

INVESTIGATION OF HIGH VOLUME BID MATERIALS AS POTENTIAL COLOURANTS AND FINISH CHEMICALS FOR FIBROUS SUBSTRATES

BY V.G. Samudrika Wijayapala

The dissertation was submitted to the Department of Textile and Clothing Technology of the University of Moratuwa, Sri Lanka in partial fulfillment of the requirement for the Degree of Doctor of Philosophy

> Department of Textile and Clothing Technology, Faculty of Engineering University of Moratuwa Moratuwa, Sri Lanka.

> > 2010

94512

Abstract

The modern consumer (1990 onwards) is aware of the toxic chemical residues on textiles/garments (resulting from dyes and chemicals used) which can have carcinogenic/ dermatological and allergic effects on the wearer, especially because textiles are in contact with human skin for 24 hours of the day. The second aspect deals with the 'pollution' (air/water) at each of all stages in production of textiles. The third concern is about the 'ecological' problems during disposal (of garbage / on incineration).

The aim of this research is to show feasibility of producing high quality natural dyes from plants, creating new opportunities for both farmers and the fabric / garment industry in line with the current consumer trends towards eco-friendly natural products. The direct national benefit is shown. Environmental and economical factors too need to be considered to make this viable in the long run.

Investigation of the traditional dyeing techniques and dye producing plants with special reference to Sri Lanka, and development of natural dyes and investigation of their suitability as textile dyes were the two major objectives of this research study.

Research investigations based on the comprehensive analysis of 10 best dye yielding plants which have been chosen from 47 dye yielding plants in Sri Lanka are presented. The available raw material spectrum had been reviewed. The ten (10) selected species are Kothala Himbutu (*Salacia reticulata*), Weniwal *tCoscinium fenestratum*), Rambutan (*Nephelium lappaceum*), Mangus *tGarcinia mangostana*), Big onion skin (*Allium cepa*), Marigold (*Tegetus erecta*), Tea (*Camellia sinensis*), Jak (*Artocarpus heterophyllus*), Walmadata (*Rubia cordifolia*) and Turmeric (*Curcuma domestica*). Some of the above plant extracts have not been used before in textile dyeing.

Environmental performance was another aspect of the research. Results from effluent characteristics of best dyeing solutions reveal significant reduction in pollution potential. The concept of ready to use dye concentrates is also presented.

Dedication

My

Parents, husband and children Who contributed in their own way

With

Love and Gratitude

'The Path to Knowledge is Awareness'

DECLARATION

I Samudrika Wijayapala, hereby certify that the work described in this dissertation was carried out by me in the Departments of Textile and Clothing Technology and Chemical and Process Engineering of the University of Moratuwa, Sri Lanka and Indian Institute of Technology, Kanpur, India between January 2004 and January 2010. This research project was carried out in partial fulfillment of the requirement for the degree of Doctor of Philosophy. This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration, except where otherwise stated. Neither this thesis nor any part thereof has ever been submitted for any degree at this or any other University.

UOM Verified Signature

Candidate U.G. Samudrika Wijayapala Reg. No. 4 / 8020 23rd February 2010

1

We certify the statement above is true to best of our knowledge and that the dissertation is ready for submission

UOM Verified Signature

Research Supervisor

Electronic Theses & Dissertations www.lib.mrt.ac.lk

Department of Chemical and Process Engineering

Date:

UOM Verified Signature

Mr. NGH de Silva Research Supervisor Former Senior Lecturer Grade 1 Department of Textile and Clothing Technology University of Moratuwa Date : .23:.02..2010

ACKNOWLEDGEMENTS

"Authorship of any sort is a fantastic indulgence of the ego. It is well no doubt, to reflect on how much one owes to others- J.K.Galbraith"

In an endeavor of this nature there are many who have helped and given advice in their own ways. However, certain names come to my mind which I should specifically mention.

