DEVELOPMENT OF A LAND USE/COVER MONITORING SYSTEM USING SATELLITE IMAGES

JAYAKODY ARACHCHILAGE SWARNALATHA JAYAKODY

This thesis was submitted to the Department of Earth Resource Engineering of the University of Moratuwa in partial fulfillment of the requirements for the Degree of Master of Philosophy.

Department of Earth Resource Engineering Faculty of Engineering University of Moratuwa Sri Lanka

August, 2004University of Moratuwa8255182551

82551

622 05

DER 02/02

Thesis

DECLARATION

This dissertation had not been previously presented in whole or part, to any University or institution for a higher degree.

UOM Verified Signature

ature of the Candidate

Certified

Signature of the Supervisor

ABSTRACT

Remote Sensing and Geographical Information System are modern tools for ecosystem management. Remotely sensed data gives convenient and rapid solutions to problems in a variety of applications.

Land is limited, and vital as it is the main provider of important natural resources. The fast growing human population has created many problems, due to the increasing demands for food, water, shelter and fuel. Thus such socio-economic factors often dictate how land is used regionally.

Land use affects land cover and in turn, changes in land cover affect land use. Thus land plays a major role in any development process. In tropical countries, due to the impact of human beings, the rates of change in vegetation cover and land use are high. Hence frequent updating of land use maps is necessary to provide the information needed by planners and politicians.

The main objective of this research is to investigate the possibility of using different remote sensing satellite images for developing a land use/cover monitoring system.

This research is carried out in an area of approximately 400 square kilometres in the southern part of Sri Lanka. Imageries of SPOT, IRS and Landsat satellites are used. Different colour combinations are prepared and false colour composite images are used for image processing.

Maximum likelihood method is used for image classification and the overall accuracy of the classifications is more than 90%. Using this classification, change detection matrices are developed to give changes for every land use class considered. A primary problem encountered in the study area is the mixed pixels. It is difficult to separate crop land from residential area, as some people reside in houses within the cultivated area. Filtering techniques can only partially remedy this problem.

In order to monitor the land use/cover, image differencing method is applied and the extent of the detected changes in terms of pixels or hectares is calculated.

A procedure is proposed as the land use/cover monitoring system using satellite images. Under this monitoring system, the extent of land use/cover changes can be computed by using different satellite images with varied spatial and spectral ranges.

ACKNOWLEDGEMENTS

The research presented in this thesis was carried out at the University of Moratuwa, Department of Earth Resource Engineering under the financial assistance from the Asian Development Bank (ADB). I sincerely thank ADB and the University of Moratuwa for giving me this opportunity to conduct this research project.

This thesis could not have been written without the research carried out by others and the valuable discussions with supervisors, colleagues, friends and family. Hence I would like to express my gratitude to those who assisted me in developing my knowledge within the framework of this research.

I would like to express my sincere thanks to Prof. J. W. D. Somasundara (former Vice Chancellor, Sabaragamuwa University) and Mr. M.P. Salgado (former Head, Department of Surveying Sciences, Sabaragamuwa University) for giving me this opportunity. Also I am thankful to Prof. I.K. Perera, (Vice Chancellor, Sabaragamuwa University) and Mr. K.R.M.U. Bandara (Co-Supervisor and Head, Department of Surveying Sciences, Sabaragamuwa University).

My thanks go to Dr. U.G. Senarath (former Head and former Supervisor, Department of Earth Resource Engineering, University of Moratuwa) and Mr. S. Weerawarnakula (former Head, Department of Earth Resource Engineering, University of Moratuwa). I am also grateful to Dr. D.M.D.O.K. Dissanayake (Head, Department of Earth Resource Engineering, University of Moratuwa) regarding his valuable contributions.

I am most grateful to my supervisor Dr. U.G.A. Puswewala (Senior Lecturer, Department of Civil Engineering, University of Moratuwa). He directed me on many occasions and also gave me valuable advice.

I am thankful to Prof. P.G.R. Dharmaratne (Senior Lecturer, Department of Earth Resource Engineering, University of Moratuwa) for his valuable suggestions and the encouragement.

I am indebted to the Survey Department of Sri Lanka for their support by providing me with high expensive satellite images. I would like to thank Mr. K.D.P. Shantha (Superintendent of Surveys), Mrs. A.L.S.C. Perera (Superintendent of Surveys), Mr. S. Sivanandaraja (Superintendent of Surveys) and all the academic staff of the Institute of Surveying and Mapping for their innumerable support and advice. Thanks are also due to Dr. H. Manthrithilake (former Director, Mahaweli Upper Catchments), who also provided me with a set of satellite imageries.

I would like to give my thanks to Prof. P. Wickramagamage (Senior Lecturer, Department of Geology, University of Peradeniya) regarding his immense support.

