedication

I dedicate my thesis to all my professors and doctors and scientists for the extensive knowledge you share with me. Your unselfish guidance increased my passion for nanotechnology.

Acknowledgement

I wish to acknowledge who supported me in numerous ways to achieve my MSc. First, I am indebted to research supervisor Dr. N.D. Wanasekara, Senior Lecturer, Department of Textile and Clothing Technology, University of Moratuwa for invaluable support, and motivation he readily gave me to accomplish this research .His patience in guiding me, vast knowledge, advice and experience helped me in many ways to conclude my research.

I would like to express appreciation thanks to Dr. (Mrs.) D.G.K. Dissanayake, Senior Lecturer, Department of Textile and Clothing Technology, University of Moratuwa, insightful comments and encouragement from the start to the very end of the days I worked on this thesis and also, magnanimous way of educating me to the world of scientific publication, are very much appreciated.

Besides my supervisors, I am also thankful towards my progress review committee: Dr. Srimala Perera and Dr. T.S.S. Jayawardena for their motivation comments and encouragement in each progress review to make my focus to the strategical research plan.

Also, I wish to express gratitude to Sri Lanka Institute of Nanotechnology (SLINTEC) to give access to advanced laboratory facilities and scientists, Miss. Nadeeka Tissera, Mr. Ruchira Wijesena and Prof. Nalin de Silva who assisted and supported me while dedicating their valuable time.

I also express my sincere gratitude to the academic and nonacademic staff of Department of Textile and Clothing Technology, University of Moratuwa for the continuous support and guidance given throughout my undergraduate and postgraduate life. Furthermore, I thank Nilupuli Rathnayake from the 15th batch and Sasini Weerasinghe from the 13th batch, Department of Textile and Clothing technology for all the support given to accomplish this research without any stress.

The financial support for this research was provided through the SRC Grant (SRC/LT/2018/ 33) offered by the Senate Research Council, University of Moratuwa.

I would like to extend my sincere thanks to SRC for identifying the value of this research and approving the requested budget for this research. I would like to acknowledge Dr. (Mrs.) D.G.K. Dissanayake for appointing me as a research student to conduct this research under the above SRC grant.

Last but not least, it is with a heart laden with gratitude that I thank to my family for the tremendous support given me and who were always there to lift me up during hard times.

Table of contents

Decl	aration o	of the candidate & supervisors	i
Abst	ract		ii
Dedi	cation		iii
Ackr	nowledge	ements	iv
Tabl	e of cont	tents	vi
List	of figure	28	X
List	of tables		XV
List	of abbre	viations	xvi
List	of appen	dices	
CHA	PTER 0)1	xvii
1.	INTR	CODUCTION	1
	1.1	Introduction	1
	1.2	Problem statement	2
	1.3	Objectives	3
	1.4	Chapter framework	
CHA	PTER 0	02	
2.	LITE	RATURE REVIEW	5
	2.1	Introduction	5
	2.2	Importance of conductive yarns	5
	2.3	Problems of existing conductive yarn manufacturing methods	5
	2.4	Conductive polymers	6
	2.5	Doping of conductive polymers	8
	2.6	Polyaniline	10
	2.7	Nanofibrous yarns	11
	2.8	Electrospinning	11
	2.9	Electrospinning yarns	12
	2.10	Electrospun conductive yarns	15
	2.11	Importance of biodegradability in smart textiles	15
	2.12	Biodegradable applications in smart textiles	16