First and foremost my sincere thanks and gratitude to my research supervisors Professor Ajith de Alwis, Department of Chemical and Process Engineering and Mr. NGH de Silva, Former Senior Lecturer, Department of Textile and Clothing Technology of the University of Moratuwa, Sri Lanka, for introducing me to the project and for their infectious enthusiasm, able supervision, valuable guidance and encouragement throughout the research work.

My heartfelt thanks to Dr. Padma S. Vankar, Principal researcher at the Facility of Ecological and Analytical Laboratory, Indian Institute of Technology, Kanpur, India, for providing me with guidance and sample analysis facilities.

My sincere thanks to Dr. TSS Jayawardane, Research Co-ordinator of Department of Textile and Clothing Technology, University of Moratuwa, for encouraging and supporting me in every aspect to complete my research. I would like to thank to Mr. VA Nandasena for his vital presence and contributions in the progress review committee as Chairman and the valuable guidance and suggestions provided to make this study a success.

4

It is with sincere thanks that I would recall the helping hands offered by Head of Department, Dr. Sandun Fernando and all the staff members of the Department of Textile and Clothing Technology of University of Moratuwa, to complete this research study successfully.

I would like to thank Mr. Chandana Malalanayake, Ms. Dilum Dissanayake, Staff Technical Officers and Mr. W. Chandradasa, Lab attendant of the Wet Processing Laboratory, Department of Textile and Clothing Technology, University of Moratuwa for supporting me in laboratory work. I also wish to express my thanks to Ms.Vijitha Rathnayake and Mr. AL Amarasekara Mr. Sanjeewa Silva, Ms.Saroja, Mr.Nishantha for assisting in the collection of raw materials for my research work. I also wish to extend my thanks to academic staff members, Mr. NL Wanigatunge & Dr. WDG Lanarolle for helping me to complete literature survey of my research.

I extend my acknowledgement to Ms. Kusum Kapuruge, Ms. Padma Rajapaksha, Mr. GHD Wijesena and Ms.Shashika Perera, Ms. Mihiri Fernando for the support given in numerous ways.

I acknowledge Mr. Muditha Dayaratne, Managing Director, Colourmate (Pvt) Ltd., and Brandix Finishing Limited, Pannala for providing fabrics for dyeing trials. I extend my sincere thanks to Mrs. Seneviratne, Mr. Waduge and Mr. Viraj from Atomic Energy Authority of Sri Lanka for providing me facilities and assistance in their Laboratory.

I would like to thank the library staff of University of Moratuwa, National Museum, Industrial Technology Institute, University of Sri Jayewardenepura, University of Indigenous medicine and Public Library of Colombo for their tremendous support in finding the literature for the study, which would have been much difficult without their committed service.

No adequate words can be found to express my feelings for my husband Anura Wijayapala, my children and parents, and sisters for assisting my work in numerous ways. I should specially mention my elder daughter for assisting me to collect raw materials for analysis. I sincerely acknowledge the blessings, guidance, encouragement and moral support, cooperation and sacrifice of my parents & my family.

Samudrika Wijayapala University of Moratuwa Sri Lanka. 20.02.2010

CONTENTS

	Page
DECLARATION	i
ABSTRACT	ii
ACKNOWLEDGEMENTS	iii-iv
CONTENTS	v-ix
ABREVIATIONS	х
LIST OF FIGURES	xi-xv
LIST OF TABLES	xvi-ix
Chapter One - INTRODUCTION AND OVERVIEW	
1.1 The need for natural dyes	1
1.2 Present situation & justification for the study	3
1.3 Objectives	4
1.4 Scope and overview of the research work into natural dyes	5
Chapter Two - LITERATURE SURVEY	
2.1 History of colouration ectronic Theses & Dissertations	7
2.1.1 Water colour painting mrt.ac.lk	10
2.1.2 Tempera painting	11
2.1.3 Fresco painting	11
2.1.4 Oil painting	11
2.2 Evolution of synthetic dyes	11
2.3 Environmental aspects of synthetic dyes	14
2.4 Textile colourants	15
2.5 Chemical basis of textile colouration	16
2.6 Classification of synthetic textile colourants	18
2.7 Natural dyes	21
2.8 Classification of natural dyes	23
2.8.1 Classification based on origin	23
2.8.2 Classification based on chemical nature	25
2.8.3 Classification based on application	25
2.8.4 Classification based on colour	26
2.8.5 Sources of natural dyes on the basis of colour	26

