

DESIGN AND IMPLEMENTATION OF A VISION BASED MOTION CAPTURING APPARATUS FOR HUMAN GAIT ANALYSIS

This dissertation submitted to the Department of Electrical Engineering, University of Moratuwa in partial fulfillment of the requirements for the degree of Master of the Science

> By S. A. PUNSIRI JINADASA

Supervised by: Dr Rohan Munasinghe

Department of Electrical Engineering University of Moratuwa Sri Lanka

2010

Abstract

Walking results from a complicated process involving the brain, spinal cord, peripheral nerves, muscles, bones and joints. Gait analysis is the systematic study of human walking. Gait analysis is often important for clinical gait assessment. Study of biological systems like human walking has paved the way for the development of various biomechanical systems like robot locomotion system.

This research proposes a low cost methodology to capture human gait cycle information. As the first step it was required to identify the important movements of the leg during walking. A study of human anatomy and biomechanics enabled this identification. Secondly, it has to be investigated what methodology to be followed to capture identified important movements of the leg during walking. For the study of human gait a spectrum of methodologies are being used throughout the world ranging from the absence of technological aids, at one extreme, to the use of complicated and expensive equipment at the other.

Through a study on various techniques used to capture motion, and after comparing these methods it was decided that multi-view marker based system is suitable for the requirement. This vision based methodology had the advantage that it can provide accurate motion information with low cost hardware and readily available software. When the two camera model is selected among other alternatives, it had to be studied how the pixel data obtained from motion capture are converted to the 3D spatial coordinates. Through a series of techniques, camera calibration, stereo calibration and triangulation, conversion of pixel data to 3D spatial coordinates was done. Based on this study the motion capture set up was created and motion capture was done.

The results obtained of the two camera model, camera parameters and parameters of the stereo system are presented in this thesis. Validation of the human gait cycle information obtained from this technique was done by comparing this information with gait pattern obtained with more accurate and sophisticated techniques.

DECLARATION

تر

The work submitted in this dissertation is the result of my own investigation, except where otherwise stated.

It has not already been accepted for any degree, and is also not being concurrently submitted for any other degree.

UOM Verified Signature ic Theses & Dissertations

S. A. P. Jinadasa Date <u>25 / 22 / 22 / 2</u>

I endorse the declaration by the candidate.

UOM Verified Signature

Dr Rohan Munasinghe

CONTENTS

ABSTRACT	v
ACKNOWLEDGEMENT	vi
LIST OF FIGURES	vii
LIST OF TABLES	viii
1 INTRODUCTION	
1.1 Motivation	1
1.2 Significance of the Research	2
1.3 Objectives and Scope	2
1.4 Achievements	3
1.5 Outline of the Thesis	3
 2 BIOMECHANICS OF HUMAN GAIT^{rsity} of Moratuwa, Sri Lanka. 2.1 Planes of the Body 2.1 Planes of the Body 	4
2.2 Bones of the Lower Limb www.lib.mrt.ac.lk	6
2.2.1 Pelvis	6
2.2.2 Femur	6
2.2.3 Patella or knee joint	6
2.2.4 Tibia and fibula	7
2.2.5 Foot	7
2.3 Joints of the Lower Limb	8
2.3.1 Hip joint	8
2.3.2 Knee joint	8
2.3.3 Ankle joint	8
2.4 Significant Movements of the Leg during Gait	9

3 MOTION CAPTURING TECHNIQUES

3.1 Direct Motion Measurement Systems	10
---------------------------------------	----

3.1.1 Potentiometer devices	10		
3.1.2 Flexible strain gauges	11		
3.2 Kinematic Systems			
3.2.1 Two dimensional kinematic systems (monocular, marker based system)	12		
3.2.2 Three dimensional kinematic systems (multi-view, marker based system)	13		
3.2.2.1 Photographic system	13		
3.2.2.2 Videotape and DVD digitizer	14		
3.2.2.3 Television / computer system	14		
3.2.2.4 Active marker system	15		
3.3 Marker-less, Multi-view Motion Capture			
3.4 Kinematic Motion Capture System Combined with Force Information			
3.5 Selection of Motion Capture Method			

4 PROPOSED MOTION CAPTURE TECHNIQUE

4.1 Physical Arrangement of the System	18		
4.2 Functional Block Diagram	19		
4.2.1 Matlab	19		
4.2.2 Data capture setup	19		
4.2.3 Reports of pixel information and 3D spatial coordinate	19		
4.2.4 Graphs of captured motion data in excel	20		
4.3 Theoretical Background of Geometry of 3D Vision			
4.3.1 World co-ordinates to camera co-ordinates			
4.3.2 Camera co-ordinate system to image plane	22		
4.3.3 Image Euclidean co-ordinate system to image affine co-ordinate system	22		
4.3.4 Camera calibration matrix	23		
4.3.5 Physical explanation of intrinsic camera parameters	23		
4.3.6 Camera calibration	24		
4.3.7 Extrinsic parameters	24		
4.3.8 Camera calibration in stereo vision	24		
4.3.9 Epipolar geometry	25		
4.3.10 Epipolar point	26		