I wish to thank Mr. H. G. Kamal Chandana (Statistical Officer), Divisional Secretariats Office, Hambantota. He gave great support in collecting some secondary data and field data.

ii

I wish to thank the academic and non-academic staff of the Department of Surveying Sciences, Sabaragamuwa University and Departments of Earth Resource Engineering and Civil Engineering, University of Moratuwa.

In the field, residents of the study area and security staff of the Lunugamvehera Reservoir helped and gave me essential details. I appreciate their support and am thankful to them.

My gratitude goes to all the authors and publishers whose books and articles I used, in the preparation of this thesis.

I express my gratitude to my mother whose moral and emotional support helped me immensely.

Finally I am indebted to my husband Saman for his valuable assistance, encouragement given throughout this research. My children, Sasanka and Denethi are presently at a playful age, and due to the heavy workload it was impossible for me to devote much attention to them. I appreciate their tolerance.

J. A. S. Jayakody

B.Sc. (Surveying Sciences) Department of Surveying Sciences Sabaragamuwa University of Sri Lanka.

08.08.2004.

TABLE OF CONTENTS

Abst Ackr Tabl List List	ract nowledg e of con of figure of tables	gements atents es s			i ii iv vi viii
1.0	Introduction 1.1 Description of research problem 1.2 Objectives 1.3 Structure of the thesis				
2.0	Literat	ure revie	w		5
3.0	Theory 3.1 3.2 3.3	y and met Introduc History Data sou 3.3.1 3.3.2 3.3.3	hodology etion of remote irces Aerial ph Maps Satellite 3.3.3.1 3.3.3.2 3.3.3.3	sensing notographs imageries SPOT Landsat IRS	9 9 9 10 10 10 11 11 11 12 13
	3.4 3.5 3.6 3.7 3.8 3.9 3.10	Image p 3.4.1 3.4.2 3.4.3 Image c 3.5.1 3.5.2 Post cla Classifi Land us Land us Change 3.10.1	3.3.3.4 a.3.3.4 a.3.3.4 brocessing Colour c Pre-proc Image en lassification Supervisa 3.5.1.1 3.5.1.2 Unsuper ssification cation acc be/cover be classific detection Algorith	Satellite data used for the current researc composites bessing mhancement on sed classification Training data Classification algorithm rvised classification huracy assessment cation system mus for change detection	h 13 14 15 15 16 17 17 17 18 19 23 23 24 26 26 26 30 31
4.0	Descr 4.1 4.2 4.3 4.4 4.5 4.6	iption of Locatio People Water Climate Land us Field su	study area n e se arvey		37 37 38 38 39 41 49

5.0	Development of monitoring system		
	5.1	Basic structure of the monitoring system	51
	5.2	Data collection and analysis	52
	5.3	Pre-processing procedure	53
	5.4	Classification procedure	54
	5.5	Filtering procedure	55
	5.6	Change detection procedure	56
	5.7	Final output	57
	5.8	Summary of the procedure	59
	5.9	Software used	59
6.0	Analysis of results		81
	6.1	Image classification	81
	6.2	Change detection	87
7.0	Conclusions and recommendations		92
	7.1	Summary and observations	92
	7.2	Conclusions	93
	7.3	Recommendations	93
	Apper	ndix A	94
	Refer	encer	99

References

Figure 1.1 Location of the study area	3
Figure 3.1 Spectral reflectance curves for land covers	11
Figure 3.2 Study area of the image	16
Figure 3.3 Concept of classification	18
Figure 3.4 Two dimensional feature space	19
Figure 3.5 Parallelepiped classification	20
Figure 3.6 Minimum distance to means classification	22
Figure 3.7 Diagram of multi date composite image in change detection	31
Figure 3.8 Diagram of image algebra change detection	32
Figure 3.9 Diagram of post classification comparison change detection	33
Figure 3.10 Diagram of multi-date change detection using a binary	
change mask applied to Date 2	34
Figure 3.11 Multi-date change detection using ancillary data source as date 1	34
Figure 3.12 Diagram of spectral change vector analysis	36
	27
Figure 4.1 Map of the study area on scale 1:250000	3/
Figure 4.2 Rainfalls and mean temperature	41
Figure 4.3 Pannagamuwa wewa with algae	42
Figure 4.4 Goats waiking along the dam of the Lunugamvenera Reservoir	42
Figure 4.5 Part of the Lunugarivenera Reservoir	43
Figure 4.0 Adamoned paddy fields closer to weerawlia	43
Figure 4.7 Faddy field hear Fannagamuwa	44
Figure 4.0 Paddy area closer to Pannagamuwa with coconut	44
Figure 4.10 Ellagala Anicut containing water surrounded by small forest	45
Figure 4.11 Yoda Wewa with water and algae	46
Figure 4.12 Banana Plantations instead of Paddy	46
Figure 4.13 Weerawila Wewa showing water on either side of the road	47
Figure 4.14 Weerawila Wewa more water is contained in this side of the Wewa	47
Figure 4.15 Crop land (Peanuts)	48
Figure 4.16 Paddy land closer to Tissamaharama	48
Figure 4.17 Surveyed control points using GPS	49
Figure 5.1 Flow chart of the monitoring system	51
Figure 5.2 Data collection and analysis	52
Figure 5.3 Colour composite images	60
Figure 5.4 Pre-processing procedure	53
Figure 5.5 Geo-referenced images	61
Figure 5.6 Classification procedure	54
Figure 5.7 Classified SPOT-1 image	62
Figure 5.8 Classified SPOT-1 image, with unclassified pixels	63
Figure 5.9 Flow chart of the filtering procedure	55
Figure 5.10 Classified filtered image of SPOT-1	64
Figure 5.11 Classified filtered image of IRS-1B	65
Figure 5.12 Classified filtered image of IRS-IC	66
Figure 5.13 Classified filtered image of Landsat-4 TM (part I)	67