2.9 Extraction methods of natural dyes	30
2.10 Natural dyeing	30
2.10.1 Advantages of natural dyes	30
2.11 Mordants and mordanting	31
2.11.1 Tannins and tannic acid	32
2.11.2 Application of tannins	33
2.11.3 Metal mordants	33
2.11.4 Oil mordants	34
2.11.5 Mordanting	34
2.12 Fastness properties of natural dyes	35
2.13 Environmental aspects of natural dyeing	37
2.14 Comparison of environmental and safety aspects of Natural and	
Synthetic dyes	38
2.15 Natural dyes and dyeing practices in Sri Lanka	39
2.16 History of dye practices	44
2.16.1 Mural Painting	45
2.16.2 Apsara paintingsy of Moratuwa, Sri Lanka.	47
2.16.3 The caves and paintings es & Dissertations	48
2.16.4 Robe dyeing	49
, 2.16.5 Mat weaving	49
2.16.6 Masks	51
2.16.7 Batiks	51
2.16.8 Lacquer work	52
2.16.9 Body painting	53
2.16.10 Hair dyeing	53
2.17 Hand Loom weaving	55
2.17.1 The Moor weavers of Marudamunai	55
2.17.2 The cotton weavers of Talagune	56
2.18 Recent developments of natural dyes	59
2.19 Estimates of dye requirements	59

Chapter Three - STUDY METHODOLOGY	
3.1 Materials and methods	61
3.1.1 Literature review	61
3.1.2 Robe dyeing	61
3.1.3 Selection of dye yielding bio-materials for naturaldye extraction	63
3.2 Dyeing tests and quality criteria	63
3.3 Selection of fabric material to be dyed	65
3.3.1 Microscopic features	65
3.3.2 Physical properties	65
3.4 Preparation of cloth for dyeing (fabric pre treatment)	66
3.5 Extraction of colour giving parts from the bio-materials	67
3.5.1 Drying	68
3.5.2 Grinding	68
3.5.3 Sieving	68
3.6 Extraction of colourants	69
3.6.1 Aqueous extraction	69
3.6.2 Solvent extraction ersity of Moratuwa, Sri Lanka.	70
3.6.3 Sonicator extraction	70
3.7 Filtration	71
3.8 Mordanting	71
3.8.1 Selection of mordants	72
3.8.2 Synthetic mordants	72
 3.8.3 Natural mordants 	72
3.9 Dyeing under different conditions	72
3.10 Techniques used for dyeing	74
3.10.1 Conventional dyeing	74
3.10.2 Sonicator dyeing	74
3.11 Evaluation of performance properties	75
3.11.1 Colourfastness to washing	75
3.11.2 Colourfastness to rubbing	75
3.11.3 Colour Fastness to light	76
3.11.4 Colour Fastness to perspiration	76
3.12 Equipment used for performance analysis	77