	4.3.11 Epipolar line	26
	4.3.12 Epipolar plane	26
	4.3.13 Epipolar constraint and triangulation	26
	4.3.14 Simplified cases	27
4.4	Camera Calibration Toolbox for Matlab	28

-

5 IMPLEMENTATION OF DESIGN

5.1 Data Capture	29	
5.1.1 Preparation of hardware and the subject for data capture	29	
5.1.2 Taking snap shots of the checkerboard	30	
5.1.3 Taking snap shots of the iron rod	30	
5.1.4 Recording of subject walking	31	
5.2. Data Analysis		
5.2.1 Individual camera calibration	32	
5.2.2 Stereo camera calibration	33	
5.3 Results after Calibrating the Systemersity of Moratuwa, Sri Lanka.	34	
5.4 Stereo Triangulation Electronic Theses & Dissertations	35	

6 VALIDATION OF THE APPARATUS FOR HUMAN MOTION CAPTURING

6.1	Data Comparison	37
	6.1.1 Hip joint variation	38
	6.1.2 Knee joint variation	40

7 DISCUSSION & CONCLUSION

7.1 Recommendations	42
7.2 Limitations of the Study	42
7.3 Suggested Future Work	43
7.4 Practical Problems Faced during the Implementation	43

REFERENCES	R	E	FΕ	RF	EN	CES
------------	---	---	----	----	----	-----

Acknowledgment

My sincere gratitude goes to Dr Rohan Munasinghe, the supervisor of this research, for his guidance and support despite his busy schedules, which helped me carry out research activities effectively. It must be noted with thanks that he was always available for me to guide whenever it was necessary.

My thanks also go to Dr. Ranga Rodrigo for his kind assistance in various aspects to locate required resources and information.

I would like to express my gratitude to Dr J P Karunadasa Head Department of Electrical Engineering, Dr Lanka Udawatta, Dr Chandima Pathirana including other staff members for extending their cooperation in this work.

I also wish to thank my research partner Mr Praminda Manoj for his encouragement and thoughtful ideas in making this research a success.

My heartiest thank goes to my wife Amala for her genuine encouragement and loving care and my two little kids for their sacrifices by allowing me find time to involve in my research work.

Punsiri Jinadasa

List of Figures

Fig 2.1: The anatomical position, with three reference planes	05
Fig 2.2: Movements about the hip joint and knee joint	06
Fig 2.3: Bones and joints of the lower limbs	07
Fig 3.1: Subject wearing tri-axial goniometry	11
Fig 3.2: Subject wearing flexible strain gauges	11
Fig 3.3: Six camera kinematic system	16
Fig 4.1: Arrangement of motion capturing apparatus	18
Fig 4.2: Functional block diagram	19
Fig 4.3: Stages of data processing	20
Fig 4.4: Geometry of a linear perspective camera	21
Fig 4.5: Epipolar geometry	25
Fig 4.6: Simplified epipolar geometry	27
Fig 5.1: Data capture setup University of Moratuwa, Sri Lanka.	30
Fig 5.2: An image taken for camera calibration ses & Dissertations	30
Fig 5.3: Image of marked iron rod lib.mrt.ac.lk	31
Fig 5.4: Subject walking	32
Fig 5.5: Calibration images using Matlab toolbox for camera calibration	33
Fig 6.1: More accurate gate cycle information	37
Fig 6.2: Published information on gait pattern	38
Fig 6.3: Positions of the leg during a single gait cycle by the right leg	39
Fig 6.4: Hip joint angle variation	39
Fig 6.5: Knee joint angle variation	40
Fig 7.1: Motion capture from video cameras	43

List of Tables

I

Table 2.1: Movements of the leg during walking	9
Table 3.1: Selection criteria applied to direct motion capture method	12
Table 3.2: Selection criteria applied to two dimensional kinematic systems	13
Table 3.3: Selection criteria applied to three dimensional kinematic systems	13
Table 3.4: Selection criteria applied to marker-less, multi-view motion capture	15
Table 3.5: Selection criteria applied to kinematic motion capture systems	
combined with force information	16
Table 5.1: Intrinsic parameters of left camera	34
Table 5.2: Intrinsic parameters of right camera and extrinsic parameters	37
Table 6.1: Definition of measured angles of the two methods	38

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk