PROBABILISTIC APPROACH TO FIX THE OVERHEAD LINE POWER TRANFER LIMITS, WITH EFFECTIVE WIND COOLING

A dissertation submitted to the
Department of Electrical Engineering, University of Moratuwa in partial fulfillment of the requirements for the
Degree of Master of Science

by
D.M.J. ROSHAN KUMARA

Supervised by: Eng. W.D.A.S. Wijayapala
Eng. D.G. Rienzie Fernando

Department of Electrical Engineering
University of Moratuwa
Sri Lanka

2010

94545

Abstract

Open distribution line access and economic uncertainties are the reasons why many utilities are operating their lines at much higher loads than they were initially designed for. Because of this, the effects of higher operating temperatures on the safety and reliability of overheads lines were studied in this dissertation.

It is observed that overloading of conductor usually occur during peak hours in according to the average daily load pattern of Sri Lanka. During this time conductor temperature reaches to its maximum. However, conductor temperature may not increase due to the cooling effect on availability of wind. The over temperature causes reduction of the tensile strength of the conductor.

The work has been identified in significant areas where improved analytical methods are relevant. Several such methods have been created and their impact is discussed in this report.

As such, present conductor ratings are studied in accordance to IEC standard [7] and IEEE standard [5, 6]. Wind data at four different sites have been collected and are used for the analysis. Current variations of three different sites are taken for the study.

The probability of over temperature could be determined by applying Rayleigh distribution and cumulative frequency distribution respectively when the wind speed is below 1 mls and the current rating is more than 202A. At the second stage, sag at maximum temperature has been calculated for each span. Finally,. Economical optimizations of losses are analyzed.

In the first part, allowable loss of strength of Aluminium is analyzed through a probabilistic approach. Accordingly, it is observed that strength of Aluminium is not
ever reduced below 90% of its original strength during the conductor lifetime of 50 years. This reduction of strength is negligible. Therefore, effective wind speed can be taken as $1 \mathrm{~m} / \mathrm{s}$.

In the second part, sag variations were analyzed for each span which is presently used in CEB against maximum allowable temperature $\left(90^{\circ} \mathrm{C}\right)$ in the absence of wind speed. It is observed that ground clearance is not violated when it is operated at maximum allowable temperature $\left(90^{\circ} \mathrm{C}\right)$.

Finally, under this method costs and benefits are evaluated with increase of losses against investment incurred in strengthening of the, CEB network. Net present value is analyzed considering present value of expenses (increase of losses of existing system) and present value of savings (investment incurred in strengthening of the CEB network). Net present value is positive for load patterns of Omara, Ratmalwala and Kudagammana. Therefore those projects are financially viable.

DECLARATION

The work submitted in this dissertation is the result of my own investigation. except where otherwise stated

It has not already been accepted for any degree. and is also not being concurrently submitted for any other degree.

UOM Verified Signature

D.M.J. Roshan Kumara

Date: $28^{\text {th }}$ Januar! 2010

UOM Verified Signature

Eng. W.D.A.S. Wijayapala

Senior Lecturer
University of Moratuna

UOM Verified Signature

Eng. D.G. Rienzie Fernando

Amithi Power Consultants (P>t) I Id

Acknowledgement

This work has been carried out at the Department of Electrical Engineering. University of Moratuwa.

I would like to thank my project supervisor. Eng. W.D.A.S. Wijayapala senior lecturer. university of Moratuwa, for his guidance. support and encouragement given to me beyond his role of project for completion of this final dissertation successfully.

I also take this opportunity to extend my sincere thanks to project supervisor. Ing. D.G. Rienzie Fernando, Managing Director. Amithi Power Consultants (Pve) Itd who always direeted me to the correct path. giving thoughtiul comments and encouragement. whenever I discussed technical issues to carry out this project successfully.

1 also thank Mr. B.A.N. Fernando. Deputy General Manager, Energy Purchase Branch. Transmission. CI:13 and Mr. S. Bogahawatte. Project Director. LSHP Project. Region 4. CEB for extending their support by providing data to carry out this work.

1 would also like to express my appreciation to all my colleagues and particularly to Buddhika. Shantha. Chamil. Samanthi and Rajis for their encouragement.

Also I like to remind my brothers. Kumudu. Prabath and Udayanea. In particular. I am grateful to my wife Needu for her love and continuous encouragement.

Last but not the least my gratitude goes to my dear parents: Gilbert and Suviniththeir love. moral support and understanding from start to end of this cour

CONTENTS

Declaration i
Abstract ii
Acknowledgement 1)
Contents 1
List of Figures viii
List of Tables ix
Abbreviations X
1 Introduction 1
1.1 Background 1
1.2 Objective 1
1.3 Scope of work 2
1.4 Determination of maximum permissible conductor temperature 2
2 Problem Statement 3
3 Maximum admissible loss of tensile strength 5
3.1 Units and identilication of letters symbols. 5
3.2 Current carrying capacity of \triangle CSR Racoon conductors 7
3.2.1 Steady state heat balance equation 7
3.2.2 loreed convection heat loss 7
3.2.3 Natural convection 8
3.2.4 Radiated heat loss rate 8
3.2.5 Rate of solar heat gain 9
3.2.6 Conductor electrical resistance 9
3.2 licquations for air properties, solar angles. and solar heat flux 10
3.3.1 Dynamic viscosity of air 10
3.3 .2 Air density 10
3.3.3 Thermal conductivity of air 10
3.3.4 Altitude of the sun 11
3.3.5 Aximuth of the sun 12
3.3.6 Total heat flux received by a surface at sea level 13
3.3.7 Total heat flux elevation correction factor 15
3.4 Sample calculations 15
3.4.1 Steady state thermal rating 15
3.4 Problem statement 15
3.4.3 Convection heat loss 16
3.4.4 Radiated heat loss 17
3.4.5 Solar heat gain 18
3.4.6 Steady state thermal rating 18
3.5 Input data 19
3.5.1 Wind and ambient temperature 19
3.5.2 Air density. viscosity and conductivity 20
3.5.3 1missivity and absorptivity 20
3.5.4 Solar heat gain 20
4 Probabilistic Approach to Allow for Maximum Admissible Loss of Tensile Strength 21
4.1 Probability of over temperature 21
4.1.1 Raylcigh probability distribution 21
4.1.2 Cumulative frequency 21
4.2 Calculation of probability of wind speed by applying Rayleigh distribution 22
4.3 Calculation of probability of over current 24
4.4 Probability of over temperature up to $87^{\circ} \mathrm{C}$ 27
4.5 Method of line tension calculation 28
5 Appropriate Ground Clearance 30
5.1 Introduction 3()
5.2 Sag and tension 30
5.2.1 Bquivalent span 30
5.2.2 Selection of tension 31
5.2.3 Sag and tension formula 31
5.2 .4 Design criteria 32
5.3 Sample calculations 33
5.4 Clearance from the ground 37
5.5 Maximum sag for ACSR Racoon conductor 37
6
Economical Optimization of Losses 39
6.1 Eneres losses due to increase of CC(..... 39
6.2 Present value of losses 41
6.3 listimated cost of reconstruction 41
6.3.1 Present value of savings 42
6.4 leconomic vability of the project 42
8 Conclusions 44
List of references 46
Annex A 48
Annex B 49
Annex C 52

University of Moratuwa, Sri Lanka. Electronic Theses \& Dissertations www.lib.mrt.ac.lk
List of Figures
Chapter 4
Figure 4.1 Actual frequency vs. wind speed at Narakkalliya 22
Figure 4.2 Probability density vs. wind speed at Narakkalliya 23
Figure 4.3 Cumulative frequeney vs. wind speed (m / s) at Narakkalliya 23 Figure 4.4 Avcrage current vs. time (24 hrs) 25
Figure 4.5 Actual frequency vs average current 25
Figure 4.6 Probability density vs. average current 26
Figure 4.7 Cumulative frequency vs. average current 26
Figure $4.8 \quad$ I.oss of strength of Aluminium type $A 1$ as a function of temperature 28
List of Tables

Chapter 3

Table $3.1 \quad$ Units and identification of letter symbols 5
Table 3.2 Viscosity. density and thermal conductivity of air 11
Table 3.3 Solar azimuth constant. C (in degree) is function of the "hour angle", (1) and solar arimuth variable. X. 12
Table 3.4 Solar altitude, H_{c}, and azimuth. $/ \%$ at various latitudes for an annual peak solar heat input 13
Table 3.5 Cofflicient for equation (3.19) 14
Table 3.6 Total heat flux received by a surface at sea level normal to the sun's rays. $1+$
Table 3.7 Solar heat multiplying factors. $K_{\text {soher }}$ for high altitudes 15
Table 3.8 l:quivalent combination of wind speed and direction for equal convective cooling 1)
Chapter 4
Table 4.1 Ray leigh probability distribution for wind speed below $1 \mathrm{~m} / \mathrm{s}$ 24
Table 4.2 Voltage level, ave. current and multiplication factor. 24
Table 4.3 Probability distribution for load more than 202 $2 \wedge$ 27
Table 4.4 Conductor tension for various temperatures as a percentage of a vailable UTS 29
Chapter 5
Table 5.1 Pole spacing chart 33
Table 5.2 Maximum allowable sag for cach pole 37
Table 5.3 Conductor sag for each span vs. conductor temperature 37
Chapter 6
Table 6.1 I oss difference vs. each distance at Hambantota Gonnoruwa line 40
Table 6.2 Present value of expenses (losses) 41
Table 6.3 Present value of savings 42
Table 6.4 Present value of extra cost of losses $+2$
Table 6.5 Present value of constructing a new line 43
Table 6.6 Net present value of each project 43

Abbreviations

ACSR	Aluminium Conductor Steel Reinforced
Avg.	Average
CCC	Current Carrying Capacily
cdf	cumulative density function
CEB	Ceston Flectricity Board
CIGRE	International Council on Large Electrical Systems
EDT	İveryday Tension
EDS	Ficryday Stress
IEC	International Electrotechnical Commission
IEEE	The Institute of lileetrical and Electronic Engineers
IIGSS	Ilambantota Grid Sub Station
LKR.	Sri lamkan Rupees
Max.	Maximum
Min.	Minimum
pdf	probability density function
PVF	Present Value Factor
UTS	Ulimate Tensile Strength

Chapter 01

Introduction

1.1 Background

Recently, electrical utilities show more interest in utilization of distribution network to their maximum capacity. Therefore an utility has to open many accesses which cause heavier and heavier loads on distribution lines. But. ceonomic uncertainties have made most distribution lines and utilities very reluctant to expend capital resources for network reinforcements and construction of new lines. In turn, this has resulted in a greater need to operate distribution lines at high eurrents and at high temperatures than initially designed for. Thus the assessment of the impact of these desired increase in power transfer capability on reliability and safety are of increased and vital importance.