3.13 Measuren	nents and analysis	77
3.13.1	Colour measurements	77
3.13.2	Evaluation of parameters related to colour matching system	78
3.13.3	Measurement of dye exhaustion	79
3.14 Equipmen	nt used for analysis	79
3.15 Economi	c consideration	79
3.16 Preparati	on of Ready- to - Use Dye Concentrates	80
3.17 Market p	otential in Sri Lanka	80
13.17.1	Analysis of questionnaire	81
3.18 Evaluatio	on of environmental impact	81
3.19 A colour	catalogue	81
Chapter Fo	our - RESULTS AND DISCUSSION	
4.1 Indigeno	us dyeing and dyeing methods	82
4.1.1 7	Traditional robe dyeing process	83
4.2 Investiga	tion of dye yielding bio-materials for natural dye Extraction	84
4.3 Selection	of fabric material to be dyed Moratuwa Sri Lanka	84
4.3.1 (Characteristics of cotton fabriceses & Dissertations	84
4.3.2 (Characteristics of silk fabrict.ac.lk	85
4.3.3 (Characteristics of wool yarn	85
4.4 Extractio	on of colourants from the bio-materials	85
4.4.1 (Grinding & Sieving	85
4.5 Extractio	on of colourants	86
4.6 Optimisa	ation of dyeing conditions	87
4.7 Mordant	ing	88
4.8 Evaluation	on of fastness properties	88
4.9 Selection	n of dye yielding plants	88
4.10 Evaluation	on matrix and tested samples in the laboratory	90
4.11 List of th	ne plant materials selected	92
4.12 Detailed	analysis of ten selected resource streams	93
4.12.1	Rambutan (Nephelium lappaceum)	93
4.12.2	Marigold (Tegetus erecta)	99
4.12.3	Kothala (Salacia reticulata)	105
4.12.4	Weniwal (Coscinium fenestratum)	110

.

4.12.5 Bi	ig onion (<i>Allium cepa</i>)	114
4.12.6 M	langus (Garcinia mangostana)	120
4.12.7 Ja	ak fruit (Artocarpus heterophyllus)	125
4.12.8 Te	ea (Camelia sinensis)	131
4.12.9 W	Valmadata (Rubia co-ordifolia)	137
4.12.10 T	urmeric (Curcuma domestica)	143
4 13 Environmen	tal emission characteristics of effluents (COD Analysis)	148
4.14 Basic econo	omic analysis	149
4.15 Storage of d	lyes (Preparation of RTDC of natural dye)	150
4 16 Opportunity	to use bio materials for similar colours with different mordant	ts
and substrat	tes	151
4 17 Analysis of	questionnaire	153
4 18 Ways of fin	nding resources	153
4 19 The views	and comments from the exhibitions	154

Chapter Five – CONCLUSIONS AND RECOMMENDATIONS

5.1	Findings of the study University of Moratuwa, Sri Lanka.	150
5.2	Analysis of individual dye yielding plant materials issertations	157
5.3	Positive Environmental Performance rt. ac.1k	161
5.4	Recommendations	161
5.5	Conclusion	162

ANNEXURES

ANNEXURE	Α	- Questionnaire
ANNEXURE	В	- A list of bio-materials used for natural dye sources
ANNEXURE	С	- Sieve analysis data

REFERENCES

LIST OF TABLES

Table		Page
2.1	World dustuff mana 1002 (Holma 2002)	14
2.1	world dyestuff usage 1992 (Holme, 2002)	14
2.2	Estimated annual global consumption of cellulosic dyes (Holme, 2002)	14
2.3	Pollution potential of some of the dyes and chemicals used in the textile	1.5
	industry	15
2.4	Classification of dyes according to the dyeing methods	19
2.5	Number of natural dyes for different hues (Pardeshiand Paul, 2002)	26
2.6	Global sources of natural red dyes (Bhawna , 2001)	27
2.7	Global sources of natural blue dyes (Bhawna, 2001)	27
2.8	Global sources of natural black dyes (Bhawna, 2001)	28
2.9	Global sources of natural yellow dyes (Bhawna, 2001)	28
2.10	Global sources of natural green dyes (Bhawna, 2001)	29
2.11	Global sources of natural brown dyes (Bhawna, 2001)	29
2.12	Global sources of natural orange/peach dyes (Bhawna, 2001)	29
2.13	US companies selling natural dyes through internet sertations	59
3.1	The main requirements for a basic set of natural dyes	64
3.2	Experimental liquor volumes	69
3.3	Standard reference numbers for fastness tasting	75
3.4	Wash fastness (WF) and rub fastness (RF) ratings	76
3.5	Light fastness (LF) Ratings	76
3.6	Equipment used for performance evaluation	77
3.7	Equipment used in the performance analysis of dyed materials	79
4.1	Characteristics of cotton fabrics	84
4.2	Characteristics of silk fabrics	85
4.3	Characteristics of wool yarns	85
4.4	Sieve analysis data for N. lappacium sample	86
4.5	Dye uptake values for different dyeing techniques	87
4.6	Characteristics of selected natural dyes in Sri Lanka	88-90
4.7	Selected bio- materials for detailed studies	92
4.8	Characteristics for cotton fabric dyed with methanolic extract of	
	N.lappaceum	95

