A COMPREHENSIVE EVALUATION PROCESS FOR TRANSPORT PROJECTS

Weerawardanage Janaka Weerawardana

(118067H)

Degree of Doctor of Philosophy

Department of Transport and Logistics Management

University of Moratuwa Sri Lanka

June 2021

A COMPREHENSIVE EVALUATION PROCESS FOR TRANSPORT PROJECTS

Weerawardanage Janaka Weerawardana

(118067H)

Thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy

Department of Transport and Logistics Management

University of Moratuwa Sri Lanka

June 2021

DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

W. J. Weerawardana, Department of Transport and Logistics Management, University of Moratuwa, Sri Lanka.

The above candidate has carried out research for the PhD thesis under our supervision.

Supervisor, Prof. Amal S. Kumarage, Department of Transport and Logistics Management, University of Moratuwa, Sri Lanka. Date

Date

Supervisor, Dr. T. Sivakumar, Department of Transport and Logistics Management, University of Moratuwa, Sri Lanka. Date

ABSTRACT

A Comprehensive Evaluation Process for Transport Projects

Transport projects underpin the economic development of a country and thus attract substantial demand imposing immense pressure on many governments primarily due to scarcity of the public resources required to implement them. This particular context demands the governments and other related agencies to allocate public resources efficiently when investing in transport projects. Thus, the evaluation of transport projects becomes an important feature as it indicates how efficiently resources can be or were allocated to a given project. Nonetheless, the literature does not reveal a collectively agreed-upon process for evaluating transport projects despite its rationalization being accepted from the mid 19th century.

The processes predominantly using to evaluate transport projects range from the single-criteria cost-benefit analysis (CBA) to the multi-criteria analysis (MCA) methods and their different combinations. CBA is often criticized for its input- incompleteness raised due to inability to cope with non-monetizable impacts while MCA for its result-incompleteness raised due to those results not being able to demonstrate the implementation feasibility of projects and comparable absolutely. Thus, the most recent trend, combining CBA and MCA, is becoming more popular globally as it is capable of negating each other's disadvantages to a certain extent. However, even these combined models have failed to sort result-incompleteness effectively, primarily due to using MCA methods as their platforms. In view of solving the said input and result-incompleteness issues in existing processes, this research aimed to develop a new evaluation process for transport projects capable of ensuring (i) input-completeness by taking both monetizable and non-monetizable impacts into account and (ii) result-completeness by producing results enabling to test the implementation feasibility of each evaluated project and their performance-based prioritization.

This new evaluation process, termed as comprehensive evaluation process (CEP), was formulated by first establishing a Theoretical Comprehensive Evaluation Process (TCEP) using an inductive approach and then functionalizing it through an approach of deductive reasoning. The TCEP was developed on a MCA platform, ensuring input and result-completeness, and minimizing MCA method related issues such as subjectivity, arbitrariness, and double counting, and common issues of transparency, robustness, simplicity, and accountability. The functionalization improved the practicality issues associated with the TCEP in solving transport project evaluation problems and eventually established the Functionalized Comprehensive Evaluation Process (FCEP). Such formulated FCEP was incorporated with a methodological adjustment to test the implementation feasibility of each evaluated project and thereby established the CEP.

The CEP ascertains both input and result-completeness in its practical application to solve transport project evaluation problems and hence achieves originally set features for the new evaluation process in the research aim. This new process was demonstrated by applying it to an evaluation problem targeted to improve public transportation on the Galle Corridor in Sri Lanka. The results of the same demonstration were compared with their originals estimated using the CBA to validate the CEP justifying deviations through rational reasoning.

Keywords: input-completeness, result-completeness, multi-criteria analysis, functionalization

ACKNOWLEDGEMENT

Firstly, I express my sincere gratitude to my supervisor Prof. Amal S. Kumarage, for his continuous support, patience, and motivational boost extended to me for completing this research and thesis in balance with my professional commitments. His guidance helped me all the time of this research and writing the thesis. Beyond this thesis, his unique influence, which set a strong foundation for both my academic and professional careers, has already helped me to achieve many personal milestones, some are not even dreamed for. Besides, I appreciate his kind advices given to me in handling difficult situations in my personal life.

I am also thankful to my Co-supervisor, Dr. T. Sivakumar, for guiding the compilation of this thesis as a supervisor and involving in research-related administrative matters as the Head of the Department. Besides the supervisors, I would like to extend my gratitude to the progress review committee: Dr. I.M.S Sathyaprasad, Dr. Indika Sigera, and Dr. Varuna Adhikariwattage, for their insightful comments and encouragements which eventually led me to improve and widen my research outcomes.

In addition, I wish to express my sincere thanks to the all-academic and non-academic staff in the Department of Transport and Logistics Management, the Post-Graduate Studies Division (Engineering Faculty), and the Faculty of Graduate Studies of the University of Moratuwa for their continuous support provided to me, particularly in managing administrative matters related to the research.

I also take this opportunity to thank Ven. Kudagammana Seelarathana Thero and my friend Eng. Ajith Dharmakumara (late), for their helping hands during critical phases in my early education.

Last but not least, I thank my father (late) and mother for their love and courage provided me to chase after my dreams. My brother also deserves my wholehearted thanks as well. Also, I extend gratitude to my loving life partner Nilupa and two kids, Dulnitha and Maleesha, for their understanding and tolerating my life away from them for this research and professional commitments.

TABLE OF CONTENTS

DECLARATION	i
ABSTRACT	ii
ACKNOWLEDGEMENT	iii
TABLE OF CONTENTS	iv
LIST OF FIGURES	viii
LIST OF TABLES	ix
LIST OF MATRICES	x
LIST OF ABBREVIATIONS	xi

CHAPTER 1

RESEA	RCH BACKGROUND	1
1.1	Introduction	1
1.2	Introduction to Transport Project Evaluation	1
1.3	Research Problem	5
1.4	Research Aim and Significance	8
1.5	Research Scope and Limitations	10
1.6	Research Questions	11
1.7	Research Objectives	12
1.8	Chapter Breakdown	12
1.9	Summary	15

CHAPTER 2

PRACT	ICES	S IN TRANSPORT PROJECT EVALUATION	16
2.1	Intr	oduction	16
2.2	Stru	cture of Literature Review	16
2.3	Stag	ge I: Evolution of Practices in Transport Project Evaluation	17
2.3	.1	Early Developments	17
2.3	.2	Recent Developments	26
2.3	.3	Stage I: Conclusions	35

2.4	Stag	ge II: Critical Review of Current Best Practices	35
2.4.	1	Theoretical Frameworks of CBA and MCA and their Soundness	36
2.4.	2	Application Procedures of CBA and MCA and their Limitations	50
2.4.	3	Strengths and Weaknesses of CBA and MCA	55
2.4.	4	Integration of CBA and MCA	64
2.4.	5	Stage II: Conclusions	69
2.5	Kno	wledge Gaps	70
2.6	Sun	nmary	75

CHAPTER 3

RESEA	ARCH	METHODOLOGY	76
3.1	Inti	roduction	. 76
3.2	Ov	erall Research Approach	. 76
3.3	Sta	ge-wise Research Approaches	. 78
3.4	Me	thodologies	. 79
3.4	4.1	Methodology for Formulating a New Evaluation Process	. 80
3.4	4.2	Methodology for Validating the New Evaluation Process	. 82
3.5	Sur	nmary	. 83

CHAPTER 4

FORMU	LATION OF THEORETICAL COMPREHENSIVE EVALUATION PROCESS84
4.1	Introduction
4.2	Task 1: Formulating Theoretical Comprehensive Evaluation Process
4.3	Task 2: Analysis of the Theoretical Comprehensive Evaluation Process 88
4.4	Task 3: Theories and Methods for Functionalizing the TCEP
4.4.	1 Monetization of Impacts
4.4.	2 Review of AHP and ANP
4.4.	3 Review of TOPSIS
4.5	Summary

CHAPTER 5

FUNCTIO	ONALIZATION OF THEORETICAL COMPREHENSIVE EVALUATION PROCESS	115
5.1	Introduction	115
5.2	Impact Categorization Module	115
5.3	Cost Valuation Module	115
5.4	Benefit Valuation Module	117
5.5	Final Valuation Module	123
5.6	Functionalized Comprehensive Evaluation Process	127
5.7	Assessment of Input and Result-Completeness of the FCEP	129
5.8	Summary	130