Wind speed and wind direction are two important weather parameters which affect the cooling of the overhead conductors. Rating practices and assumptions are varying from utility to utility. The most of common practice to calculate line rating at highest ambient temperature. full solar radiation and effective wind speed of $0.61 \mathrm{~m} / \mathrm{s}$. Nevertheless the HEEE/CIGRE survey shows that over the past decade. number of utilities has incrementally increased their line ratings by relaxing some of the rating assumptions. Some utilities now assume that an effective wind speed of $0.91 \mathrm{~m} / \mathrm{s}$. or even higher.

This dissertation focuses on the improvement of power transfer limits on existing distribution lines with effective wind cooling.

1.2 Objective

To carry out an investigation for improvement of power transfer limits (overloading capability) on existing distribution lines with effective wind cooling.

1.3 Scope of work

The scope of this work are given below.

- Investigate conductor rating and colleet wind data of several specific areas.
\therefore Find the possibilities to lix a wind speed to up rate the conductor rating.
* Find the possibility to adopt a new rating on probabilistic possibility on conductor facing over temperature.
\therefore To study ground clearance violations when operating on higher temperatures.
\therefore Possibilities to adopt the new rating considering related losses.

1.4 Determination of maximum permissible conductor temperature

As per the IIC Standard 1597-1995171 and IIFE: Standard 738-2006|6|. maximum temperature limit is selected.
\therefore In order to minimize loss of tensile strength of conductor

- To keep appropriate clearance sity of Moratuwa, Sri Lanka.
- I Iconomical optimization of line foss. or a combination of above.

Chapter 02

Problem Statement

Open distribution line access and economic uncertainties are the reasons why many utilities are operating their line at much higher loads than they were initially designed for. Because of this. the effects of higher operating temperature on the safety and reliabilities of overhead lines were studied.

Current carrying capacity of conductors mainly depend on intensity of solar radiation. solar absorption coefficient. emissivity coefficient, ambient temperature. conductor diameter. electrical resistance, wind speed and wind direction.

Wind speed and wind direction are two important weather parameters which affect the cooling of the overhead conductor. Rating practices and assumptions vary from utility to utility. The most common practice is to calculate line rating at highest ambient temperature. full solar radiation and effective wind speed of $0.61 \mathrm{~m} / \mathrm{s}$.

It is noted that $\triangle C S R$ Racoon conductor's CCC become 202Λ at the temperature of $80^{\circ} \mathrm{C}$ and at still air conditions. and 221Λ at the wind speed $1 \mathrm{~m} / \mathrm{s}$ and zero wind angle. However. in the absence of wind speed conductor temperature reaches to $87^{\circ} \mathrm{C}$. By analyzing wind data of several areas. it is observed that most of time wind speed is more than $1 \mathrm{~m} / \mathrm{s}$. As such. probability of over temperature could be determined by applying Rayleigh distribution when wind speed is below $1 \mathrm{~m} / \mathrm{s}$.

Further. it is noted that line is becoming overloaded during peak hours. Probability of overloading could be determined by applying cumulative frequeney when it is more than 202A.

Over temperature of conductor can occur due to wind speeds below $1 \mathrm{~m} / \mathrm{s}$ and conductor loading more than 202 A. This dissertation focuses on the probabilistic approach for the improvement of power transfer capability of existing Racoon
distribution lines up to 220 A with effective wind cooling and to study the behavior of the conductor on overloading and possible over temperatures that the conductor may undergo. Further the advantages and disadvantages that might be experienced by the supply authority on cconomic viability have been studied.

ACSR Racoon conductor is the most commonly used conductor in the existing distribution system of CEB. Therefore this conductor was chosen for the calculation in the study.

University of Moratuwa, Sri Lanka. Electronic Theses \& Dissertations www.lib.mit.ac.Ik

Chapter 03

Maximum Admissible Loss of Tensile Strength

The passage of electric current through a conductor causes a rise in temperature which can have annealing effect on Aluminium causing a loss of strength. The amount of strength that is lost depends on the temperature and, duration, and the effeet is cumulative. i.e 10 hrs cach year of 10 years has similar effect to heating the conductor continuously for 100 hrs at the same temperature $|7|$. It is a normal practice to limit operating temperatures $1080^{\circ} \mathrm{C}$ and emergeney load temperature to $125^{\circ} \mathrm{C}$ for CCSR conductors.

By analyzing load pattern of CEB network and wind speed data of Sri Lanka. it is noted that when wind speed become below $1 \mathrm{~m} / \mathrm{s}$ and current becomes more than 202A, it causes over temperature of conductor. Sinee these two events are independent. probability of over temperature of conductor can be calculated by multiplication of above probability of occurrence of the above two events.

This chapter describes the mathematical formulation to evaluate the current carrying capacity of a bare conductor. There are many methods for calculation of line loading. Most commonly used method uses the conductor temperature to solve the heat balance equation to evaluate the current carrying capacity.

3.1 Units and identification of letter symbols

Symbol	Description	SI Enits
A^{\prime}	Projected area of conductor per unit length	$\mathrm{m}^{2} / \mathrm{m}$
C	Solar azimuth constant	degree
D	Conductor diameter	mm
H_{c}	Altitude of sun	degrec
I_{c}	Ilevation of conductor above sea level	m
1	Conductor current	Λ
$K_{\text {angle }}$	Wind direction factor	-

Table 3.1 Units and identification of letter symbols

Symbol	Description	SI Units
$K_{\text {solur }}$	Solar altitude correction factor	-
k_{f}	Thermal conductivity of air at temperature $\mathrm{l}_{\text {tilm }}$	W/m $\mathrm{m}^{\circ} \mathrm{C}$
L.al	Degrees of latitude	degrees
N	Day of the year	-
$q_{c i n}, q_{c} \cdot q_{c} \cdot 2 . q_{c}$	Convected heat loss per unit length	W/m
4	Radiated heat loss rate per unit length	W/m
$4 s$	Ileat gain rate from sun -	W/m
Q_{s}	Total solar and sky radiated heat flux rate	$\mathrm{W} / \mathrm{m}^{2}$
$Q_{\text {se }}$	Total solar and sky radiated heat flux rate elevation corrected	$\mathrm{W} / \mathrm{m}^{2}$
$R\left(T_{c}\right)$	AC resistance of conductor at temperature. T_{c}	Ω / m
$T{ }_{\text {u }}$	Ambient temperature	${ }^{\circ} \mathrm{C}$
T	Conductor temperature	${ }^{\circ} \mathrm{C}$
$T_{\text {filtu }}$	$\left(\mathrm{I}_{\mathrm{c}} \cdot \mathrm{T}_{\mathrm{a}}\right)^{\prime} / 2$	${ }^{\circ} \mathrm{C}$
$T_{\text {im }}$	Minimum conductor temperature for which ac resistance is specified	${ }^{\circ} \mathrm{C}$
$T_{\text {high }}$	Maximum conductor temperature for which ac resistance is specified	${ }^{\circ} \mathrm{C}$
V_{1}	Speed of air stream at conductor	m/s
Z_{c}	Azimuth of sun	degrees
Z_{1}	Arimuth of line	degrees
*	Solar absorptivity (0.23 10.0.91)	-
δ	Solar declination (0) 0090)	degrees
ε	Imissivity (0.23 1000.91)	-
φ	Angle between wind and axis of conductor	degrees
β	Angle between wind and perpendicular to conductor axis	degrees
p_{f}	Density of air	$\mathrm{kg} / \mathrm{m}^{3}$
θ	Fiffective angle of incidence of the sun ${ }^{\text {s rays }}$	degrees
μ_{f}	Dynamic viscosity of air	Pas
ω	Hours from local sun noon times 15	degrees
χ	Solar arimuth variable	-

Table 3.1 Units and identification of letter symbols (continued)

3.2 Current carrying capacity of \triangle CSR Racoon conductors

The CCC of a conductor is the maximum steady state current inducing a giten temperature rise in the conductor. for given ambient conditions.

3.2.1 Steady-state heat balance equation

The steady-state temperature rise of a conductor is reached whenever the heat gained by the conductor from various sources is equal to the heat losses. This is expressed by equation given below $|6|$.
$q_{c}+q_{r}=q_{s}+I^{2} R\left(T_{c}\right)$
$q_{c} \quad$ is the convection heal loss
$q_{r} \quad$ is the heat loss by radiation of the conductor
$q_{S} \quad$ is the solar heat gain by the conductor surface
$I^{2} R\left(T_{c}\right) \quad$ is the heat generated by Joule effect

Note that magnetic heat gain. corona heat gain. evaporative heat losses are not taken into account in equation (3.1).

3.2.2 Foreed convection heat loss

$q_{c 1}=\left[1.01+0.0372\left(\frac{D \rho_{f} k_{w}}{\mu_{f}}\right)^{0.52}\right] k_{f} k_{\text {angle }}\left(T_{c}-T_{a}\right)$
$q_{c 2}=\left[0.0119\left(\frac{D p_{j} v_{w}}{u_{f}}\right)^{0.6}\right] k_{f} K_{\text {angle }}\left(T_{c}-T_{a}\right)$

Equation (3.2) applies at low winds but is inaceurate at high wind speeds. Equation (3.3) applies at high wind speeds. being incorrect at low wind speeds. At any wind speed, the larger of the two calculated convection heat losses is used $|6|$.

The convective heat loss rate is multiplied by the wind direction factor, $K_{\text {angle }}$ where 0 . is the wind direction and the conductor axis:

$$
\begin{equation*}
K_{\text {angle }}=1.194-\cos \varphi+0.194 \cos 2 \varphi+0.368 \sin 2 \varphi \tag{3.4}
\end{equation*}
$$

Alternatively, the wind direction factor may be expressed as a function of the angle. β. between the wind direction and a perpendicular to the conductor axis. This angle is complement of o, and the wind direction factor becomes:

$$
\begin{equation*}
K_{\text {angle }}=1.194-\cos \beta-0.194 \cos 2 \beta+0.368 \sin 2 \beta \tag{3.5}
\end{equation*}
$$

This is the form of the wind direction factor as originally suggested in Davis |13| and is used in the computer program listed in Annex Λ

3.2.3 Natural Convection

With zero wind speed. natural convection occurs, where the rate heat loss is as shown in below $[6]$.

$$
\begin{equation*}
q_{c n}=0.0205 p_{f}{ }^{0.5} D^{0.75}\left(T_{c}-T_{a}\right)^{1.25} \tag{3.6}
\end{equation*}
$$

It has been argued that at low wind speeds, the convection cooling rate should be calculated by using a vector sum of the wind speeds or "natural" wind speed. llowever. it is recommended that only the larger of the foreed and natural convection heat loss be used at low speeds instead of their vector sum as this is conservative. The computer program listed in Annex A takes this approach.