4.9	Characteristics for silk fabric dyed with methanolic extract of	
	N. lappaceum	96
4.10	Characteristics for wool yarn dyed with methanolic extract of	
	N. lappaceum	97
4.11	Fastness properties of dyed cotton, silk fabrics and wool yarn under	
	conventional conditions of metal modanting with methanolic extract of	
	N.lappaceum	97
4.12	Characterization of environmental impact	99
4.13	Characteristics for cotton fabric dyed with methanolic extract of T. erecta	101
4.14	Characteristics for silk fabric dyed with methanolic extract of T. erecta	102
4.15	Characteristics for wool yarn dyed with methanolic extract of T. erecta	102
4.16	Fastness properties of dyed cotton, silk fabrics and wool yarn under	
	conventional dyeing with different metal modanting with methanolic	
	extract of T. erecta	103
4.17	Characterization of environmental impact	104
4.18	Characteristics for cotton fabric dyed with methanolic extract of	
	S. reticulata University of Moratuwa, Sri Lanka.	106
4.19	Characteristics for silk fabric dyed with methanolic extract of	
	S. reticulata www.lib.mrt.ac.lk	107
4.20	Characteristics for wool yarn dyed with methanolic extract of	
	S. reticulata	108
4.21	Fastness properties of dyed cotton, silk fabrics and wool yarn under	
	conventional Dyeing of metal modanting with methanolic extract of	
	S. reticulata	108
4.22	Characterization of environmental impact	109
4.23	Characteristics for cotton fabric dyed with methanolic extract of	
	C.fenestratum	111
4.24	Characteristics for silk fabric dyed with methanolic extract of	
	C. fenestratum	112
4.25	Characteristics for wool yarn dyed with methanolic extract of	
	C. fenestratum	112
4.26	Fastness properties of dyed cotton, silk fabrics and wool yarn under	
	conventional heating with different metal modanting with methanolic	
	extract of C. fenestratum	113

xi

4.27	Characterization of environmental impact	114
4.28	Characteristics for cotton fabric dyed with methanolic extract of A. cepa	116
4.29	Characteristics for silk fabric dyed with methanolic extract of A. cepa	117
4.30	Characteristics for wool yarn dyed with methanolic extract of A. cepa	117
4.31	Fastness properties of dyed cotton, silk fabrics and wool yarn under	
	conventional conditions of metal modanting with methanolic extract of	
	A. cepa	118
4.32	Characterization of environmental impact	119
4.33	Characteristics for cotton fabric dyed with methanolic extract of	
	G. mangostana	121
4.34	Characteristics for silk fabric dyed with methanolic extract of	
	G. mangostana	122
4.35	Characteristics for wool yarn dyed with methanolic extract of	
	G. mangostana	123
4.36	Fastness properties of dyed cotton, silk fabrics and wool yarn under	
	conventional heating with different metal modanting with methanolic	
	extract of G. mangostana ersity of Moratuwa, Sri Lanka.	124
4.37	Characterization of environmental impacts & Dissertations	125
4.38	Characteristics for cotton fabric dyed with methanolic extract of	
	A. heterophyllus	127
4.39	Characteristics for silk fabric dyed with methanolic extract of	
	A. heterophyllus	127
4.40	Characteristics for wool yarns dyed with methanolic extract of	
	A. heterophyllus	128
4.41	Fastness properties of dyed cotton, silk fabrics and wool yarn under	
	conventional conditions of metal modanting with methanolic extract	
	of A. heterophyllus	129
4.42	Characterization of environmental impact	130
4.43	Characteristics for cotton fabric dyed with methanolic extract of	
	C. sinensis	132
4.44	Characteristics for silk fabric dyed with methanolic extract of	
	C. sinensis	133
4.45	Characteristics for wool yarn dyed with methanolic extract of	
	C. sinensis	134