Page

	2.13	Electrospinning of biodegradable polymers	16
	2.14	Degradation of poly (e-caprolactone)	17
	2.15	Electrospinning of conductive biodegradable polymers	17
	2.16	Electrospun conductive and biodegradable yarns	18
	2.17	Summary	
CHA	APTER 0	03	
3.	MET	HODOLOGY	20
	3.1	Introduction	20
	3.2	Materials and reagents	20
	3.3	Selection of suitable carrier polymer	21
		3.3.1 Preparation of PVA and PCL polymer solution	21
		3.3.2 Conventional electrospinning	21
		3.3.3 Analyzing fiber mats to select the biodegradable polymer	21
	3.4	Preparation of PANi blended yarns	22
		3.4.1 Preparation of PANi solution	22
		3.4.2 Preparation of PANi/PCL casted films	22
		3.4.3 Preparation of PANi/PCL solution	23
		3.4.4 Electrospinning by using rotary collector	23
		3.4.5 Yarn preparation from nanofibrous web	24
		3.4.6 Design and development of collector attachment for produ	ction
		of continuous nanofiber yarns	25
		3.4.7 Continuous yarn production by electrospinning	27
	3.5	Preparation of PANi coated yarns	27
		3.5.1 Dip coating of PANi	27
		3.5.2 PANi in-situ polymerization	27
		3.5.3 Preparation of twisted yarns	28
	3.6	Characterization	28
		3.6.1 Fiber Morphology	28
		3.6.2 Conductivity measurement	29
		3.6.3 Tensile strength	31
		3.6.4 DSC Analysis	31
		3.6.5 FTIR analysis	31

		3.6.6	TGA analysis	31
		3.6.7	Conductivity over mechanical deformation	31
		3.6.8	Biodegradation of the material under controlled compos	ting
			conditions	32
	3.7	Applic	cations	33
		3.7.1	Capacitive sensor	33
		3.7.2	Biomaterial	34
			3.7.2.1 Biodegradability	34
			3.7.2.2 Cell cytotoxicity study	35
			3.7.2.3 Cell morphology study	36
	3.8	Summ	ary	
CHAI	PTER 04	4		
4.	RESU	LTS A	ND DISCUSSION	37
	4.1	Introd	uction	37
	4.2	Electro	ospinning of PVA and PCL	37
	4.3	PANi	blended nanofibrous yarns	41
		4.3.1	Influence of conductivity on electrospinnability	41
		4.3.2	Conductivity measurement	45
		4.3.3	Nanofibrous yarn formation	46
		4.3.4	Continuous yarn formation	48
		4.3.5	Effect of PANi concentration on mechanical properties of ya	arns
				49
		4.3.6	TGA analysis	51
		4.3.7	DSC analysis	53
		4.3.8	FTIR analysis	55
		4.3.9	Optimizing PANi concentration	56
		4.3.10	Electro-mechanical behaviour of electro-conductive yarn	56
			4.3.10.1 Effect of weaving and sewing on electrical resista	ince
			of the yarn	56
			4.3.10.2 Effect of strain on electrical resistance of the yarn	58
			4.3.10.3 Effect of twist on electrical resistance of the yarn	59
		4.3.11	Biodegradability	60

	4.4	PANi	coated nanofibrous yarns	64
		4.4.1	Effect of dip coating on PANi on fiber morphology, elect	rical
			and mechanical properties	64
		4.4.2	Studying PANi in-situ polymerization	65
			4.4.2.1 Polymerization of aniline on PCL nanofibers	65
			4.4.2.2 Effect of concentration of reaction mixture on the	fiber
			morphology	69
		4.4.3	Conductivity measurement	71
		4.4.4	Nanofibrous yarn formation	74
		4.4.5	Effect of aniline concentration on mechanical properties of	yarn
				75
		4.4.6	TGA analysis	77
		4.4.7	DSC analysis	79
		4.4.8	FTIR analysis	81
		4.4.9	Electro-mechanical behaviour of electro-conductive yarn	83
			4.4.9.1 Effect of weaving and sewing on electrical resistance	ce of
			the yarn	83
			4.4.9.2 Effect of tensile strain on electrical resistance of the	yarn
				86
			4.4.9.3 Effect of twist on electrical resistance of the yarn	87
		4.4.10	Biodegradability	88
	4.5	Compa	arison of PANi blended and coated yarns and pote	ntial
		applica	ations	91
		4.5.1	Capacitive sensor	92
		4.5.2	Biocompatibility	93
			4.5.2.1 Cytotoxic effects of the PANi blended nanofibers	93
			4.5.2.2 Cell morphology study	93
			4.5.2.3 In-vitro degradability	94
	4.6	Summ	ary	96
CHAP	TER 05	5		
5.	CONC	CLUSIO	NS AND RECOMMENDATIONS	97
	5.1	Introdu	uction	97

