

UNIVERSITY OF MORATUWA

IMPROVEMENT OF WEAPON LOCATING RADAR CONTROL SYSTEM WITH VISION-BASED TARGET VERIFICATION

SRI LANKA

K.V.P. DHAMMIKA 03/8041

Department of Electronic and Telecommunication Engineering

A proposal submitted in partial fulfillment University of Moratuwa, Sri Lanka. Electronic Thes Of & Dissertations www.lib.mrt.ac.lk The requirement for the degree of

Master of Philosophy

Supervisor: Dr. E.C. Kulasekere

Department of Electronic and Telecom Engineering,

University of Moratuwa

March 2010

DECLERATION

The work submitted in this dissertation is the result of my own investigation, except where otherwise stated.

It has not already been accepted for any degree, and is also not being concurrently submitted for any other degree.

Major K.V.P. Dhammika Sri Lanka Signal Corps [Candidate] University of M

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

I endorse the declaration by the candidate

Dr. E.C. Kulasekere Department of Electronic and Telecommunication Engineering University of Moratuwa [Supervisor]

ABSTRACT

Weapon locating radar control system with vision - based target verification is an important apparatus in real-time battle planning. It provides present situation of the battle field to the field commanders, so that they can make most accurate decisions. In the radar control system for vision base military fire finding, the most important feature is the presentation of live video taken by UAVs (Unmanned Aerial Vehicle) to help locate potential targets such as heavy weapons of the enemy. During the war, weapon locating radar played a vital role by locating ballistic weapons of the enemy and helping out ground forces to destroy them before they could make significant casualties on our troops. Radar control system with vision-base target verification has been designed to achieve better accuracy of target detection by verifying the effect of metrological parameters for the accuracy of target acquisition. In that, the main focus was to develop a user interface, which is capable of efficiently indicating targets. The study was focused to discover the impact prediction and back-track extrapolation methods of radars, metrological effects on projectile calculation, variation of refractive index of air, and effect of Earth's rotation in determining the target. A raster map has been designed to show targets on screen. This raster map has been found very useful, and it was extensively used during the war. A GPS radar interface was also built, and real-time video taken by UAVs were incorporated to the system. A secure data networks have been developed to transmit real-time video.

Sri Lankan military had to undergo casualties and major setbacks due indirect enemy weapons. In fact, it was one of the most needed requirements for the Sri Lanka Army to improve techniques and devices to counter these enemy weapons. For this cause, Sri Lankan government invested a large amount of foreign exchange in recent times. However, the success was limited. Therefore, this development project was launched to augment the available AN/TPQ-36 weapon locating radar adding to it the features mentioned above. Effects of metrological data were acquired and applied to the artillery fire units and a significant improvement of accuracy was achieved for 122mm rocket and 130mm artillery. Refractive index variation of the atmosphere was calculated up to 20Km altitude and feed into the radar to improve accuracy of height calculation of the targets. Real-time videos of surveillance UAV were incorporate to the system so that artillery impact sites could have been identified accurately, without need of forward observation officers.

ACKNOWLEDGMENTS

Dr. E.C. Kulasekere, Prof. (Mrs.) I. J. Dayawansa, late Dr. D. A. I. Munindradasa, and Dr S. R. Munasinghe deserve many thanks for spending their invaluable time and paying great attention in supervising this project while giving all necessary advices, solutions and directions to make it successful.

I am deeply indebted to the Department of Electronic and Telecommunication Engineering of University of Moratuwa and Sri Lanka Signals Corps, Sri Lanka Artillery, Sri Lanka Army and Centre for Research and Development Ministry of Defence for providing me all hardware, software and all infrastructure facilities to implement this project.

My special thanks go to Maj. Gen. S. A. P. P. Samarasinghe, Brig E. P. De Z. Abeysekara, Brig. T. F. Meedin, Brig. K. R. P. Rowel, Group Capt. J. Amarasena, Lt. Col. K. A. W. S. Rathnayake, Maj. (Dr) R. M. Monaragala, Capt. A. M. T. Amarakoon and Mr. Rathnayake for their support and advices in testing and developing this work.

University of Moratuwa, Sri Lanka.

I am also grateful to Prof (Mrs.) D. Dias, Mr. A. T. L. K. Samarasinghe, Dr A. Pascual, and the non academic members of the Department of Electronic and Telecommunication Engineering who helped me to implement this development work.

A Lot of individuals including friends who helped me in numerous ways are also acknowledged. Finally I offer my deep gratitude for my parents and spouse for their encouragements and help extended to me right throughout this period.