4.46	Fastness properties of dyed cotton, silk fabrics and wool yarn under	
	conventional dyeing with different metal modanting with methanolic	
	extract of C. sinensis	135
4.47	Characterization of environmental impact	136
4.48	Characteristics for cotton fabric dyed with methanolic extract of	
	R. cordifolia	138
4.49	Characteristics for silk fabric dyed with methanolic extract of	
	R. cordifolia	139
4.50	Characteristics for wool yarn dyed with methanolic extract of	
	R. cordifolia	140
4.51	Fastness properties of dyed cotton, silk fabrics and wool yarn under	
	conventional heating with different metal modanting with methanolic	
	extract of R. cordifolia	141
4.52	Characterization of environmental impact	142
4.53	Characteristics for cotton fabric dyed with methanolic extract of	
	C. domestica	144
4.54	Characteristics for silk fabric dyed with methanolic extract of	
	C. domestica Electronic Theses & Dissertations	145
4.55	Characteristics for wool yarn dyed with methanolic extract of	
	C. domestica	146
4.56	Fastness properties of dyed cotton, silk fabrics and wool yarn under	
	conventional conditions of metal modanting with methanolic extract of C	
	domestica	147
4.57	Characterization of environmental impact	148
4.58	COD data Summary	148
4.59	Tolerance limits for effluents from textile industry discharge into inland	
	surface waters	149
4.60	Cost of natural dyes to get standard depths	150
4.61	Catergorisation of colour obtain from bio-materials	151
4.62	Bio-materials with similar colours	152
4.63	Bio materials with different mordants	153
5.1	Bio materials with different mordants	160
5.2	Categorisation of colour obtained from bio-materials	160
5.3	Dye exhaustion percentages of 10 bio-materials	160

LIST OF FIGURES

Figure		Page
2.1	Peruvian textiles	8
2.2	Textile dyeing in morocco	9
2.3	Classification of textile colourants	20
2.4	Puskola Book from Ambakke Muhandiram	44
2.5	Apsara paintings at Sigiriya	48
2.6	Cave paintings at Dambulla temple	48
2.7	Dumbara mats	50
2.8	Masks painting in Sri Lanka	51
2.9	Laquor painted items	53
2.10	Body paintings by Henna	54
2.11	A woman at the loom	55
2.12	Natural dyed yarns	58
2.13	Natural dyed woven saree	58
2.14	Industrial scale natural dyeingity of Moratuwa, Sri Lanka.	58
2.15	Natural dye kitchen Electronic Theses & Dissertations	58
2.16	Spread of activities involving, natural dyes in Sri Lanka	58
3.1 a,	b Dyeing of robe and squeezing	62
3.2	Dyestuff extraction and dyeing step	65
3.3	Laboratory drying oven	68
3.4	Industrial grinding machine	68
3.5	Sieve analyser	68
3.6	Aqueous extraction of R. cordifolia	69
3.7	Solvent extraction unit	70
3.8	Sonicator	70
3.9	Vacuum filtration unit	71
3.10	Selection of optimum conditions for dyeing	73
3.11	Temperature time diagram for dyeing Process	73
3.12	Conventional dyeing in sample dyeing machine	74
3.13	CIE, L,a,b colour co-ordinate system	78
4.1	Availability of natural dye sources - regional distribution	82
4.2	Developed process flow diagram for traditional robe dyeing	83