	5.2	Key conclusions	97
	5.3	Key recommendations	99
Re	ference lis	st	100
Ар	pendix A:	Arduino code linked with cap sense library	113
Ар	pendix B:	Publications on this study	114

List of figures

Figure	Description	Page
Figure 2.1	Energy band diagram demonstrating band gaps	8
Figure 2.2	Band structure of a conjugated polymer as a function of p-doping	level
		9
Figure 2.3	Oxidation states of PANi	11
Figure 2.4	Electrospinning basic setup	12
Figure 2.5	Electrospinning continuous yarns using one nozzle	14
Figure 2.6	Electrospinning continuous yarns using two nozzles	14
Figure 3.1	Designed schematic diagram of modified electrospinning unit	with
	rotational drum collector	24
Figure 3.2	Designed schematic diagram of apparatus for twisting single yarn	s and
	ply yarn.	25
Figure 3.3	Designed schematic diagram of continuous yarn forming setup	26
Figure 3.4	Schematic diagram of test circuit for measuring resistance with	h the
	four-point probe method	29
Figure 3.5	Schematic diagram of test circuit for measuring resistance of	fiber
	ribbons with the two-probe method using multimeter	30
Figure 3.6	Schematic diagram of test circuit for measuring resistance of the	yarn
	with the two-probe using multimeter	30
Figure 3.7	Homemade apparatus for measuring resistance vs strain	32
Figure 3.8	Basic circuit for capacitive sensors	34
Figure 3.9	Well plate with cells that were treated with nanofibers	35
Figure 4.1	SEM image and diameter distribution histogram of (a) PCL nanofi	ibers,
	(b) PVA nanofibers	38
Figure 4.2	Illustration of hydrogen bonding interaction among PVA by water	r 38
Figure 4.3	Solutions of (a) emeraldine base (EB) PANi/PCL, (b) emeraldine	base
	(EB) PANi/CSA/PCL, (c) emeraldine salt (ES) PANi (PANi dope	ed by
	HCl)/CSA/PCL	40

- Figure 4.4Casted films of (a) emeraldine base (EB) PANi/PCL, (b) emeraldine
base (EB) PANi/CSA/PCL, (c) emeraldine salt (ES) PANi (PANi
doped by HCl)/CSA/PCL40
- Figure 4.5 Demonstrating conductive nanofiber electrospinning process 42
- Figure 4.6 A photo of the electrospinning step with rotational drum collector 42
- Figure 4.7 Morphology of nanofibers synthesized from different PANi concentrations and PCL. (a) pure PCL, (b) PANi 0.5%, (c) PANi 1%, (d) PANi 2%, (e) PANi 3% 44
- Figure 4.8 (a) The four probe V I characteristics of PANi blended electrospun mats, (b) PANi concentration vs conductivity measured using fourprobe method 45
- Figure 4.9 PANi 2%(a) Twisting single yarns, (b) twisting ply yarns, (c) PCL/PANi 1-ply yarn, (d) PCL/PANi 2-ply yarn, (d) PCL/PANi 3-ply yarn 47
- Figure 4.10 Effect of number of plies on resistance 48
- Figure 4.11 (a) Developed continuous yarn manufacturing unit, (b) 3D fibrous cone and twisted yarn 49
- Figure 4.12 (a) The stress-strain curves of Pure PCL, PANi 0.5%, PANi 1%, PANi 2%, (b) effect of PANi concentration on energy at break value of yarns, (c) effect of PANi concentration on modulus of yarns 51
- Figure 4.13 TGA profiles of pure PCL and conductive PANi/PCL yarns with different PCL to PANI ratio 53
- Figure 4.14 DSC profiles of pure PCL and conductive PANi/PCL yarns with different PCL to PANI ratio 54
- Figure 4.15 FTIR spectra of pure PCL and PANi 2% 55
- Figure 4.16 PCL/PANi 2% blended nanofibrous yarns. (a) Image of yarn stitched on a nylon fabric, (b) microscopic image of yarn stitched on the nylon fabric 57