TABLE OF CONTENTS

Title	Page
Declaration	ii
Abstract	iii
Acknowledgement	iv
Table of Content	v
List of Figures	viii
List of Tables	Х
Nomenclature	xi

Chapter 1.	Introd	luction	1
Chapter 2.	Litera	ture Survey of Moratuwa, Sri Lanka.	5
2.1	The C	urrent Weapon Locating Radar Systems in	
with the	he Sri La	anka Army	5
	2.1.1	AN/TPQ-36 Weapon Locating Radar	6
	2.1.2	SLC -2 Long Range Weapon Locating Radar	6
2.2	Overv	iew of the Software Platform	7
2.3 GPS Localization for Fire Finder Radar		8	
	2.3.1	GPS Location Indication	8
	2.3.2	NMEA 0183 Sentence	9
2.4	Projec	tile Path Prediction	9
	2.4.1	α,β Filtering	9
	2.4.2	Metrological Effects for Projectile Path Prediction	9
	2.4.3	Coordinate Transformations	10
2.5	Netwo	rk Design for System Integration	10
	2.5.1	Microwave Path Profile Calculation	11
	2.5.2	Network Security	11
	2.5.3	Video Multicasting	12

Chapter 3.	Proposed System Design	13
3.1	Overall System Architecture	13
	3.1.1 Operational Decision Making and Battle Management	t
	Room	14
	3.1.2 Fire Finder Radar	14
	3.1.3 Intelligent and Other Surveillance Networks	15
	3.1.4 Acoustic Ranging System	15
	3.1.5 Direction Finding Network	15
	3.1.6 Metrological Data Acquisition Network	15
	3.1.7 GPS Localization	15
	3.1.8 UAV Real Time Image Connectivity	16
3.2	Project Stage	16
Chapter 4.	Project Implementations	17
4.1	Development of Graphical User Interface(GUI)	17
4.2	Implementation of Java Base Raster Map Indicator	18
4.3	Acquiring of GPS Position for Self-Localization	19
4.4	Development of Java Base Applications	19
Chapter 5.	Data Collection Analysis and Implementations	21
5.1	Exciting Radar Control Interface and UAV Image Interface	21
5.2	Metrological Data Collection	27
	5.2.1 Calculation of Variation of Refractive Index of the Air	r. 31
	5.2.2 Effect of Wind Velocity and Drag Coefficient	33
	5.2.3 Test Firing for Radar AN/TPQ-36 after Apply Metrol	ogical
	data	33
5.3	Target Detection	34
	5.3.1 Process of Target Tracking	35
	5.3.2 Acquiring of Projectile Path Data from the Radar	35
	5.3.3 Projectile Path Data Estimation	37
	5.3.4 Effects Due to Earth's Rotation	42

Chapter 6	UAV Video Interface	50
6.1	6.1 Nature of Video Data and Suggested Execution Plans	
6.2	Implementation of the Network	50
	6.2.1 Calculation of Path Profile.	51
	6.2.2 Limitations and Challenges	51
6.3	Significance of Video Data	52
Chapter 7 Conclusion and Discussion		53
References		55
Appendix A	Trailer Status Word Detail Description	57
Appendix B	PIC Microcontroller Program Used for Transmitter Unit	63
Appendix C	PIC Microcontroller Program Used for Receiver Unit	65
Appendix D	Router Configuration Commands Used for UAV Data Network	67

University of Moratuwa, Sri Lanka Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF FIGURES

Figure		Page
1.1	AN/TPQ-36 Radar shelter, weapon location unit	3
3.1	Proposed system block diagram	13
4.1.1	Loading a map from a drop down list	17
4.2.1	Coordinate conversion scheme selecting two locations	18
4.4.1	Loading map from a file	20
5.1.1	Trailer status word	23
5.1.2	Six status data shift gates recorded using "Memory Hicorder"	24
5.1.3	Trailer (Antenna group) status words recoded	
	using "Memory Hicoder"	24
5.1.4	Universal electrical interface circuitry	26
5.1.5	Universal electric interface developed using PIC microcontrollers	
	and RF transceiver modules. Theses & Dissertations	27
5.2.1	The metrological data acquisition system	28
5.2.2	Equipment installed at during military operation at Wakarei	29
5.2.3	Metrological view at Mankerni atmosphere	30
5.2.4	Metrological view at Panagoda atmosphere	30
5.2.5	Refraction index (n) variation in air vs. height	32
5.3.1	Tracking Process of AN/TPQ-36	35
5.3.2	Projectile path range (R) estimation	38
5.3.3	Projectile path azimuth angle (A) estimation	38
5.3.4	Projectile path elevation angle (E) estimation	39
5.3.5	Coordinate system of main projectile plane of motion	39
5.3.6	Motion in O"X"Y"Z"	41
5.3.7	Spherical and Cartesian coordinates	42

5.3.8	Rotational effects on range	43
5.3.9	Projectile lag	44
4.3.10	Latitudinal effect	45
5.3.11	Deviation in southern direction (x) as t and u varies	47
5.3.12	Deviation in east word direction (y) as t and u varies	47
6.1.1	The Sri Lanka Army UAV data network	49
6.2.1	Path profile drawing using Global Mapper	51

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF TABLES

Table		Page
5.2.4	Test Firing results after applying metrological data to	34
	radar AN/TPQ -36	
5.3.1	Projectile track data	36

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

NOMENCLATURE

Following symbols and abbreviations are used in this document

A/D	-	Angle of departure
φ		Angle of elevation
BSU	-	Beam Steering Unit.
E1	-	2MB data stream
g	-	Gravitational force (9.8ms ⁻²)
Hv	-	Horizontal component of velocity
h	-	Projectile height at time t.
HV	-	High Voltage.
LSB	-	Lower Side Bit
MV	-	Muzzle velocity
m/s	-	Meters per second
Р	-	Air pressure
R		Range to the level point
ToF	S.	Time of flight to the level point
Т	-	Any given time/ absolute temperature.
U	-	Humidity
Vv	-	Vertical component of velocity
WLR	-	Weapon Locating Radar
WLU	-	Weapon Location Unit.