Figure 5.14 Classified filtered image of Landsat-4 TM (part II)	68
Figure 5.15 Classified six separate classes of SPOT-1 image	69
Figure 5.16 Classified six separate classes of IRS-1B image	70
Figure 5.17 Classified six separate classes of IRS-1C image	71
Figure 5.18 Flow chart of the change detection	56
Figure 5.19 Detected changes of all land use/cover	72
Figure 5.20 Change detection on residential	73
Figure 5.21 Change detection on water	74
Figure 5.22 Change detection on covered water	75
Figure 5.23 Change detection on marshy	76
Figure 5.24 Change detection on paddy	77
Figure 5.25 Change detection on forest	78
Figure 5.26 Flow chart of the final out put	57
Figure 5.27 Vector model of the raster water layer of SPOT-1	57
Figure 5.28 Vector layers on Water	58
Figure 5.29 Overlaying classified images	79
Figure 5.30 Graphical representation of the change detection on water	80
Figure A-1 Uncorrected images of SPOT 1	04
Figure A-2 Uncorrected images of IPS 1P (LISS II)	94
Figure A 3 Uncorrected images of IDS 1C (LISS II)	95
Figure A 4 Uncorrected images of Londoot 4 (nort I)	90
Figure A-4 Uncorrected images of Landsat-4 (part 1)	97
rigure A-5 Unconfected images of Landsat-4 (part II)	98

LIST OF TABLES

Table 3.1 Spectral band ranges of SPOT-1	12
Table 3.2 Spectral band ranges of Landsat -4	12
Table 3.3 Spectral bands ranges of IRS -1B (LISS II)	13
Table 3.4 Spectral band ranges of IRS-1C (LISS III)	13
Table 3.5 Characteristics of the satellite data	14
Table 3.6 USGS land use/cover classification system	27
Table 3.7 U.S.G.S. Level I land use colour code	28
Table 3.8 The CRS land use classification system with	
abbreviations and comments	29
Table 3.9 Changes or sector codes possible for three bands	36
Table 4.1 Population in 1981 and 2001	38
Table 4.2 Extent and capacity of the water body	39
Table 4.3 Water levels of the Lunugamvehera Reservoir	39
Table 4.4 Rainfall at Lunugamvehera and Badagiriya meteorological station	40
Table 4.5 Rainfall and temperature at Hambantota meteorological station	40
Table 6.1 Classified pixels	81
Table 6.2 Error matrix of the classified image of SPOT-1	81
Table 6.3 Accuracy totals of the classified image of SPOT-1	82
Table 6.4 Error matrix of the classified image of IRS-1B (LISS II)	82
Table 6.5 Accuracy totals of the classified image of IRS-1B (LISS II)	83
Table 6.6 Error matrix of the classified image of IRS-1C (LISS III)	83
Table 6.7 Accuracy totals of the classified image of IRS-1C (LISS III)	84
Table 6.8 Error matrix of the classified image of Landsat-4 TM (part I)	84
Table 6.9 Accuracy totals of the classified image of Landsat-4 TM (part I)	85
Table 6.10 Error matrix of the classified image of Landsat-4 TM (part II)	85
Table 6.11 Accuracy totals of the classified image of Landsat-4 TM (part II)	86
Table 6.12 Summary of the overall classification accuracy	86
Table 6.13 Conditional Kappa (K [^]) statistics	86
Table 6.14 Change detection matrix between 1989 and 1992	87
Table 6.15 Change detection matrix between 1989 and 1992 in hectares	87
Table 6.16 Change detection matrix between 1989 and 2001	88
Table 6.17 Change detection matrix between 1989 and 2001 in hectares	88
Table 6.18 Change detection matrix between 1992 and 2001	89
Table 6.19 Change detection matrix between 1992 and 2001 in hectares	89
Table 6.20 Extent of the selected water features in hectares	90
Table 6.21 Detected changes of water features in extent	91

viii