WEATHER RISK ON CONSTRUCTION PROJECTS IN SRI LANKA

Ishan VB Wiratunga

Department of Building Economics
University of Moratuwa
Sri Lanka

Submitted in Partial Fulfilment of the Requirement of the Degree of Master of Science

2010

94531

Abstract

Almost all the activities III construction projects are outdoor, thus different weather conditions such as rain, wind and snow would directly impact on the performance of any construction project. Being a tropical country, the effect from rain would be experienced mostly in Sri Lanka. Weather risk can be defined as financial gain or loss due to a change in weather conditions over a period of time.

Models to manage the weather risk on construction projects could be developed which had already been in practice in a few countries such as US and Japan. Further, such tools have transformed into new business ventures such as insurance schemes too. In these models, if rainy weather prevails beyond a certain predetermined period, contractors can claim the losses incurred by bad weather.

Weather records of previous years could be studied, and a proper forecast on seasonal rainfall with Intensities (Precipitation) for current years could be assessed accurately. Then major and minor weather windows (WW) could be identified and the weather sensitive, high cost items which are at a risk are identified. Further, identification of Dry Spell, Rain Spell and Wet Spell are important for proper construction planning.

This research aims in developing a strategic plan for construction projects in the planning stage so that the rain risk on the project performance could be minimized. Further, through a strategic plan weather sensitive (WS) items could be identified and avoid the WW periods within the frame work of accepted construction sequence. Finally the weather risk could make an Opportunity not a Threat provided this aspect is properly managed.

Keywords: Weather Risk, Construction Industry, Precipitation, Rainfall, Strategic plan, Weather Windows

24)

WEATHER RISK ON

CONSTRUCTION PROJECTS IN SRI LANKA

NEARQUA STERENINU ASTERENINU ASTE

Ishan VH Wiratunga

Department of Building Economics
University of Moratuwa
Sri Lanka

69 "10" 69.003(043)

TEPARTMENT OF BUILDING ECONOMICS
Faculty of Architecture
UNIVERSITY OF MORATUWA.

Submitted in Partial Fulfilment of the Requirement of the Degree of Master of Science 9453 / January 2010

University of Moratuwa

94531

Table of Contents

TABLE OF	CONTENTS	ii
LISTOF TA	BLES	v
LIST OF FIGURES ABBREVIATIONS		vi
		vi
AKKNOWLEFGEMENT		
DECLARAT	ΓΙΟΝ	
ABSTRACT	Γ	1
CHAPTER :	1 .	2
INTRODUC		2
1.1	Background of study of Moratuwa, Sri Lanka.	3
1.2	Electronic Theses & Dissertations	4
1.3	www.lib.mrt.ac.lk Aims and Objective	5
1.4	Methodology	6
1.5	Analysis	7
CHAPTER 2	2	
RAIN RISK	S IN CONSTRUCTION PROJECTS	8
2.1	Introduction	8
2.2	What is Risk?	9
2.3	Risk Management	11
	2.3.1 Risk identification	14
	2.3.2 Risk Analysis	16
	2.3.3 Risk Response	17
2.4	Rain risk	19
	2.4.1 Measurement of WR factors in other countries.	21

CHAPTER 3		23
RESERACH	METHODOLOGY	23
3.1	Introduction	23
3.2	Research Design	23
3.3	Aspects of case studies	30
	3.3.1 Defining the barriers of a Case study	31
	3.3.2 The Unit of Analysis	33
	3.3.3 The research design	33
	3.3.4 Single case study	35
	3.3.5 Quality of research	32
3.4	Development of mathematical model	35
3.5	Principles of Data collection	37
	3.6.1 Data gathering	37
	3.6.2 Data analysis and presentation University of Moratuwa, Sri Lanka. [3.6.2] Identification of WW in a few districts of Strions	37 37
	www.lib.mrt.ac.lk	
CHAPTER 4		40
ANALYSIS		40
4.1	Introduction	41
4.2	Case Analysis	42
4.3	Data collection and processing	43
4.4	Running the model for selected case	45
4.5	Detailed analysis for different scenarios	48
4.6	Presentation of Results	51
	4.6.1 Presentation of Results	51
	4.6.2 Outcome of Results	52

CHAPTER 5 CONCLUSION		53
		53
5.1	Introduction	53
5.2	Recommendations	. 54
5.3	Scope and Limitations	54
5.4	Further Research	55
5.5	Final comment	56
REFERENC	ES	57
APPENDICES		61
Appendix A		61
Appe	ndix B	62
Appe	ndix C	63
Appe	University of Moratuwa, Sri Lanka.	64
Appe	Electronic Theses & Dissertations	65
Appe	ndix F www.lib.mrt.ac.lk	66

List of Tables

Table 2.1:	Typical allocation of Risk in construction projects
Table 2.2:	Level of importance of Risk
Table 3.1	Rain days in four districts of SL
Table 4.1	Ranked in the order of cost
Table 4.2	Ranked in the order of WS
Table 4.3	Not ranked and the construction sequence followed
Table 4.4	WBS as per cost
Table 4.5	MWD average of four years University of Moratuwa, Sri Lanka
Table 4.5.1	Electronic Theses & Dissertations factor for Scenario I www.lib.mrt.ac.lk
Table 4.5.2	Output factor for Scenario 2
Table 4.5.3	Output factor for Scenario 3
Table 4.5.4	Output factor for Scenario 4
Table 4.5.5	Output factor for Scenario 5
Table 4.5.6	Output factor for Scenario 6
Table 4.6	Results of output factor for different Scenarios

List of Figures

Figure 1.1 : Legend for typical weather record representation

Figure 2.1 : Insured and uninsured costs

Figure 2.3 : Risk management framework

Figure 2.4 : Rainfall Pattern in Colombo in 2009

Figure 2.5 : Climate calendar of Sri Lanka

Figure 3.1 : Nested research methodologies

Figure 3.2 : Hermeneutic understanding spiral

Figure 3.3 : Process Flow diagram

University of Moratuwa, Sri Lanka.