For both forced and natural convection. air density $\left(p_{f}\right)$, air viscosity $\left(\mu_{f}\right)$, and coefficient of thermal conductivity of air (k_{f}) are taken from Table 3.2 or calculated with the equations of 3.2 at $T_{\text {fitm }}$ where:

$$
\begin{equation*}
T_{\text {film }}=\frac{T c+T a}{2} \tag{3.7}
\end{equation*}
$$

3.2.4 Radiated heat loss rate

Radiated heat loss rate is expressed by equation given below $|6|$.

$$
\begin{equation*}
q_{r}=0.0178 \mathrm{D} \varepsilon\left[\left(\frac{\mathrm{~T}+273}{100}\right)^{4}-\left(\frac{\mathrm{Ta}+273}{100}\right)^{4}\right] \tag{3.8}
\end{equation*}
$$

3.2.5 Rate of solar heat gain (see Table 3.4, Table 3.5, Table 3.6)

Rate of solar heat gain is expressed by equation given below $|6|$.
$q_{s}=\alpha Q_{s e} \sin \theta A^{\prime}$

Where

$\theta=\arccos \left|\cos \left(I_{c}\right) \cos \left(Z_{c}-Z_{1}\right)\right|$

3.2.6 Conductor electrical resistance

The electrical resistance of bate stranded conductor varies with frequency. average current density. and temperature. For 50 Hz ace, at temperature of $40^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ gives calculated values of electrical resistance for Λ CSR Racoon conductor.

These calculated values include the frequeney-dependent "skin effect" for all types of stranded conductor, but for other than single layer ACSR. do not include a correction for current density dependent magnetic core effects. which is significant for ACSR conductor having odd numbers of layers of Aluminium strands.

In this standard. electrical resistance is calculated solely as a function of conductor temperature: however. the resistance values entered may be function of frequency and current density. For an example the values of conductor resistance at high temperature. Thing and low temperature. Thor are available for ACSR Racoon conductor. The conductor resistance at any other temperature. T_{C}, is found by liner interpolation according to equation given below $|6|$.
$R_{(T c)}=\left[\frac{R_{\left(T_{\text {high }}\right)^{-R_{\left(T_{\text {low }}\right)}}}^{T_{\text {high }}-T_{\text {low }}}}{\left.]\left(T_{C}-T_{\text {low }}\right)+R_{\left(T_{\text {low }}\right)}\right)}\right.$

This method of resistance calculation allows the user to calculate the high and low temperature resistance values by whatever means is appropriate.

3.3 Equations for air properties, solar angles, and solar heat flux

In the following section. least square polynomial regressions were performed on tabular data for thermal conductivity (3.2.3). total heat flux (3.2.6). and solar heat correction for elevation (3.2.7) to fit an equation on the following form $\lceil 6 \mid$:
$Y=A+B X+C X^{2}+D X^{3}+1: X^{4}+I X^{5}+G X^{6}$

Algebraic equations are giten for viscosity (3.2.1). density (3.2.2). solar altitude (3.2.4) azimuth (3.2.5).

Tables of typical values are provided for convenience.

3.3.1 Dynamic viscosity of air

The dynamic viscosity of air is determined by the algebraic equation given below $|6|$.
$\mu_{f}=\frac{1.458 * 10^{-6}\left(T_{\text {film }}+27.3\right)^{1.5}}{T_{\text {film }}+383.4}$

3.3.2 Air density (Table 3.2)

The air density is determined by the algebraic equation given below $|6|$.
$p_{f}=\frac{1.293-1.525 \times 10^{-4} H_{e}+6.379 \times 10^{-9} H_{e}^{2}}{1+0.00367 T_{\text {film }}}$

3.3.3 Thermal conductivity of air (Table 3.2)

The thermal conductivity of air is determined by the algebraic equation given below |6|.

$$
\begin{equation*}
k_{f}=2.424 \times 10^{-2}+7.4 .77 \times 10^{-5} T_{\text {film }}-4.407 \times 10^{-9} T_{\text {film }}^{2} \tag{3.14}
\end{equation*}
$$

Temp. $\mathrm{T}_{\text {film }}$	Dynamic viscosity μ_{f}	Air density p_{f} ($\mathrm{kg} / \mathrm{m}^{\prime}$)				Thermal conductivity of air k_{f}
${ }^{\circ} \mathrm{C}$	(Pas)	0 m	1000 m	2000 m	4000 m	W/m ${ }^{\text {c }}$
0	0.0000172	1.293	1.147	1.014	0.785	0.0242
5	0.0000174	1.270	1.126	0.995	0.771	0.0246
10	0.0000176	1.2 .47	1.106	0.978	0.757	0.0250
15	0.0000179	1.226	1.087	0.961	0.744	0.0254
20	0.0000181	1.205	1.068	0.944	$=0.731$	0.0257
25	0.0000184	1.184	1.051	0.928	0.719	0.0261
30	0.0000186	1.165	1.033	0.913	0.707	0.0265
35	0.0000188	1.146	1.016	0.898	0.696	0.0269
40	0.0000191	1.127	1.000	0.884	0.685	0.0272
45	0.0000193	1.110	0.984	0.870	0.674	0.0276
50	0.0000195	1.093	0.969	0.856	0.663	0.0280
55	0.0000198	1.076	0.954	0.843	0.653	0.0283
60	0.00000200	1.060	0.940	0.831	0.643	0.0287
65	0.0000202	1.0 .4	0.926	0.818	0.634	0.0291
70	$0.000020+t$	1.029	0.912	0.806	0.625	0.0295
75	0.0000207	1.014	10.899	0.795	0.616	0.0298
80	0.0000209	1.000	0.887	0.783	0.607	0.0302
85	0.0000211	0.986	0.874	0.773	0.598	0.0306
90	0.0000213	0.972	0.862	0.762	0.590	0.0309
95	0.0000215	0.959	0.850	0.752	0.582	0.0313
100	0.0000217	0.9 .16	0.839	0.741	0.574	0.0317

Table 3.2 Viscosity, density and thermal conductivity of air

3.3.4 Altitude of the sun (Table 3.4)

The solar altitude of the sun. H_{c}, in degree (or radians) is given by Equation (3.15) where inverse trigonometric function arguments are in degrees (or radians) $|6|$.

$$
\begin{equation*}
\mathrm{H}_{\mathrm{c}}=\operatorname{arc} \sin \mid \cos (\mathrm{L} \cdot \mathrm{at}) \cos (\delta) \cos ((1)+\sin (\text { Lat }) \sin (\delta) \mid \tag{3.15}
\end{equation*}
$$

The hour angle. ω. is the number of hours from noon times $15^{\circ} \mathrm{C}$ (for example 11 a.m. $-15^{\circ} \mathrm{C} .11$ a.m.. 2 p.m. is $\left.130^{\circ} \mathrm{C}\right)$.

The solar declination. δ, is shown in Iquation (3.16) $|6|$.
$\delta=23.4583 \sin \left|\frac{284+\mathrm{N}}{36.5} 360\right|$

Where, the argument of the sin is in degrees.

The equation is valid for all latitudes whether positive (northern hemisphere) or negative (hemisphere).

3.3.5 Aximuth of the sun (Table 3.5)

The solar azimuth. \%. (in degree) is shown in following equation $|6|$.
$Z_{c}=C+\arctan (x)$

Where

$$
\begin{equation*}
x=\frac{\sin (\omega) \text { University }}{\sin (\text { Lat }) \cos (\omega)-\cos (\text { Lat }) \tan (\delta)} \tag{3.18}
\end{equation*}
$$

The solar azimuth constant. C. (in degrec), is a function of the "hour angle". ω. and the solar azimuth variable, x. as shown in the table $3.2|6|$.

Hour Angle," $\boldsymbol{\omega}$ (degrees)	C if $\mathbf{x}>\mathbf{0}$ (degrees)	C if $\mathbf{x}<\mathbf{0}$ (degrees)
$-180<(1)<0$	0	$\frac{180}{360}$
$0<(1)<180$	180	

Table 3.3 Solar azimuth constant, C (in degree), is a function of the "hour angle", ω, and solar azimuth variable, X

Table 3.4 Solar altitude, H_{c}, and azimuth, $Z \mathrm{c}$, at various latitudes for an annual peak solar heat input

3.3.6 Total heat flux received by a surface at sea level (Table 3.5 and Table 3.6)

The total heat flux density at sea level is dependent on both the solar altitude and atmospheric clarity.

The heat flux received by a surface at sea level as shown in table 5 may be represented by the following regression equation $|6|$.
$Y=$ total heat Mux, $Q_{s}\left(w / m^{2}\right)$
$X=$ solar altitude. H_{c} (degrec)
$Q_{s}=A+B H_{c}+C{H_{c}}^{2}+C H_{c}{ }^{3}+C H_{c}{ }^{4}+C H_{c}{ }^{5}+C H_{c}{ }^{6}$

Table 3.5 Cocfficient for equation (3.19)

Degrees solar altitude	Clear atmosphere	Industrial atmosphere
$\mathrm{H}_{\mathrm{c}}(\mathrm{deg})$	$Q_{,}\left(W / m^{2}\right)$	$Q_{1}\left(W / m^{2}\right)$
5	Electron 234 Theses \&	Dissertati 136
10	WWW. Til 433 rtac.lk	240
15	583	328
20	693	422
25	770	502
30	829	571
35	877	619
40	913	662
45	941	694
50	969	727
60	1000	771
70	1020	809
80	1030	833
90	1040	849

Table 3.6 Total heat flux received by a surface at sea level normal to the sun's
rays

3.3.7 Total heat flux elevation correction factor (Table 3.6)

$Q_{s e}=K_{\text {solar }} Q_{s}$
Where
$K_{\text {solar }}=A+B H_{c}+C H_{e}{ }^{2}$
A 1
B 1.148×10^{-1}
(c) -1.108×10^{-8}

Elevation above sea level $\mathbf{H}_{\mathbf{e}}(\mathbf{m})$	Multipliers for values in Table $\mathbf{3 . 5}$
0	1.00
1000	1.10
2000	1.19
4000	1.28

Table 3.7 Solar heat multiplying factors, $\boldsymbol{K}_{\text {soll }}$ for high altitudes

3.4 Sample calculations

3.4.1 Steady state thermal rating

The calculation of steady-state thermal rating given a maximum allowable conductor temperature. weather conditions. and conductor characteristics may be performed by the computer program in Annex A $|5|$. However. since the process does not require iterative calculations. it can be done by hand. Doing so demonstrations the use of the formulas and yields some insight into the calculation process.