4.3	Traditional robe dyed fabrics in the laboratory	83
4.4	Finely ground particles and their aqueous extracts	86
4.5	Dye uptake for bio-materials by different dyeing methods	86
4.6	Dyeing conditions	87
4.7a,b	Raw N. lappaceum Fruit & dried pericarps	94
4.8	UV-Vis spectrum of methanolic extract of N. lappaceum	94
4.9	Change in K/S values with different mordants for cotton fabrics after	
	dyeing with methanolic extract of N. lappaceum	95
4.10	Change in K/S values with different mordants for sil fabrics after	
	dyeing with methanolic extract of N. lappaceum	96
4.11	Change in K/S values with different mordants for wool yarns after	
	dyeing with methanolic extract of N. lappaceum	96
4.12	Fabric samples dyed with methanolic extract of N. lappaceum with	
	different mordants	98
4.13a,	bFresh T. erecta and dried petals	99
4.14	UV-Vis spectrum of methanolic extract of T. erecta	100
4.15	Change in K/S values with different mordants for cotton fabrics after	
	dyeing with methanolic extract of T. erecta & Dissertations	100
4.16	Change in K/S values with different mordants for silk fabrics after	
	dyeing with methanolic extract of T. erecta	101
4.17	Change in K/S values with different mordants for wool yarns after	
	dyeing with methanolic extract of T. erecta	102
4.18	Fabric samples dyed with methanolic extract of T. erecta with different	
	mordants	104
4.19a.	bLeaves of S. reticulata and bark	105
4.20	UV-Vis spectrum of methanolic extract of S. reticulata	105
4.21	Change in K/S values with different mordants for cotton fabrics after	
	dyeing with methanolic extract of S. reticulata	106
4.22	Change in K/S values with different mordants for silk fabrics after	
	dyeing with methanolic extract of S. reticulata	107
4.23	Change in K/S values with different mordants for wool yarns after	
	dyeing with methanolic extract of S. reticulata	107
4.24	Fabric samples dyed with methanolic extract of S. reticulata with	
	different mordants	109

4.25a,	bC. fenestratum plant and dried bark	110
4.26	UV-Vis spectrum of methanolic extract of C. fenestratum	110
4.27	Change in K/S values with different mordants for cotton fabrics after	
	dyeing with methanolic extract of C. fenestratum	111
4.28	Change in K/S values with different mordants for silk fabrics after dyeing	
	with methanolic extract of C. fenestratum	111
4.29	Change in K/S values with different mordants for wool yarns after	
	dyeing with methanolic extract of C. fenestratum	112
4.30	Fabric samples dyed with methanolic extract of C. fenestratum with	
	different mordants	114
4.31a,	bA. cepa bulb and skin	115
4.32	UV-Vis spectrum of methanolic extract of A. cepa	115
4.33	Change in K/S values with different mordants for cotton fabrics after	
	dyeing with methanolic extract of A. cepa	116
4.34	Change in K/S values with different mordants for silk fabrics after	
	dyeing with methanolic extract of A .cepa	116
4.35	Change in K/S values with different mordants for wool yarns after	
	dyeing with methanolic extract of A. cepa & Dissertations	117
4.36	Fabric samples dyed with methanolic extract of A. cepa with different	
	mordants	119
4.37a, hFresh fruit of <i>G. mangostana and d</i> ried pericarp 1		120
4.38	UV-Vis spectrum of methanolic extract of G. mangostana	120
4.39	Change in K/S values with different mordants for cotton fabrics	
	after dyeing with methanolic extract of G. mangostana	121
4.40	Change in K/S values with different mordants for silk	
	fabrics after dyeing with methanolic extract of G. mangostana	122
4.41	Change in K/S values with different mordants for wool	
	yarns after dyeing with methanolic extract of G. mangostana	122
4.42	Fabric samples dyed with methanolic extract of G. mangostana with	
	different mordants	124
4.43a	,bA. heterophyllus plant and saw dust	125
4.44	UV-Vis spectrum of methanolic extract of A. heterophyllus bark	126
4.45	Change in K/S values with different mordants for cotton	
	fabrics after dyeing with methanolic extract of A. heterophyllus	126

4.46	Change in K/S values with different mordants for silk fabrics	
	after dyeing with methanolic extract of A. heterophyllus	127
4.47	Change in K/S values with different mordants for wool yarns	
	after dyeing with methanolic extract of A. heterophyllu	128
4.48	Fabric samples dyed with methanolic extract of A. heterophyllus with	
	different mordants	130
4.49a,	bFresh tea (C. sinensis) leaves and dried tea leaves	131
4.50	UV-Vis spectrum of methanolic extract of C. sinensis	131
4.51	Change in K/S values with different mordants for cotton fabrics after	
	dyeing with methanolic extract of C. sinensis	132
4.52	Change in K/S values with different mordants for silk fabric after dyeing	
	with methanolic extract of C. sinensis	133
4.53	Change in K/S values with different mordants for wool yarns after dyeing	
	with methanolic extract of C. sinensis	134
4.54	Fabric samples dyed with methanolic extract of C.sinensis with different	
	mordants	136
4.55a	, b R. cordifolia Plant and dried chips Moratuwa, Sri Lanka.	137
4.56	UV-Vis spectrum of methanolic extract of R. cordifolia	137
4.57	Change in K/S values with different mordants for cotton fabric after with	
	dyeing methanolic extract of R. cordifolia	138
4.58	Change in K/S values with different mordants for silk fabric after dyeing	
	with methanolic extract of R. cordifolia	139
4.59	Change in K/S values with different mordants for wool yarns after dyeing	
	with methanolic extract of R. cordifolia	140
4.60	Fabric samples dyed with methanolic extract of R. cordifolia with	
	different mordants	142
4.61a	a,b C. domestica plant and root	143
4.62	UV-Vis spectrum of methanolic extract of C. domestica	143
4.63	Change in K/S values with different mordants for cotton fabrics after	
	dyeing with methanolic extract of C. domestica	144
4.64	Change in K/S values with different mordants for silk fabrics after dyeing	
	with methanolic extract of C. domestica	145
4.65	Change in K/S values with different mordants for wool yarns after dyeing	ţ
	with methanolic extract of C. domestica	145

4.66	Fabric samples dyed with methanolic extract of C. domestica with	
	different mordants	147
4.67	Ready to use Dye Concentrates (RTDF) of natural dyes	151
4.68	Analysis of questionnaire	153
4.69	Sourcing resources	154
4.70	Some views of the exhibition	155

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

ABBREVIATIONS

AATCC	American Association of Textile Chemists and Colourists
AD	Anno Domini – After Death
BASF	Badische Anilin und Soda Fabrik (German chemical products
	company)
BC	Before Christ
BOD	Biochemical Oxygen Demand
BMICH	Bandaranayake Memorial International Conference Hall
CD	Compact Disk
CI	Colour Index
CIELAB	Commission Internationale d'Eclairage
COD	Chemical Oxygen Demand
DNA	Deoxyribo Nucleic Acid
ESCAP	Economic and Social Commission for Asia and the Pacific
FTIR	Fourier Transform Infra Red spectroscopy
ICI	Imperial Chemical Industries
ICP	Inductively Coupled Plasma Optical Emission
	Spectrophotometer Theses & Dissertations
IR	Infra-red www.lib.mrt.ac.lk
ISO	International Standard Organisation
K/S	Relationship between Absorption and Scattering Spectrum
LF	Light Fastness
MLR	Material to Liquor Ratio
MT	Metric tonnes *
NA	Not Applicable
ND	Not Detected
owf	On Weight of Fabric
RTDC	Ready to Dye Concentrate
RF	Rubbing Fastness
ТА	Tannic acid
UV-Vis	Ultra Violet Visible Spectroscopy
WF	Wash Fastness
WHO	World Health Organisation