Figure 3.4 WMatKandyc Theses & Dissertations

www.lib.mrt.ac.lk

Figure 3.5 : WW at Nuwaraeliya

Figure 3.6 : WW at Kurunegala

Figure 3.7 : WW at Galle

Figure 4.2 : Work output for different Scenarios

Figure: 4.1 : Average WW of MWD in Kurunegala

Figure 4.6 : Graphical representation of Table 4.6

Abbreviations

AoG Act of God

ASCE American Society of Civil Engineering

BSW Building Service Works

CAR Contractors All Risk

CI Construction Industry

CoC Conditions of Contract

CS Case Study

DD Dry day

DM Department of Meteorology

DPC Damp Proof Course

DS Dry Spell

EW&SS Earth Works & Substructure

EW&L External Works & Landscaping

FW Finishing University of Moratuwa, Sri Lanka.

Electronic Theses & Dissertations
ICB International Competitive Bidding

www.fib.fift.ac

MWD Modified Wet day

RD Rain day

RF Rain fall

RM Risk Management

RR Rain risk

RS Rain Spell

SBD Standard Bidding Document

SE South east

SS Super Structure

WD Wet Day

WMO World Meteorological Organization

WR Weather Risk

WS Weather Sensitivity

WW Weather Window

Acknowledgement

In completing this dissertation, I was heavily relied on commitment, encouragement, support, ideas, assistance, and guidance from various kinds of people in the University and in outside and I take this opportunity to acknowledge them all.

I would like to use this opportunity to express my profound gratitude to my Supervisor Ms. Nayanathra De Silva and all the lecturers involved in the course of Master of Science in Project Management for all the knowledge and support given throughout the last couple of years. In doing this research a success all the knowledge gathered from the course was heavily used which positioned me to a higher elevation in the field of PM.

Further, I would sincerely thank to Mr. GB Samarasinghe the Director General of Department of Meteorology and the Senior Meteorologist Mr. DA Jayasinghearachchi and the other staff members of DM for all the support given to me during the research and their confidence and trust helped me to put more weight and high commitment on this research which ultimately was a national requirement which had not addressed earlier.

Another huge portion of my acknowledgement goes to the project staff at Kurunegala where the case analysis of this research is made. All those who cooperated in providing me the required information are reminded with appreciation.

As we have explained in the first year of post graduate course, my worthy appreciation for my colleges and peers who shared the experiences and thoughts which helped me to carry out this research a in this level. I frankly and deeply regret to mention any names if missed of those who rendered their cooperation to complete this report.

Last but not least my heartiest thanks goes to my wife and two children not forgetting my mother-in-law for all the support given me especially during the last few months who shared my heavy workload which helped me to concentrate more on this research work.

A Study Submitted In Partial Fulfilment of the Requirements of the Degree of Master of Science in Project Management

Declaration

I hereby declare this submission is my own work and that, it contains no materials previously published or written by another person nor material which, to a substantial extent, has been accepted for the award of any other degree or diploma or a University or other institution of higher learning, except where an acknowledgement is made in the text.

UOM Verified Signature

IVH WIRATUNGA
3rd February 2010

I hereby acknowledge that Mr Ishan VH Wiratunga has followed the dissertation process set by the Department of Building Economics

UOM Verified Signature

09102110

Nayanthara De Silva Dissertation Supervisor

Date

ABSTRACT

WEATHER RISK ON CONSTRUCTION PROJECTS

Almost all the activities in construction projects are outdoor, thus different weather

conditions such as rain, wind and snow would directly impact on the performance of any

construction project. Being a tropical country, the effect from rain would be experienced

mostly in Sri Lanka. Weather risk can be defined as financial gain or loss due to a change

in weather conditions over a period of time.

Models to manage the weather risk on construction projects could be developed which had

already been in practice in a few countries such as US and Japan. Further, such tools have

transformed into new business ventures such as insurance schemes too. In these models, if

rainy weather prevails beyond a certain predetermined period, contractors can claim the

University of Moratuwa, Sri Lanka. losses incurred by bad weather. c Theses & Dissertations

Weather records of previous years could be studied, and a proper forecast on seasonal

rainfall with Intensities (Precipitation) for current years could be assessed accurately. Then

major and minor weather windows (WW) could be identified and the weather sensitive,

high cost items which are at a risk are identified. Further, identification of Dry Spell, Rain

Spell and Wet Spell are important for proper construction planning.

This research aims in developing a strategic plan for construction projects in the planning

stage so that the rain risk on the project performance could be minimized. Further, through

a strategic plan weather sensitive (WS) items could be identified and avoid the WW

periods within the frame work of accepted construction sequence. Finally the weather risk

could make an Opportunity not a Threat provided this aspect is properly managed.

Keywords: Weather Risk, Construction Industry, Precipitation, Rainfall, Strategic plan,

Weather Windows

1