Note that in the following, the number of significant digits does not indicate the accuracy of the formula.

3.4.2 Problem statement

Find the steady-state thermal rating (CCC) for ACSR Racoon condfollowing conditions.
a) Wind speed $\left(V_{11}\right)$ is $1 \mathrm{~m} / \mathrm{s}$ perpendicular to the r
b) Emissivity(e) is 0.6
c) Solar absorptivity (α) is 0.5
d) Ambient air temperature is $30^{\circ} \mathrm{C}$
c) Maximum allowable conductor temperature is $80^{\circ} \mathrm{C}$
f) Conductor outside diameter(I) is 12.27 mm
g) Conductor ac resistance $\left|R\left(T_{c}\right)\right|$ is:

$$
\begin{array}{ll}
\mathrm{R}\left(40^{\circ} \mathrm{C}\right) & 0.4310(\mathrm{kS} / \mathrm{m}) \\
\mathrm{R}\left(80^{\circ} \mathrm{C}\right) & 0.5192(\mathrm{kS} / \mathrm{m})
\end{array}
$$

h) The line runs in an last-West direction so arimuth of line, $/ 190^{\circ}$
i) Latitude is $10^{\circ} \mathrm{North}$
j) The atmosphere is clear
k) Solar altitude ($1 \mathrm{I}_{\mathrm{c}}$) for 12:00 Noon on

1) Average conductor elevation 100 m

3.4.3 Convection heat loss (q_{c})

The natural convection heat loss is calculated by means of equations (3.6). Sce Where

D $=12.27 \mathrm{~mm}$
Electronic Theses \& Dissertations
$T_{\mathrm{c}}=80^{\circ} \mathrm{C}$
www.lib.mrt.ac.lk
$\mathrm{T}_{\mathrm{a}}=30^{\circ} \mathrm{C}$
$T_{\text {film }}=\frac{80+30}{2}=55^{\circ} \mathrm{C}$
$p_{f} \quad=1.076 \mathrm{~kg} / \mathrm{m}^{3}($ lable 3.2$)$
$q_{c n}=0.0205 \times(1.076)^{0.5} \times 12.27^{0.75} \times(80-30)^{1.25}$
$q_{c n}=18.54 \mathrm{~W} / \mathrm{m}$

Since the wind speed is greater than \%ero. the forced convection heat loss for perpendicular wind is calculated according to equation (3.2) and (3.3). corrected for wind direction and compared to the natural and foreed heat convection is used to calculate the thermal rating.

Where
D) $=12.27 \mathrm{~mm}$
$\mathrm{V}_{10}=1 \mathrm{~m} / \mathrm{s}$
T. $800^{\circ} \mathrm{C}$
$T_{a}=30^{\circ} \mathrm{C}$
$T_{\text {film }}=\frac{80+30}{2}=55^{\circ} \mathrm{C}$
$\mu_{f}=1.98 \times 10^{-5} \mathrm{Pas}($ Iable 3.2$)$
$p_{f}-1.076 \mathrm{~kg} / \mathrm{m}^{3}$ (Table 3.2)
$\mathrm{k}_{\mathrm{f}}=0.0283 \mathrm{~W} /\left(\mathrm{m}^{\circ} \mathrm{C}\right)($ Table 3.2$)$

From equation (3.2)
$q_{c 1}=\left[1.01+0.0372\left(\frac{12.27 \times 1.076 \times 1}{1.98 \times 10^{-5}}\right)^{0.52}\right] 0.0283 \times 0.388 \times(80-30)$ $=22.36 \mathrm{~W} / \mathrm{m}$

From equation (3.3)
$q_{c 2}=\left[0.0119\left(\frac{12.27 \times 1.076 \times 1}{1.98 \times 10^{-5}}\right)^{0.6}\right] \times 0.0283 \times 0.388 \times(80-30)$
$20.40 \mathrm{~W} / \mathrm{m}$

As instructed in 3.1.2, select the larger of the two calculated convection heat losses.
$\mathrm{q}_{\mathrm{c}}=22.36 \mathrm{~W} / \mathrm{m}$

Since the wind speed is along the axis of the conductor, the wind direction multiplier. $K_{\text {ungle }}$ is 0.388 . and the forced convection heat loss. Therefore, the forced convection heat loss will be used in the calculating of thermal rating.

3.4.4 Radiated heat loss $\left(\mathrm{q}_{\mathrm{r}}\right)$

The radiated heat loss is calculated with equation (3.8).
Where.
$\mathrm{D}=12.27 \mathrm{~mm}$
$\varepsilon=0.6$
$T_{c}=80^{\circ} \mathrm{C}$
$T_{a}=30^{\circ} \mathrm{C}$
$q_{r}=0.0178 \times 12.27 \times 0.6 \times\left[\left(\frac{80+273}{100}\right)^{4}-\left(\frac{30+273}{100}\right)^{4}\right]$
$q_{r}=9.30 \mathrm{~W} / \mathrm{m}$

3.4.5 Solar heat gain(q.)

The conductor is at $10^{\circ} \mathrm{C}$ North latitude: Approximate values of 11_{c} and Z_{c} can be obtained from Table 3.3 and 3.4. From Table 3.3. the solar altitude. H_{c} and the solar arimuth. $\%_{\mathrm{c}}$ can be determined as follows:
H_{c} at 12:00 noon 89°
$\%$ at 12:00 noon 180°
From table 3.5 for $\mathrm{H}_{\mathrm{c}} \quad 89^{\circ}$ with elear atmosphere:
$Q_{s}=1039 \mathrm{~W} / \mathrm{m}^{2}$ (By interpolation)
$Z=90^{\circ}$ or 270°
$0=\operatorname{arcos}\left|\cos \left(89^{\circ}\right) \cos \left(180^{\circ}-90^{\circ}\right)\right| 90^{\circ}$
Where
$1 .=0.5$
$A^{\prime}=\mathrm{D} / 1000 \quad 12.27 / 1000 \quad 0.01227 \mathrm{~m}$
$\mathrm{K}_{\text {,olara }}=1.0$
$q_{s}=0.5 \times 1039 \times \sin \left(90^{\circ}\right) \times 0.01227$
$\mathrm{q}_{\mathrm{s}}=6.37 \mathrm{~W} / \mathrm{m}$
Electronic Theses \& Dissertations
www.lib.mrt.ac.lk

3.4.6 Steady state thermal rating

Using tiquation (3.1). the thermal rating can be found where:
$\mathrm{q}_{\mathrm{c}}=22.36 \mathrm{~W} / \mathrm{m}$
$\mathrm{q}_{\mathrm{r}}=9.30 \mathrm{~W} / \mathrm{m}$
$\mathrm{q}_{\mathrm{s}}=6.37 \mathrm{~W} / \mathrm{m}$
$\mathrm{R}\left(80^{\circ} \mathrm{C}\right) \quad 5.192 \times 10^{-1} \mathrm{~S} / \mathrm{m}$
$I=\sqrt{\frac{22.36+9.30-6.37}{5.192 \times 10^{-4}}}$
$I=221 \Lambda$

The program listed in Annex Λ can also be used to calculate the steady-state thermal rating.

3.5 Input data

Careful selection of input data for current-temperature relationship is as important as the method of calculation itsell. and requires considerable engineering judgment in the selection of values for cach of the variables. These variables are discussed separate heading. with suggestions given on how to select values to suit particular circumstances. Some suggestions are give as to what factors should be considered when it is necessary to make decisions.

3.5.1 Wind and ambient temperature

Weather conditions have a considerable effect on the thermal loading of bare overhead conductors. The weather provides cooling principally by means of convective heat loss $\left(\mathrm{q}_{\mathrm{v}}\right)$ to surrounding air. The degree of cooling depends on the air temperature and the wind velocity component perpendicular to the conductor.

The effect of wind direction relative to the conductor is coneluded in this standard as equation (3.4 and 3.5). For a given wind speed, winds blowing parallel result in a 60% lower convective heat loss than winds blowing perpendicular to the conductor.
lleight of conductors above ground is significant in terms of wind shielding. 33 kV lines (where the ground clearance is greater) may be expected to be less shielded by trees and terrain than low-voltage lines.

Wind speed (m/s)	Wind direction relative to conductor axis (degrees)
0.6	90
0.8	45
1.3	22.5
2.2	0

Table 3.8 Equivalent combination of wind speed and direction for equal convective cooling

3.5.2 Air density, viscosity and conductivity

The density, viscosity and conductivity of air are used in the calculation losses and can be obtained from Table 3.2.

3.5.3 Emissivity and absorptivity

Emissivity and absorptivity increase from about 0.2 to 0.9 with age. The exact rate of increase depends on the level of atmospheric pollution and the line's operating voltage. Values of 0.5 for solar absorptivity (u) and 0.6 for tmissivity (ε). has been used for ACSR (Racoon) Conductor.

3.5.4 Solar heat gain

A simple method for the calculation of solar heat gain is provided by equation (3.9) and (3.10). The most conservative results are obtained by assuming an angle of incidence of 90°. Which will give the lowest value of current carrying capacity and will be appropriate for many purposes.

University of Moratuwa, Sri Lanka.
Solar heat input to bare overhead conductor can eatse a conductor temperature rise above air temperature of up to $15^{\circ} \mathrm{C}^{\circ}$ in still air. However. more typically. periods of maximum solar heat input are associated with significant wind activity and the actual temperature rise measured for bare conductors in overhead transmission lines seldom exceeds $5^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}$.

Chapter 04

Probabilistic Approach to Allow for Maximum Admissible Loss of Tensile Strength

4.1 Probability of over temperature

The probability of over temperature could be determined by applying Rayleigh distribution and cumulative frequency respectively when wind speed is below $1 \mathrm{~m} / \mathrm{s}$ and conductor current rating is more than 202A.

4.1.1 Rayleigh probability distribution

The probability theory and statistics. the Rayleigh distribution is a continuous probability distribution.

Rayleigh probability density function (pdf) is |16|
$\int(x: \sigma)=\frac{x}{\sigma^{2}} \exp \left(\frac{-x^{2}}{2 \sigma^{2}}\right)$
for $x \in[0, \infty), \sigma>0$

Cumulative distribution function (cd!) is $|16|$
$1-\exp \left(\frac{-x^{2}}{2 \sigma^{2}}\right)$

4.1.2 Cumulative frequency

The cumulative frequency is the frequency where the value of a variable Y is less than a reference value X . The cumblative frequency $\mathrm{F}_{c}(\mathrm{Y}<\mathrm{X})$ is found from $\mathrm{F}_{\mathrm{c}}(\mathrm{Y}<\mathrm{X})$ $\mathrm{M}_{\mathrm{X}} / \mathrm{N}$. where M_{X} is the number of data Y with a value less than the reference value X . and N is the total number of data. Considering X as a variable. $\mathrm{F}_{\mathrm{c}}(\mathrm{Y}<\mathrm{X})$ can be called the cumulative frequency function or emmalative frequency distribution of Y . The previous expression may be briefly written as $\mathrm{F}_{\mathrm{c}} \cdots \mathrm{M} / \mathrm{N}$. As the minimum value of M is zero and the maximum is N . the value of F_{c} ranges between 0 and 1 or 100%

The cumulative frequency can also be called the frequency of non-exceedance. The frequency of exceedance F_{c} is found from 1 - $F_{d} \mid 17$.

4.2 Calculation of probability of wiad speed by applying Rayleigh distribution

Wind data at 10 m above ground letel of few sites has been collected from linergy Purchase branch. CEB and those data have been used for the probabilistic analysis.

Actual frequency of wind speed for a period of one year-(2001) at Narakkalliya is indicated in figure 4.1.

Actual Frequency Vs. Wind Speed $(\mathrm{m} / \mathrm{s})$ at Narakkalliya

Figure 4.1 Aetual frequence vs. wind speed (m/s) at Narakkalliya.

By applying Rayleigh distribution for above wind speed data is indicated in figure 4.2.

Figure 4.2 Probability density vs. wind speed (m / s) at Narakkalliya

Cumulative distribution for wind speed data is indicated in figure 4.3 by applying Rayleigh distribution.

Cumulative Frequency $V \mathrm{~s}$. Wind Speed $(\mathrm{m} / \mathrm{s})$ at Narakkalliya

Figure 4.3 Cumulative frequency vs. wind speed (m / s) at Narakkalliya

Figure 4.3 shows that the cumulative frequency of wind speed below $1 \mathrm{~m} / \mathrm{s}$ is 0.0518 at Narakkaliya. Above calculations were repeated for a few sites of Sri Lanka and summary of probability is given in Table 4.1.

Site	Variance of normal $(\boldsymbol{\sigma})$	Rayleigh probability $\left(\mathbf{P}_{\mathbf{u}}<\mathbf{1 ~ m} / \mathbf{s}\right)$
Narakkalliya	3.07	0.0518
Sevanagala	2.81	0.0612
Kajunatta	2.00	0.1178
Mirijiawila	3.22	0.0471

Table 4.1 Rayleigh probability distribution for wind speed below $1 \mathrm{~m} / \mathrm{s}$

It is noted that the highest probability of wind speed below $1 \mathrm{~m} / \mathrm{s}$ is 0.1178 at Kajuwatta in Hambantota District.

4.3 Calculation of probability of over current

Average current distribution for 24 hes of three sites in I lambantota District is indicted in figure 4.4 and those are taken as current distribution pattern of CEB. Average current was multiplied by factor in order to reach maximum value as 220 A .

Site	Voltage leve! (V)	Min. Avg. current (A)	Max. Avg. current (A)	Multiplication factor	Min. Avg. current (A)	Min. Avg. current A)
Omara	230	8	131	1.67	13	219
Ratmalwala	230	11	124	1.77	19	219
Kudagammana	230	48	277	0.79	38	219

Table 4.2 Voltage level, Avg. current and multiplication factor

Average Current Vs. Time (24 hrs)

Figure 4.4 Average current vs. time (24 hrs)

Actual frequency vs. average current distribution for above three sites is indicated in figure 4.5

Actual Frequency Vs Avg. Current

Figure 4.5 Actual frequency vs. average current

Probability density for above current variation data is indicated in figure 4.6.by applying Rayleigh distribution.

Figure 4.6 Probabizity density vs. average current

Cumulative distribution for above current variation data is indicated in figure 4.7 by applying Raylcigh distribution. lectronic Theses \& Dissertations

Cumulative F: equeny Vs Average Current

Figure 4.7 Cumulatie frequency vs. average current

Site	Variance of normal ($\sigma)$	Waleigh probabilit! $(\mathbf{l}>\mathbf{2 0 2 A})$	Cumulative frequency $(\mathbf{I}>\mathbf{2 0 2 A})$
Omara	+9.79	0.00031	$(1.0348$
Ratmalwala	53.97	0.00094	0.0590
Kudayammana	40.94	0.00001	0.0139

Table 4.3 Probability astribution for load more than 202A

It is noted that Rayleigh probabilit is lower than cumulative frequency. Therefore cumulative frequency is taken as reasonable value of probability of above 202 A for more accuracy. However. the higlest value of probability occurs at Ratmalwala as 0.0590 .

4.4 Probability of over temperatu: up to $87^{\circ} \mathrm{C}$

Over temperature of ACSR (Racoen) conductor may become due to the combination of,

- Wind speed should be below 1 i in's and
- CCC should be more than 202 \wedge
- Since wind speed and CCC are independent events. probability of over temperature (P_{2}) can be calculatis by multiplication of the two probabilities.
- P_{r}

$$
\begin{aligned}
& \left(P_{u}<1 \mathrm{~m} / \mathrm{s} \times(1>202 \mathrm{~A})\right. \\
& 0.1178 \times 0.0590 \\
& 6.95 \times 10^{-8}
\end{aligned}
$$

- Time period of over temperature per year
$6.95 \times 10^{-3} \times 365 \mathrm{hrs}$
61 hirs
- Time period of over temperaturs or life time (50 year)
$61 \times 50 \mathrm{hrs}$
3050 hrs.
- Time period of over temperature per year with safety margin

6 hirs x 2.5
152 hers

- Time period of over temperatur: for life time (50 year) with safety margin

3050 hrs x 2.5
7625 hiss.

The percentage reduction in tenses strengh of Aluminum type Al at different temperature and durations is showin figure 4.8. These figures are based on data assembled from various sources and :est results [7].

Figure 4.8 Loss of strengts of At minium type Al as a function of temperature According to the above figure, it is aserved that loss of strength of Aluminium is not ever reduced below 95% in the lif time and it is not reduced belon 90% with 2.5 safety margin.
4.5 Method of line tension calcula n

Stranding Diameter	4.09 mm
no of strand steel	1
no of strand \wedge lumimias	6
Minimum U'S of Al wire	$165 \mathrm{~N} / \mathrm{mm}$
Percent remaining strength of	
Aluminium	1
Minimum UTS a 1% extensi of	
steel	$1100 \mathrm{~N} / \mathrm{mm}$
	3.14

[^0]The following table indicates the is of Racoon conductor against percentage of remaining strength of Aluminium. Further. it has been calculated that conductor tension for temperatures from $15^{\circ} \mathrm{C} 1065^{\circ} \mathrm{C}$ and its relevant percentage of available LTS. Hence. it is observed that 10.8 of strength of Aluminium up to 90% can be allowed.

Aluminium		100%	95%	90\%
Available UTS of Racom Conduc:		27470 N	26819 N	26169 N
$\begin{aligned} & \text { Conductor } \\ & \text { temperature }\left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	Conducto: tension (N)	\% UTS	$\%$ UTS	\% UTS
15	1992	18	19	19
20	1364	16	16	17
30	8226	12	12	12
40	3344	9	9	9
50	1775	6	7	7
60	432	-15	- 5	5
65	:304	The 5	5	5

Chapter 05

Ap ropriate Ground Clearance

5.1 Introduction

Maximum allowable conductor ten erature is typically selected so as to limit either loss of strength of the conductor tue to annealing of Aluminium or to maintain adequate ground clearance.

5.2 Sag and tension.

Conductor sag on a flat terrain is mamum at mid-span. Further, this sag will increase with temperature and be a maximus: at maximum operating temperature.

5.2.1 Equivalent span

The equivalent span is calculated in order to use say and tension charts. The tension is uniform between two section paits and supported on intermediate poles. The equivalent span that results from this uniform tension is calculated with the formula below.

$$
\begin{equation*}
S_{e}=\sqrt{\frac{S_{1}^{3}+S_{2}^{3}+S_{3}^{3}+e t c}{S_{1}+S_{2}+S_{3}+e t c}} \tag{5.1}
\end{equation*}
$$

Where:
S_{1}, S_{2}, S_{3}. ete are the individual spar lengths between section poles.

Having determined the sugs and tension on the equivalent span at various temperatures. the sags on the actual pan can be determined from the formula:

Sag on any span $=\frac{\text { Sag on equival at Span } \times(\text { Actual Span Length })^{2}}{(\text { equalent span length })^{2}}$

While fixing the spacing. it should be as uniform as possible subject to maintain of minimum ground clearance. The maximum sag for different pole heights can be obtained from the sag table.

5.2.2 Sclection of tension

Conductor sag and tension vary in secordance with the following parameters.

- The maximum sag will occurs. I delined maximum operating temperature $90^{\circ} \mathrm{C}$ with no wind.
- The maximum tension will oce.r at the defined conductor wind loading of 0.575 $\mathrm{kN} / \mathrm{m}^{2}$ and minimum temperatre of $15^{\circ} \mathrm{C}|4|$.
- Constant conductor tension oc.ars at the defined normal everyday temperature of $30^{\circ} \mathrm{C}$. This tension is termed everyday tension (EDT) and the corresponding stress is everyday stress (IEDS
- Average tension of the conde "ors shall be limited to 17% of the UTS of the conductor $|4|$.
- Maximum allowable st:ess d.etrow and low temperature shall he limited to 40% UTS 141 .