- Figure 4.17 Fabric woven with PANi 2% blended nanofibrous yarns and 2-ply nylon yarns. (a) Conductivity measuring of unfolded fabric, (b) conductivity measuring of folded fabric, (c) microscopic image the fabric, (d) demonstrating yarn short circuiting by folding, (e) illustrating resistance change by number of folding cycles 58
- Figure 4.18 Effect of tensile strain on electrical resistance of PCL/PANi 2% blended yarn 59
- Figure 4.19PANi 2% nanofibrous fiber ribbons (a) as made, (b) twisted, (c) effect
of twist on electrical resistance60
- Figure 4.20 Physical appearance of different stages of biodegradation of cellulose filter paper, PCL, PCL/PANi, and polyethylene 61
- Figure 4.21 Residual weight percentages vs number of days in each stage of biodegradation 62
- Figure 4.22 SEM images of (a) PCL before and (b) after degradation in soil and (c) magnified SEM image of after degradation in soil. (d) PCL/PANi blended fibers before and (e) after degradation in soil. (f) Magnified SEM image of after degradation in soil 63
- Figure 4.23 (a and b) SEM image and its magnified image of 10% PANi dip coated PCL nanofibers. (c) Stress- strain curve of PCL pure and PANi 10% dip coated nanofibrous yarns 64
- Figure 4.24 (a) Schematic of the apparatus for producing of continuous PCL twisted yarns. (a') The 3D nanofibrous cone drawing from collector. (b and c) SEM image of collected PCL nanofibrous twisted yarn and magnified image of aligned nanofibers
- Figure 4.25 Sketch illustration of Fabrication of PANi decorated PCL nano-fibrous yarns 66
- Figure 4.26
 Color change of aniline reaction mixture by adding APS after (a) 60 s,

 (b) 90 s, (c) 120 s, (d) 150 s, (e) 180 s, (f) 220 s, (g) 260 s, (h) 10 min.

 68
- Figure 4.27 SEM images of (a) Pure PCL, (b) aniline 0.5%, (c) aniline 1% (d) aniline 2% 70

- Figure 4.28 Resistance per unit length verses used aniline concentration in reaction mixture 71
- Figure 4.29 (a) The four probe V I characteristics of PANi coated electrospun mats, (b) aniline concentration vs log value of conductivity measured from four probe 73
- Figure 4.30 SEM images of (a) 1- ply yarn, (b) 2 ply yarn and (c) 3 ply yarn 74

75

81

- Figure 4.31 Effect of number of plies on resistance
- Figure 4.32 (a) The stress–strain curves of Pure PCL, aniline 0.5%, aniline 1%, aniline 2%, (b) effect of aniline concentration on energy at break value of yarns, (c) effect of aniline concentration on modulus of yarns 77
- Figure 4.33 TGA profiles of pure PCL, aniline 0.5%, aniline 1%, aniline 2% 79
- Figure 4.34 DSC profiles of pure PCL, aniline 0.5%, aniline 1%, aniline 2% 80
- Figure 4.35 FTIR spectra of pure PCL and aniline 1%
- Figure 4.36 Aniline 1 % coated nanofibrous yarns. (a) Image of yarn stitched on a nylon fabric, (b) microscopic image of yarn stitched on the nylon fabric 83
- Figure 4.37 Fabric woven with aniline 1% coated nanofibrous yarns and 2-ply nylon yarns. (a) Conductivity measuring of unfolded fabric, (b) conductivity measuring of folded fabric, (c) microscopic image the fabric, (d) SEM image of the fabric (e) demonstrating yarn short circuiting by folding, (f) illustrating resistance change by number of folding cycles
- Figure 4.38 Effect of tensile strain on electrical resistance of yarn 86
- Figure 4.39 Time-dependent normalized resistance change of the yarn under maximum strains of 20% 87
- Figure 4.40 Aniline 1 % nanofibrous fiber ribbons (a) as made, (b) twisted, (c) effect of twist on electrical resistance 88
- Figure 4.41 Residual weight percentage versus number of days in each stage of biodegradation 89
- Figure 4.42Physical appearance of different stages of biodegradation of cellulosefilter paper, PCL, PCL/PANi and polyethylene89

- Figure 4.43 SEM images of PCL nanofiber (a) before degradation and (b-c) after degradation in soil. PANi/PCL nanofibers (d) before degradation and (e-f) after degradation in soil 90
- Figure 4.44 Illustration of the electrical conductivity nature for the prepared PANi coated PANi /PCL yarns with application of flexible capacitive sensor for operation of LED (a) ON (c) OFF by touching 92
- Figure 4.45In-vitro cytotoxicity effects of the PCL and PANi/PCL electrospun
nanofibers on Vero cells (green monkey kidney)93
- Figure 4.46 SEM images of (a) Vero cells seeded PCL nanofibers and (b) PCL/PANi nanofibers 94
- Figure 4.47 Degradation profile of the PCL, and PANi blended PCL electrospun nanofibers 95
- Figure 4.48SEM images of the (a) PANi/PCL electrospun nanofibers after 20 days
soaking in PBS and (b) magnified SEM image95

List of tables

Table	Description	Page
Table 3.1	The weight of PCL and PANi taken for preparing solutions a	nd volume
	ratios of each solution in solution mixture	23
Table 3.2	Amounts of anile and APS taken for solution mixture	28
Table 4.1	Effect of different dopant on electrospinnability and resistan	ice 41
Table 4.2	Measuring resistivity by different methods	46
Table 4.3	TGA data compilation for the tested fibers, including the	first peak
	weight loss attributed to HCL, second onset and weight loss	s attributed
	to PANi, third onset and weight loss attributed to PCL ar	nd residual
	weight	52
Table 4.4	Melting temperature and melting enthalpy of pure PCL and o	conductive
	PANi/PCL yarns with different PCL to PANI ratio	54
Table 4.5	Characterization peaks of PCL and PANi 2%	55
Table 4.6	Volume of aniline in aniline/HCl mixture and the weight	of APS in
	APS/HCl mixture	66
Table 4.7	Measuring resistivity by different methods	73
Table 4.8	TGA data compilation for the tested fibers, including w	eight loss
	attributed to HCL and water, second third onset and w	eight loss
	attributed to PCL and residual weight	88
Table 4.9	Melting temperature and melting enthalpy of pure PCL, and	line 0.5%,
	aniline 1%, aniline 2%	81
Table 4.10	Characterization peaks of PCL and PANi 2% for aniline 1%	nanofibers
		82
Table 5.1	Summary of important results of the study	98

List of abbreviations

Abbreviation Description

PANi	Polyaniline
PCL	Polycaprolactone
CBNY	Conductive and biodegradable nanofibrous yarn
NY	Nanofiber yarn
SEM	Scanning electron microscope
FTIR	Fourier transform infrared
DSC	Differential scanning calorimetry
TGA	Thermogravimetric
PBS	Phosphate-buffered saline
ASTM	American Society for Testing and Material

List of appendices

Appendix	Description	Page
Appendix A	Arduino code linked with cap sense library	113
Appendix B	Publications on this study	114