CHAPTER 6

TESTIN	NG IMPLEMENTATION FEASIBILITY OF PROJECTS	
6.1	Introduction	
6.2	Threshold Score for Testing Feasibility	
6.2	.1 Feasibility Threshold Score for Isolated Scores	
6.2	.2 Feasibility Threshold Score for Universal Scores	
6.3	Adjustments to the FCEP	
6.3	.1 Rank Preservation in ANP	
6.3	.2 Rank Preservation in TOPSIS	
6.4	Upgrading FCEP to CEP	
6.5	Application of CEP in Different Contexts	
6.6	Summary	

CHAPTER 7

DEMO	NSTR	ATION & VALIDATION	.147
7.1	Intr	oduction	147
7.2	Eva	luation Problem in Brief	147
7.3	Sce	nario 1: With agreed Weight Ratio for Benefit Clusters in BVM	150
7.3	.1	Define Evaluation Problem	150
7.3	.2	Impact Categorization	150
7.3	.3	Cost Valuation	151

7.3.	.4	Benefit Valuation	1
7.3.	.5	Final Valuation16	6
7.4	Sce	nario 2: No agreed Weight Ratio for Benefit Clusters in the BVM 16	59
7.4.	.1	Benefit Valuation	i9
7.4.	.2	Final Valuation17	'1
7.5	Var	iation of Preference Ranking and Feasibility of Alternative Projects. 17	'3
7.6	Eva	luating Independent Projects by Using CEP 17	'5
7.7	Val	idation of Comprehensive Evaluation Process 17	6'
7.8	Usi	ng CEP Only for Prioritizing Projects17	'8
7.9	Sun	nmary	'8

CHAPTER 8

CONCL	USIONS AND RECOMMENDATIONS	
8.1	Introduction	
8.2	Conclusions	
8.2.	.1 Achievement of Research Aim	
8.2.	.2 Achievement of Research Objectives	
8.2.	.3 Contribution to the Knowledge	
8.3	Recommendations	
REFER	ENCES	

APPENDICES

Appendix 1: Pairwise Comparisons – Alternatives and Monetizable Criteria	.214
Appendix 2: Pairwise Comparisons – Alternatives and Non-Monetizable Criteria	.215
Appendix 3: Normalized Global Priority Values at Different Benefit Cluster Weights	216
Appendix 4: Supplementary Demonstration	.217

LIST OF FIGURES

Figure 1.1: Framework of a conventional transport project evaluation process
Figure 1.2: Stages of the new evaluation process development10
Figure 2.1: Structure of the literature review
Figure 2.2: Hierarchy of goal, criteria, and alternatives
Figure 2.3: Comparison of application procedures of CBA and MCA51
Figure 3.1: Deductive reasoning for functionalizing the theoretical process
Figure 3.2: Methodology for formulating the new evaluation process
Figure 4.1: Theoretical comprehensive evaluation process (module-wise)
Figure 4.2: Theoretical comprehensive evaluation process
Figure 4.3: Project benefits by their influence on different social groups
Figure 4.4: Grouping of typical benefit items
Figure 4.5: Representative transport corridor
Figure 4.6: Structural difference between hierarchy (a) and network (b) processes 102
Figure 4.7: PIS, NIS and relative closeness in two-dimensional euclidean space 110
Figure 5.1: Functionalization of theoretical cost valuation module116
Figure 5.2: Typical representation of ANP in-built BVM 117
Figure 5.3: Functionalization of theoretical benefit valuation module
Figure 5.4: Variation of Isolated Scores against benefit cluster weights 125
Figure 5.5: Functionalization of theoretical final valuation module127
Figure 5.6: Functionalized comprehensive evaluation process
Figure 6.1: B/C ratios and Isolated Scores with & without non-monetizable benefits. 135
Figure 7.1: Benefit valuation in ANP platform
Figure 7.2: Local priority values for alternative projects and criteria
Figure 7.3: Normalized total costs and benefits of alternative projects, PIS and NIS. 167
Figure 7.4: Benefit shares of alternative projects at different benefit cluster weights 170
Figure 7.5: Isolated Scores of alternative projects at different benefit cluster weights 172
Figure 7.6: Isolated Scores of alternatives for a range of benefit cluster weights 173