5.2.3 Sag and tension formala

The say and tension relationship is a sen by:
$S=\frac{T_{0} \times\left|\cosh \left(\frac{w l}{2 T_{0}}-1\right)\right|}{w}$
Or approximate formula

$$
\begin{equation*}
S=\frac{w l^{2}}{8 T} \tag{5.4}
\end{equation*}
$$

Where:
S is sag (m)
T_{0} is initial tension at lowest point (\quad)
w is conductor weight (N / m)
l is span or horizontal disatice bet...en two supports

T is conductor tension

After a conductor has been fixed :...o a position. the censequent variation in say (S) due 10 wind pressure and temperat: variations can be calculated from:
$\mathrm{T}_{1}^{2} \times\left[\mathrm{T}_{1}-\left(\mathrm{T}_{\mathrm{c}}-\mathrm{xAE}\left(\theta_{1}-\theta_{2}\right)-\Delta \mathrm{F}_{2}^{2} \mathrm{I}^{2} / 24 \mathrm{~T}_{\mathrm{c}}^{2}\right)\left|=\left|\left(\Lambda \mathrm{EF} 1_{1}^{2}\right)\right| / 24\right.\right.$
$\mathrm{T}_{\mathrm{f}}^{2} \times\left|\mathrm{T}_{\mathrm{f}}-\left(\mathrm{T}_{\mathrm{e}}-\mathrm{xAE}\left(0_{3}-0_{2}\right)-\left.A \mathrm{~F}_{2}^{2}\right|^{2} / 24 \mathrm{~T}_{\mathrm{e}}^{2}\right)\right|=\left|\left(\lambda E F_{3}^{2} \mathrm{l}^{2}\right)\right| / 24$

Where:
$\mathrm{T}_{1} \quad$ conductor tension in initial ondition (daN)
$T_{\text {c }}$ conductor tension in every y condition (daN)
$\mathrm{T}_{1} \quad$ conductor tension in final $:$.dition (daN)
x coefficient of thermal exp:. ion
A conductor area (mm^{-})
E Young's modules (daN/m:)
$\Theta_{1} \quad$ conductor temperature in in tal condition $\left({ }^{\circ} \mathrm{C}\right)$
O_{2} conductor temperature in - ryday condition (${ }^{\circ}$)
$\Theta_{3} \quad$ conductor temperature in form condition $\left({ }^{\circ} \mathrm{C}\right)$
$F_{1} \quad$ resultant wind and weight ree in initial condition (daN/m)
$\mathrm{F}_{2} \quad$ resultant wind and weight a ce in everyday condition (daN/m)
$\mathrm{F}_{3} \quad$ resultant wind and weight: : ce in final condition (daN/m)

5.2.4 Design criteria

- Conductor tension
- Ne everyday temperature ti: sonductor tension shall be 17% of UTS.
- At these tensions at I:DT t . : :ensions applicable at the lowest temperature and maximum wind calculated a checked with the maximum pole top loading
- The ground clearance is check with the specified minimum clearance
- Soil type of foundations has b. a taken as good soil for the above calculations

5.3 Sample calculations

Consider the following pole spaci shart:

Tabl

Span	Cumulative span
30	
40	70
50	120
60	180
30	$2 \neq 0$
40	250
40	290

Pole spacing chart

Equivalent span:

Using liquation (5.1) the equival sag can be calculated as:
$S_{e}=\sqrt{\frac{2 \times 30^{3}+3 \times 40^{3}+50^{3}}{2 \times 30+3 \times 10+50} \frac{60^{3}}{010}}$
$S_{e}=45 \mathrm{~m}$

Calculate everyday tension (\mathbf{T}_{c}):

Now assume the EDT at $30^{\circ} \mathrm{C}$ as of UTS.
Take UTS 27050 N
$\operatorname{EDT}\left(\mathrm{I}_{\mathrm{e}}\right) \quad 27050 \times 0.17$ 4598.5 N

Gravitational force	$9.80665 \mathrm{~m} / \mathrm{s}^{2}$
Young s modulus	$7946 \mathrm{daN} / \mathrm{mm}^{2}$
Thermal expansion coefficient	$0.00001908 /^{\circ} \mathrm{C}$
Cross section area	$91.99 \mathrm{~mm}^{2}$
Weight of conductor	$0.3129 \mathrm{~kg} / \mathrm{m}$
Diameter of conductor	12.7 mm
Temperature at initial condition, C.	$15^{\circ} \mathrm{C}$
Everyday temperature. C_{c}	$30^{\circ} \mathrm{C}$

Temperature at linal condition, $\mathrm{C}_{7} \quad 90^{\circ} \mathrm{C}$
Wind pressure
$57.5 \mathrm{daN} / \mathrm{m}^{2}$

Weight of conductor

$$
\text { weight o: anductor x Gravitational force / } 10
$$

$0.3129 \mathrm{k} \times 9.80665 \mathrm{~m} / \mathrm{s}^{2}$
$0.30685: \quad \mathrm{m}$

Wind force at initial condition	Wind pressure x diameter of conductor (m)
	$57.5 \mathrm{daN} / \mathrm{m}^{2} \times 0.0127 \mathrm{~m}$
	$0.73025 \mathrm{daN} / \mathrm{m}$
Wind foree at everyday condition	$0($ daN $/ \mathrm{m})$
Wind foree at final condition	$0(\mathrm{daN} / \mathrm{m})$

Resultant wind and weight force a condition

Using equation (5.5) the initial at T_{1} can be calculated. This is a third order polynomial in terms of T_{1}. The n of this polynomial can be calculated by solving this equation by iterative methods. We Exeel program listed in Annex B can be used to calculate the T_{1}.
$\mathrm{T}_{1} \quad 716.865507399581$ daN

Using equation (5.6). the final si. at 1f can be calculated. This is also a third order polynomial in terms of T_{f}. The re ts of this polynomial can be calculated by solving this equation by iterative method. The lixeel program listed in Annex B can be used to calculate the T_{F}.

$$
\mathrm{T}_{\mathrm{f}} \quad 106.582234917787 \mathrm{daN}
$$

Using equation (5.3). he sag at ewh condition can be calculated as:
Equivalent sag at $\mathrm{T}_{1}(\mathrm{~m})=\frac{\mathrm{T}_{1} \times\left|\cosh \left(\frac{w l}{2 \mathrm{~T}_{1}}-1\right)\right|}{\mathrm{w}}$
Equivalent sag at $\mathrm{T}_{1}(\mathrm{~m})=\frac{716: 655 \times\left|\cosh \left(\frac{0.792099 \times 45}{2 \times 716.8655}-1\right)\right|}{0.792099}$
Equivalent sag at $T_{1} \quad=0.29 .1 \mathrm{~m}$

Equivalent sag at $\mathrm{T}_{\mathrm{c}}(\mathrm{m})=\frac{\mathrm{T}_{\mathrm{c}} \times\left|\cosh \left(\frac{\mathrm{w}}{2 \mathrm{~T}_{\mathrm{e}}}-1\right)\right|}{\mathrm{w}}$
Equivalent sag at $\mathrm{T}_{\mathrm{c}}(\mathrm{m})=\frac{459.35 \times\left|\cosh \left(\frac{0.30685 \times 45}{2 \times 459.85}-1\right)\right|}{0.30685}$
Equivalent sag at $\mathrm{T}_{\mathrm{c}} \quad=0.17 .5 \mathrm{~m}$

Equivalent sag at $\mathrm{T}_{\mathrm{f}}(\mathrm{nl})=-\quad T_{f} \times\left[\cosh \left(\frac{w l}{2 T_{f}}-1\right)\right]$
Equivalent sag at $\mathrm{T}_{\mathrm{f}}(\mathrm{m})=\frac{106, j 8223 \times\left|\cosh \left(\frac{0.30685 \times 45}{2 \times 106.58223}-1\right)\right|}{0.30685}$
Equivalent sag at ${ }^{\prime} \mathrm{l}_{\mathrm{f}} \quad=0.7(\% \mathrm{~m}$

Sag on any span

Using equation (5.2). the equival sate on any span can be calculated as:
Initial sag at $\mathrm{T}_{1}=0.291 \times \frac{(\because 0)^{2}}{(5)^{2}}$
Initial sag at $\mathrm{T}_{1}=0.1293 \mathrm{~m}$
Everyday sag at $\mathrm{T}_{\mathrm{c}}=0.176 \times \frac{(.0)^{2}}{(5)^{2}}$
Everyday sag at $\mathrm{T}_{\mathrm{e}}=0.0782 \mathrm{~m}$
Final sag at $\mathrm{T}_{\mathrm{f}}=0.758 \times \frac{(0)^{2}}{15)^{2}}$
Final sag at $\mathrm{T}_{\mathrm{f}} \quad=0.3369 \mathrm{~m}$

Vertical sag at initial condition (m)

Vertical sag at $\mathrm{T}_{1}=\frac{\text { Initial sag at } \mathrm{T}_{1} \times \text { weight of conductor }(\mathrm{daN} / \mathrm{m})}{\text { resultant rind and weight force at } \mathrm{T}_{1} \operatorname{conditon}(\mathrm{daN} / \mathrm{m})}$
Vertical sag at $\mathrm{T}_{1}=\frac{0.1293 \times 0.30635(\mathrm{daN} / \mathrm{m})}{0.792(99(\mathrm{daN} / \mathrm{m})}$
Vertical sag at $\mathrm{T}_{1}=0.0501 \mathrm{~m}$

Vertical sag at everydiy condit on (m)

Vertical sag at $\mathrm{T}_{\mathrm{e}}=\frac{\text { Initic sag at } \mathrm{T}_{\mathrm{c}} \times \text { weight of conductor }(\mathrm{daN} / \mathrm{m})}{\text { Resultant }} \frac{\text { vind and weight force at ED conditon }(\mathrm{daN} / \mathrm{m})}{}$
Vertical sag at $\mathrm{T}_{\mathrm{c}}=\frac{0.0782 \times 0}{0.306} \frac{30685(\mathrm{daN} / \mathrm{m})}{35(\mathrm{daN} / \mathrm{m})}$
Vertical sag at $\mathrm{T}_{\mathrm{e}}=0.0782 \mathrm{~m}$

Vertical sag at final cordition (.1)

Vertical sag at $\mathrm{T}_{\mathrm{f}}=\frac{\text { Initial sag at } \mathrm{T}_{\mathrm{f}} \mathrm{x} \text { weight of conductor }(\mathrm{daN} / \mathrm{m})}{\text { resultant } \mathrm{v} \text { ind and weight force at } \mathrm{T}_{1} \text { conditon }(\mathrm{daN} / \mathrm{m})}$
Vertical sag at $\mathrm{T}_{\mathrm{f}}=\frac{0.3369 \times(3369(\mathrm{daN} / \mathrm{m})}{0.3369(\mathrm{daN} / \mathrm{m})}$
Vertical sag at $\mathrm{T}_{\mathrm{f}}=0.3369 \mathrm{~m}$

As per design criteria. he maxinum tension occurs at $15^{\circ} \mathrm{C}$ and given maximum air pressure conditions sha:! be limitt do 50% UTS.
T_{1} as percentage of $\mathrm{U}:=\frac{716: i 655}{27 / 5}$
T_{1} as percentage of UTS $=27 \%<40 \%$

Average tension of the conduc ors shall be limited to 17% of the UTS of the conductor.
T_{c} as percentage of $\mathrm{UT:}=\frac{459.85}{270}$
T_{e} as percentage of UTS $=17 \%=17 \%$
T_{f} as percentage of UTS $=\frac{106.5822}{2705}$
T_{f} as percentage of UT'S $=4 \%$

5.4 Clarance from th: Ground

Overhead line conductres shall te so located that their ground clearance $|4|$ in any direction from any postion after sag under the influence of load current shall not be less than the distance a follows.

Maximum allowable S: Pole Heigh - Buried Lengh - Clearance

Voltage	pe of grount: clearanec	Clearance (m)	Max. allowable $\operatorname{sag}(m)$
650 V 1011 kV	Acres, the road or strees	6.1	$\begin{aligned} & 10 \mathrm{~m} \text { pole }-2.2 \\ & 11 \mathrm{~m} \text { pole }-3.1 \end{aligned}$
	In ar other places	5.2	
	Place inaccessible to vehi wlar traffi:	4.6	
11 kV to 33 kV	Acres the road or stree	6.4	$\begin{aligned} & 10 \mathrm{~m} \text { pole }-1.9 \\ & 11 \mathrm{~m} \text { pole } \quad 2.8 \end{aligned}$
	In ar. other places	Thege 6.1	
	Plac inaccessible vehim and traffic	\|rtac. 4.9	

Tabl- 5.2 Maximura allowable sag for each pole
5.5 Maximum sag for CSR Racoon conductor

Using above formula. $!$ and tension were calculated in each equivalent span and summary is given belo

Equivalent	C. . ductor	Conductor sag (m) for span			
		30 m	40 m	50 m	60 m
$+5$	$3^{\circ} \mathrm{C}$	0.34	0.60	0.93	1.35
		60m	70 m	80 m	90 m
90	() ${ }^{\circ} \mathrm{C}$	0.76	1.03	1.35	1.71

Table 5.3 Con. .ctor sag, for each span vs. conductor temperature

It can be observed that maximum 1.71 m is less than maximum allowable sag 1.9 m for 10 m pole. A. refore, the wound clearance is not violated when operating on higher temperature : $90^{\circ} \mathrm{C}$. Also sag may increase on wind speed below $1 \mathrm{~m} / \mathrm{s}$ and maximum loading mor than 202 A. Probable occurrence of this is given in chapter 04 as 3050 hrs for a condu or life time.

University of Moratuwa, Sri Lanka. Electronic Theses \& Dissertations www.lib.mrt.ac.lk

Chapter 06

Economical Optimization of Losses

Costs and benefits shall be evaluated with increase of losses against investments incurred in reconstructing of the CEB network. It is noted that investment can be postponed at least 4 years when annual growth rate is considered as 2.5%. This simulation is done by using SynerGEE software which is presently used for distribution planning of CLEB.

6.1 Energy losses due to increase of CCC

If it is required to replace Racoon conductor, next available conductor of CEB is 1 ynx conductor. Therefore, loss comparison has been calculated by simulating Racoon and Lynx conductors for Hambantota F 3 Gonnoruwa line.

Figure 6.1 Hambantota F3 Gonnoruwa line

Hambantota F3 Gonnoruwa line	Dist	$1^{\text {st }}$ Year			$2^{\text {nd }}$ Year			$3^{\text {rd }}$ Year			$4^{\text {fh }}$ Year		
		Racoon	Lynx	difference									
Section Name	kM	kW											
7296244739	3.1	171	70	101	179	74	105	188	77	111	198	81	117
707948922	0.9	89	36	53	93	38	55	98	40	58	103	42	61
7511616332	0.3	16	7	9	17	7	10	16	7	9	19	8	11
Total	4.3	276	113	163	289	119	$\sum 170$	302	124	178	320	131	189

Table 6.1-Loss difference vs. each distance at Hambantota Gonnoruwa line

6.2 Present value of losses

Following data are used to calculation of present value of energy losses
Over current time per day $\quad * 0.84$ hrs (taken from load pattern of Omara)
Unit cost
Annual tariff increment
Discount rate $14.00 \mathrm{IKR} / \mathrm{kWh}|3|$
10% 15%

Year	Additional loss (kW)	Total loss per year $(\mathbf{k W h})$	Unit cost $(\mathbf{L K R})$	Total cost $(\mathbf{L K R})$	PVF	PV of expenses $(\mathbf{L K R})$
1	163	49976	14.00	699.661	0.870	608.401
2	170	52122	15.40	802.679	0.756	606.940
3	178	54575	16.94	924.497	0.658	607.872
4	189	57947	18.63	$1,079.792$	0.572	617.374
						$\mathbf{2 , 4 4 0 , 5 8 8}$

Table 6.2 Present values of expenses (losses)

6.3 Estimated cost of reconstruction

Next proven method for increasing the line capacity is reconstructiog. Racoon conductor can be replaced by lynx conductor. Hence, it is required to estimate cost of reconstructing. Reconstructing cost has been calculated as follows using CIB standard rate [2].

- I ynx line cost for construction per km
- Removal cost for existing lines per km
- Scrap cost per km (Assumed as 10%)
- Total actual cost of reconstructing per km
- Reconstructing line length
- Total cost for 4.3 km
I.KR. 3.140.000

I KR. 75.000
IKR. 222.400
LKR. 2,992,600
4.3 km

LKR. 12,868.180

6.3.1 Present value of savings

Due to the economic uncertainties. estimated cost can be taken from loan with interest rate 15% and loan period is 4 years. Then. total present value of interest has been calculated as follows.

Project cost	13.824 .500	LKR
Loan	$13.824,500$	LKR
Loan period	4	Years
Interest rate	15	$\%$

Year	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Opening balance	$12.868,180$	9.651 .135	$6.434,090$	3.217 .045
Interest	$1,688.949$	$1,206.392$	723,835	241.278
Loan repayment	$3,217,045$	3.217 .045	3.217 .045	$3,217.045$
Closing balance	$9,651,135$	$6,434.090$	$3,217,045$	0
PVF	0.870	0.756	0.658	0.572

Table 6.3 Present value of savings

6.4 Economic viability of the project

Case 1: Using existing line

	Year 1	Year 2	Year 3	Year 4
Extra cost of losses	699.661	802,679	924.497	1.079 .792
PV of cost	608.401	606.940	607.872	617.374
Total cost (C)	LKR. 2,440,588			

Table 6.4 Present value of extra cost of losses

Case 2: Constructing new line

	Year 1	Year 2	Year 3	Year 4	Salvage value
Capital cost	3.217 .045	3.217 .045	3.217 .045	3.217 .045	11.838 .726
Interest	1.688 .949	1.206 .392	723.835	241.278	
Total cost	4.905 .994	4.423 .437	3.940 .880	3.458 .323	11.838 .726
PV of total cost	4.268 .214	3.344 .118	2.593 .099	$1,978.161$	6.771 .751

Total cost $(B)=($ Year $1+$ Year $2+$ Year $3+$ Year 4 - Salvage value $)=$ LKR. 5,411,84
Table 6.5 Present valuc of constructing a new line

Load pattern	Present value of expenses (C) LKR. (Case 1)	Present value of savings (B) LKR. (Case 2)	Net present value (B-C) LKR.
Omara	$2,440.588$	5.411 .841	2.971 .253
Ratmalwala	$4,125.756$	5.411 .841	1.286 .085
Kudagammana	$958.802 i 6 . m 20.5411,841$	4.453 .039	

Table 6.6 Net present value of each project

In this case study present value of expenses means energy losses due to over current of existing line (Case 1). Present value of savings means cost incurred in constructing a new line (Case 2).

It is observed that present value of savings larger than Present value of expenses for all load patterns. Therefore, constructing a new line is more expensive for load patterns of Omara, Kudagammana and Ratmalwala. In other words, implementation of above three projects is financially viable.

Chapter 07

Conclusions

The objective of this project is to fix the overhead line power transfer limits, with effective wind cooling through the probabilistic approach. The analysis consists of the maximum temperature limit of \triangle CSR Racoon conductor that is selected in order to minimize loss of strength. sag. line loss or a combination of the above.

In the first part. allowable loss of strength of Aluminium was analyzed through the probabilistic approach. Loss of strength of ACSR Racoon conductor can occur duc to wind speed below $1 \mathrm{~m} / \mathrm{s}$ and CCC more than 202Λ. During the study, it is observed that strength of Aluminium is not reduced below 90% of its strength during the lifetime of 50 years. This reduction of strength is negligible. Therefore, effective wind speed can be taken as $1 \mathrm{~m} / \mathrm{s}$.

In the second part. say variations were analyred in each span which was presenty used in CEB against maximum allowable temperature $\left(90^{\circ} \mathrm{C}\right)$ in the absence of wind speed. It is observed that ground clearance is not violated when operating at higher temperatures.

Finally. Costs and benefits were evaluated with increase of losses by this method against investment incurred in strengthening of the CEB network. It is noted that investment can be postponed at least 4 years when annual growth rate is considered as 2.5%.

Net present value was analyzed from present value of expenses (due to loss increase of existing system) and present value of saving (postponement of investment incurred in strengthening of the (EB network). Net present value is positive for load pattern of Omara, Kudagammana and Ratmalwala. Therefore project is financially viable. Sometimes in unavoidable circumstances, CEB is forced to delay the augmentations.

The reasons may be as follows.

1. Difficulties in raising funds for the augmentations
2. Delays in planning and designing
3. Expected major changes that might take place in near future, hence the planning of augmentation is delayed

Whatever the reason. this study gives a guide to the extent of possible overload of the lines without violation of technical limiting parameters and the cost benefits/losses in such operations.