LIST OF TABLES

Table 1.1: Input and result-completeness of existing best practices 6
Table 2.1: Transport project appraisal methods used by EU countries (2005)27
Table 2.2: Comparative evaluation of multi-criteria analysis techniques
Table 2.3: Summary of performances of the identified five multi-criteria methods . 48
Table 2.4: Comparison of major strengths and weaknesses of CBA and MCA 55
Table 2.5: Weaknesses, knowledge gaps, and interventions for MCA platforms 72
Table 4.1: Performance of AHP and ANP in transport project evaluation104
Table 4.2: Pairwise comparison scale 106
Table 6.1: B/C ratios and Isolated Scores for a sample set of projects
Table 6.2: Benefit criteria values for dummy project alternative 137
Table 6.3: Ideal solutions and normalized criteria values in rank preservation method141
Table 7.1: Benefits, costs, and results of CBA used in the Strategic Plan148
Table 7.2: Pairwise comparison scale 153
Table 7.3: Pairwise comparison for alternative projects w.r.t. user cost savings 154
Table 7.4: Normalized pairwise comparison for projects w.r.t. user cost savings 154
Table 7.5: Random Index (RI)
Table 7.6: LPVs for alternative projects w.r.t. monetizable benefit criteria156
Table 7.7: LPVs for monetizable benefit criteria w.r.t. alternative projects
Table 7.8: LPVs for alternative projects w.r.t. non-monetizable benefit criteria 158
Table 7.9: LPVs for non-monetizable benefit criteria w.r.t. alternative projects 159
Table 7.10: Calculated GPVs for alternative projects
Table 7.11: Normalized GPVs for alternative projects with and without DAP 165
Table 7.12: Summary of estimated costs and benefits for alternative projects 166
Table 7.13: Normalized total cost and benefit values for alternative projects 167
Table 7.14: Normalized GPVs at different combinations of benefit cluster weights 170
Table 7.15: Isolated Scores at different combinations of benefit cluster weights 171
Table 7.16: Evaluation decisions at different benefit cluster weight ratios 174
Table 7.17: Evaluation decisions at different benefit cluster weight ratios (iRoad 2) 176
Table 7.18: Comparison of results from CBA and CEP 177

LIST OF MATRICES

Matrix 4.1: Standard form of unweighted supermatrix	107
Matrix 5.1: Standard form of supermatrix for benefit valuation of transport projects.	119
Matrix 7.1: Unweighted supermatrix for local priority values	159
Matrix 7.2: Weighted supermatrix (monetizable: non-monetizable = 50:50)	161
Matrix 7.3: Stabilized weighted supermatrix	162
Matrix 7.4: Limitmatrix of weighted supermatrix	164

LIST OF ABBREVIATIONS

AHP	Analytic Hierarchy Process
ANP	Analytic Hierarchy Process
	Analytic Network Process
BCA	Benefit-Cost Analysis
BCR, B/C	Benefit-Cost Ratio
BPL	Bus Priority Lane
BRT	Bus Rapid Transit
BVM	Benefit Valuation Module
CBA	Cost-Benefit Analysis
CEP	Comprehensive Evaluation Process
COSIMA	Composite model for assessment
CVM	Cost Valuation Module
DAP	Dummy Alternative Project
DOT	Department of Transport
EFFECT	Evaluation Framework of Environmental Impacts and Costs of Transport
ELECTRE	ELimination Et Choix Traduisant la Realité
EU	European Union
EUNET	European Network for Education and Training
FCEP	Functionalized Comprehensive Evaluation Process
FVM	Final Valuation Module
GDP	Gross Domestic Product
GPV	Global Priority Value
HEATCO	Harmonized European Approaches for Transport Costing
ICM	Impact Categorization Module
IRR	Internal Rate of Return
IS	Isolated Score
LPV	Local Priority Value
MAMCA	Multi-Actor Multi-Criteria Analysis
MAUT	Multi-Attribute Utility Theory
MCA	Multi-Criteria Analysis
NATA	New Approach for Transport Project Appraisal
NIS	Negative Ideal Solution
NPV	Net Present Value
OECD	Organization for Economic Cooperation and Development
PIS	Positive Ideal Solution
RO	Research Objective
RQ	Research Question
RŴM	Railway Modernization
TCEP	Theoretical Comprehensive Evaluation Process
TOPSIS	Technique for Order of Preference by Similarity to Ideal Solution
UK	United Kingdom
US	Universal Score
USA	United States of America
WEIs	Wider Economic Impacts
w.r.t	with respect to
	•