Finally, the results show that in some cases postponing of investment. incurred in strengthening of network instead of replacing conductors, to the extents in time and current limits as studied, is conomically viable and beneficial to CEB.

University of Moratuwa, Sri Lanka. Electronic Theses \& Dissertations www.lib.mrt.ac.lk

References:

11) CEB Specifi ation no.010, Ceylon Electricity Board. 1998

12] Standard Construction Costs. Ceylon Electricity Board, 2009.
[3] Budgeted Operating Statement, Ceylon Electricity Board, 2010
[4] Constructior: Standards for Medium Voltage Power Distribution Lines. Ceylon Electricity Board, September 1997

151 IEIE Standard 738-93, "IlEEE Standard for Calculating the CurrentTemperature Relationship of Bare Conductors", HEFBI June 1993
[6] IEEE: Standard $738^{\text {TM }}-2006$. "ILEEE Standard for Calculation of Bare Overhead Conductors". IEEL January 2007
[7] IEC Standar: 1597," ()verhead electrical conductors- Calculation methods for stranded are conductors", 1995

18] Foss. S.D. and Maraio. R.A.. "Evaluation of an overhead line forecast rating Algorithm". EEE Transaction on Power Delivery, vol. 7. No.3, July 1992.

191 Foss. S.D. and Maraio, R.A. "Dynamic line rating in the operating enviromment". IEEE Transaction on Power Delivery, vol. 5. No.2. July 1992.
[10] Douglass, D.A., Motlis, Y.. and Seppa. T.O., "IlEE's Approach for increasing transmission line rating in North America."
[11] Morgan, V.:.," Rating of bare overhead conductors for continuous current". IELE, vol. 1 4, no. 10, Oct.1967.
[121 Wan, II. Calery, D. Mc. and Vittal, V., "Increasing thermal rating by risk analysis", IIEE Transaction on Power Systems, vol. 14. No.3. July 1999.
|13| Davis. M. U.. "A new thernal rating approach: the real time thermal rating system for sategic overhead conductor transmission lines. Part II." IEEE Transactions on Power Apparatus and Systems. vol. PAS97. pp. 810-825. Mar/Apr. 1978.
|14| ABB Repor: No. 2005-10977-3 R2. "Dakotas Wind Transmission Study Task 2". Au ust 2005.
[15] S.P. Guptha "Statistical Methods", Revised Edition. pp. E:-770- E:-7’78. 1995.
[16] http://en.wikipedia.org/wiki/Rayleigh distribution

117] http://en.wil pedia.org/wiki/Cumulative frequency
[18] Overhead Ai minium Bare Conductors, ACl Cables Pl.C. December 2008.

Annex A

The following computer program is used to calculate thermal rating of bare overhead conductors.

Annex A of IEEE standird 738-1993
Listing of the "RATELEE" program for steady-state and transient calculations of temperature and thermel rating for bare overhead conductors.
 Hatronec hesess 8 Diserations www.lib.mrt.ac.lk

Annex B

Third order equation for calculating T_{1}

V15	T, (daN)
115	Te (daN)
\$3\$5	$=$ Young ${ }^{\text {s modulus (daN/mm2) }}$
\$B\$6	= thermal expansion
\$B\$7	- coefficient (/deg c)
K15	\cdots temperature at initial condition. $\mathrm{C}_{1}(\mathrm{deg} \mathrm{c})$
L15	$=$ everyday temperature, $\mathrm{C}_{\mathrm{e}}(\mathrm{deg} \mathrm{c})$
T15	= resultant wind and weight force at T_{1} condition ($\mathrm{daN} / \mathrm{m}$)
1115	- equivalent span
S15	$=$ resultant wind and weight force at T, condition (daN/m)

Solver $\left(T_{1}\right)$ POWIER(V 5.3)-J15-\$B\$5*\$B\$6*\$B\$7*(K15-1.15)-
\$B\$7*\$B\$5*POWER(115.2)*POWER(1115.2)/24*POWER(J15.2)) *POWER(V15.2)\$B\$7*\$B\$5*POWER(S15.2)*POWER(II15.2)/24

Third order equation for calculating T_{f}
$\mathrm{X} 15=\mathrm{T}_{\mathrm{f}}(\mathrm{daN})$
M15 = temperature at final condition, $\mathrm{C}_{\mathrm{f}}(\mathrm{deg} \mathrm{c})$
L15 =everyday temprature, C_{c} (deg c)
U15 = resultant wind and weight force at final condition (daN/m)
H15 =equivalent span

Solver $\left(\mathrm{T}_{\mathrm{i}}\right)=\mathrm{POWER}(\mathrm{X} 15.3)-(\mathrm{J} 15-\$ B \$ 5 * \$ B \$ 6 * \$ B \$ 7 *(\mathrm{M} 15-\mathrm{L} .15)-$
\$B\$7*\$B $5 *$ POWER(115.2)*POWER(II15.2)/(24*POWER(J15.2)))*POWER(X15.2)-
$\$ B \$ 7^{*} \$ B \$ 5^{*} \operatorname{POWER}(1+15.2)^{*} \operatorname{POWER}(1115.2) / 24$
$\$ \mathrm{~B} \$ 3=$ Gravitational force $(\mathrm{m} / \mathrm{s} / \mathrm{s})$

Equivalent sag at $T_{1}(\mathrm{~m})$

$$
\left(\mathrm{V} 15^{*} 10 /(\mathrm{S} 15 * 10)\right)^{*}\left(\mathrm{COSH}\left(\mathrm{~S} 15 * 10^{*} 1115 /(2 * \mathrm{~V} 15 * \$ 13 \$ 3)\right)-1\right)
$$

Equivalent sag at $\mathrm{Te}(\mathrm{m}$)

$$
=\left(115^{*} 10 /(\mathrm{T} 15 * 10)\right) *(\mathrm{COSH}(115 * 10 * \mathrm{H} 15 /(2 * \cdot 515 * \$ \mathrm{~B} \$ 3))-1)
$$

Equivalent sag at $\mathrm{T}_{\mathrm{i}}(\mathrm{m})$

$$
=\left(\mathrm{X} 15^{*} 10 /\left(\mathrm{U} 13^{*} 10\right)\right)^{*}\left(\operatorname{CoSH}\left(1015^{*} 10 * \mathrm{H} 115 /\left(2 * \mathrm{X} 15^{*} \$ 13 \$ 3\right)\right)-1\right)
$$

\$7\$15 equiva, sag at T_{1} (m)
C16 Span (:ai)
(\$H\$15 equivatent span
Initial sag (m) Ele\$/s15*POWLR (G16.2)/POWL: (\$H\$15.2)
\$ \wedge A $\$ 15$ equivatent sag at le (mi)
Everyday sag (m) $\quad=\$ \wedge 1 \$ 15 * P O W E R(C 16.2) / P O W I E R(\$ 1 / \$ 15.2)$
$\$ A B \$ 15$ equivalunt sag at $\mathrm{Tc}(\mathrm{m})$

AC16 Initial $\begin{aligned} & \text { ag (m) }\end{aligned}$
\$N\$15 weight of conductor (daN/m)
$\$ \$ 15$ resultant wind and weight force at Tl condition (daN/m)
Vertical sag at initial condition (m) AC16*\$N\$15/\$S\$15

Annex C

Definition for Economics Evaluation

C. 1 Interest Rate and Discount Rate

Interest Rate

The percentage increase in the value of money over a period of one year. In addition to the time value of mones. interest rate includes the effect of inflation and escalation.

Discount Rate

The time value of money as perceived by an investor. Usually expressed in percentage per year.

Salvage Value

Assume that salvage value is remaining life time value as follows.
Salvage value Capital cost x $46 / 50$
Where 50 is life time and 46 is remaining life.

Present Value

Discount Rate r \%

Year	Value	PV Factor	Present Value
0	V_{0}	$\frac{1}{(1+r)^{0}}$	$\frac{V_{0}}{(1+r)^{0}}$
1	V_{1}	$\frac{1}{(1+r)^{1}}$	$\frac{V_{1}}{(1+r)^{1}}$
2	V_{2}	$\frac{1}{(1+r)^{2}}$	$\frac{V_{2}}{(1+r)^{2}}$
3	V_{3}	$\frac{1}{(1+r)^{3}}$	$\frac{V_{3}}{(1+r)^{3}}$
\ldots	$\cdots \cdots \cdots \cdots \cdots \cdots \cdots$		
9	V_{9}	$\frac{1}{(1+r)^{9}}$	$\frac{V_{9}}{(1+r)^{9}}$
10	V_{10}	$\frac{1}{(1+r)^{10}}$	$\frac{V_{10}}{(1+r)^{10}}$
1			

Cost-Benefit Analys:

Year	Cost	Benefit	Present Value	
			Cost	Benefit
0	C_{0}	B_{0}	\bar{C}_{0}	$\overline{\mathrm{B}}_{0}$
1	C_{1}	B_{1}	$\overline{\mathrm{C}}_{1}$	$\overline{\bar{B}_{1}}$
2	C_{2}	B_{2}	. \bar{C}_{2}	\bar{B}_{2}
3	σ_{3}	B_{3}	\bar{C}_{3}	$\overline{\bar{B}}_{3}$
	C_{11-1}	B_{n-1}	\bar{C}_{11-1}	B_{n-1}
n	C_{1}	C_{n}	$\overline{\mathrm{C}}_{\mathrm{n}}$	$\overline{\bar{B}}_{n}$

$$
\begin{equation*}
\bar{C}=\sum_{i=1}^{n} \overline{\mathrm{C}}_{\mathrm{i}}=\sum_{i=1}^{n} \frac{\mathrm{G}_{\mathrm{i}}}{\mathrm{i})} \tag{Cl}
\end{equation*}
$$

$$
\begin{equation*}
\bar{B}=\sum_{i=1}^{n} \bar{B}_{i}=\sum_{i=1}^{n} \frac{\mathrm{i}_{i}}{\left.\mathrm{r}^{\mathrm{i}}\right)} \tag{C2}
\end{equation*}
$$

University of Moratuwa, Sri Lanka.
Electronic Theses \& Dissertations

Net Present Value (NPV) $=\overline{\mathrm{B}}-\overline{\mathrm{C}}$

Project Accepted If NP

[^0]: UTS of Racoon Conductor
 $165: \pi \times(4.09 / 2)^{2} \times 6.1100 \times \pi \times(4.09 / 2)^{2}$
 UTS of Racoon Conductor - 2740 N (taken as 2705 daN)

