

COMPARISON AND PERFORMANCE EVALUATION OF DIRECT AEROBIC SUBMERGED ATTACHED GROWTH AND ANAEROBIC CUM AEROBIC SUBMERGED ATTACHED GROWTH SYSTEMS, FOR FACTORY SEWAGE

This dissertation is submitted to the Department of Civil Engineering in partial fulfillment of the requirements for the degree of Master of Science in Environment Engineering and Management

by P. S. Suraweera (06/8809)

Supervised by Dr. Mahesh Jayaweera Dr. Jagath Manatunge

Department of Civil Engineering University of Moratuwa Sri Lanka

> 2010 94856

Abstract

Most factories located outside of BOI industrial zones in Sri Lanka do not have proper sewage treatment systems. Due to the high number of employees, these factories are always encountered with the problem of handling large quantities of low strength sewage generated from lavatories, canteens and kitchens. In such factories sewage is usually handled using conventional septic tank - soakage pit systems. Such systems are commonly found infested with insects, and promote further breeding. They cause nuisance due to obnoxious odor, and is a major cause for severe ground and surface water pollution. It has been noted that these factories have critical problems of handling sewage during rainy season, especially when the factory is located in areas with high ground water table such as a marshy land or near a surface water body.

The activated sludge suspended growth aerobic systems designed to treat sewage in most of the factories have various operational problems which increase the operator involvement and therefore the plants performance are operator dependent. Activated sludge suspended growth aerobic systems are more susceptible for sludge bulking which leads to poor effluent quality and the unbulking process is very difficult and ~time consuming. In addition to this, the several parameters such as SVI, MLVSS, etc have to be monitored carefully in the conventional activated sludge systems for the proper operation and the maintenance which increase the operational and the maintenance cost. The maintenance departments of factories always request a trouble free sewage treatment plant to minimize their involvement in operation of the plant. Therefore the submerged attached growth aerobic systems are becoming the most appropriate system as an alternative of the activated sludge system for treating low strength effluent, sewage from factories. A leading company in Sri Lanka which provides turnkey solutions for waste water and sewage has introduced submerged attached growth aerobic and anaerobic treatment systems to overcome above issues . Depending on the affordability of the client and the space availability they have introduce submerged attached growth aerobic systems in two ways.

(a) Direct aerobic submerged attached growth systems where sewage is treated only with aerobic treatment

(b) Anaerobic cum submerged attached growth aerobic systems where sewage is treated with anaerobic process prior to aerobic treatment.

However no proper study has been carried out to find out the most appropriate submerged attached growth system to treat sewage generated from factories. Research suggested that the anaerobic cum submerged attached growth aerobic system is more suitable for treating factory sewage than direct aerobic submerged attached growth system in terms of quantity of sludge wasting and lower operational and maintenance cost which results to a lower unit cost per m3 of treated water.

DECLARATION

I declare that this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any University or other institute of higher learning and to the best of my knowledge and belief it does contain any material previously published or written by another person except where the acknowledgment is made in the text.

.Queer

P. S. Suraweera

30/03/10

Date

DECLARATION

I have supervised and accepted this thesis for the submission of the degree

UOM Verified Signature

Dr. Mahest Jayaweera Project Supervisor Department of Civil Engineering University of Moratuwa Sri Lanka

UOM Verified Signature

A

Dr. Jagath' Manatunge Project co supervisor Department of Civil Engineering University of Moratuwa Sri Lanka

Date ... 27. ... 0.7 - 2010

ACKNOWLEDGEMENTS

The author gratefully acknowledges the tremendous help and support given throughout the course of the research leading to the completion of this study by a number of individuals and institutions in making this study possible.

I would, first, like to express my sincere and most profound gratitude to Dr. Jagath Manatunge and Dr. Mahesh Jayaweera, my advisors, for reading, studying and accepting the research proposal and then for allocating their valuable time, suggestions, comments, getting down articles on related topics from various websites and deep understanding and kindness despite their busy schedules.

I wish to convey my profound gratitude to Prof. Mrs. N. Ratnayake, Head of the civil Engineering Department and all the staff of the Civil Engineering department, for providing me the opportunity to pursue the Masters Degree in Environmental Engineering and assistance throughout the course.

My wholehearted gratitude is extended to Dr. Yohan Weerasuriya, Director Puritas Pvt. Ltd., for his advice and suggestions on improving the research. A special thank also due to Dr. Suren Wijeyakoon, Senior lecture, Department of Chemical & Process Engineering, for his valuable input during progress reviews.

P. S. Suraweera

TABLE OF CONTENTS

Declaration of the candidate		
Declaration of the supervisor		
Acknowledgements	iii	
Abstract	iv	
Table of contents	vi	
List of Figures	viii	
List of Tables	х	
List of abbreviations	xii	
Chapter 1: Introduction	01	
1.1 Present Scenarios in the Sri Lankan Garment Industry	01	
1.2 Domestic waste water treatment	02	
1.3 Background of the study	02	
1.4 Objectives of the Research	04	
1.5 Study Area	04	
1.6 Process Description of Treatment Plants	05	
Chapter 2 : Literature Review	12	
2.1 Introduction	12	
2.2 Substrate removal in attached growth treatment process	12	
2.3 Aerobic attached growth process	14	
2.3.1 Submerged Attached Growth Processes	15	
2.4 Anaerobic attached growth process	16	
Chapter 3 : Material and Method	21	
3.1 Basis for selecting sewage treatment plants for the research	21	
3.2 Methodology of the Research	21	
3.3 Experimental Techniques	23	
3.4 Comparing of Two Samples Means	23	
Chapter 4: Results, Calculations and Discussion	24	
4.1 Results and Calculations	24	

	4.1.1 Estimation of average waste water flow rate to each	24
	treatment system	
	4.1.2 Characteristics of raw sewage (influent) to each treatment	26
	system	
	4.1.3 Dissolved oxygen levels of the plants	31
	4.1.4 Characteristics of final treated effluent of each	31
	treatment plant	
	4.1.5 Characteristics of anaerobic treated water of sewage	36
	treatment plant B	
	4.1.6 Removal efficiency	38
	4.1.7 Sludge wasting	41
	4.1.8 Land utilization of the treatment plants	46
	4.1.9 Cost calculations for the treatment plants	47
	4.1.10 Unit cost calculation	59
	4.1.11 Sensitivity analysis for Unit cost calculations	63
4.2 Discussion		72
	4.2.1 Estimation of flow rate	72
	4.2.2 Characteristics of influent to each treatment plant	72
	4.2.3 BOD ₅ Loading	74
	4.2.4 Characteristics of treated water	75
	4.2.5 Removal efficiency	76
	4.2.6 Sludge wasting	77
	4.2.7 Organic Loading	84
	4.2.8 Unit cost of treatment plants	84
Chapter 5: Co	nclusions and Recommendations	07
	nclusion	87
		87 88
	5.2 Recommendations 5.3 Further studies recommended	
5.5 Ful		89
Reference List		90
List of appendices		91

		Page
Fig 4.16	 Effect of variation of power cost on plant annual unit cost Rs./m³ 	71
Fig 4.17	- Effect of variation of difference in plant annual unit cost on power cost Rs/kWhr	71

LIST OF TABLES

		Page
Table 1.1	- Details of treatment plants used for the study	05
Table 4.1	- Estimation of daily influent flow rate to plant A	24
Table 4.2	- Estimation of daily influent flow rate to plant B	25
Table 4.3	- Analysis of influent parameters, plant A	26
Table 4.4	- Analysis of influent parameters, plant B	27
Table 4.5	- Analysis of effluent parameters, treatment plant A	31
Table 4.6	- Analysis of effluent parameters, treatment plant B	32
Table 4.7	- Analysis of anaerobic treated effluent, plant B	36
Table 4.8	- Removal efficiencies of biological reactors, plant A	39
Table 4.9	- Removal efficiencies of biological reactors, plant B	40
Table 4.10	- Daily sludge wasting plant A	42
Table 4.11	- Daily sludge wasting plant B	43
Table 4.12	- Daily sludge wasting from anaerobic process of plant B	44
Table 4.13	- Capital cost of the treatment plant A	47
Table 4.14	- Capital cost of the treatment plant B	49
Table 4.15	- Annual energy consumption, treatment plant A	50
Table 4.16	- Annual cost of operating staff, treatment plant A	51
Table 4.17	- Annual energy consumption, treatment plant B	52
Table 4.18	- Annual cost of operating staff, treatment plant B	52
Table 4.19	- Equipment Maintenance Cost, treatment plant A	55
	for ten years	
Table 4.20	- Equipment Maintenance Cost, treatment plant B	57
	for ten years	
Table 4.21	- Table of Annuity factors as a function of interest rate	60
	and life time	
Table 4.22	- Unit cost calculations for treatment plant A & B	61
Table 4.23	- Effect of variation of land cost of treatment plant	64
	for annual unit cost of plant A & B	

		Page
Table 4.24	- Effect of variation of labour cost of treatment plants	67
	for annual unit cost of plants A & B	
Table 4.25	- Effect of variation of power cost of treatment plants	70
	on annual unit cost of plants A & B	
Table 4.26	- Range of variation of influent parameters	73
Table 4.27	- Influent BOD5 Loading to treatment plant A	74
Table 4.28	- Influent BOD5 Loading to treatment plant B	75
Table 4.29	- Average treated effluent characteristics	76
Table 4.30	- Average BOD5 removal efficiency of both plants	77
Table 4.31	- Comparison of observed performance of submerged	79
	attached growth process in Plant A vs calculated values	
	of suspended aerobic process assuming the same	
	influent loading conditions as attached growth process	
Table 4.32	- Comparison of observed performance of anaerobic	81
	process in plant B vs calculated values for suspended	
	growth anaerobic process, assuming same influent	
	conditions as plant B	
Table 4.33	- Comparison of observed performance of submerged	82
	attached growth process in Plant B vs calculated values	
	of suspended aerobic process assuming the same influent	
	loading conditions as attached growth process in plant B	
Table 4.34	- Average organic loading to plants	84
Table 5.1	- Summary of parameters	87

LIST OF ABBREVIATIONS

Abbreviation	Description
Plant A	Sewage treatment plant with direct aerobic submerged
	attached growth system
Plant B	Sewage treatment plant with anaerobic cum submerged
	attached growth aerobic system
AEC	Annual equivalent cost
А г,л	Annuity Factor for interest rate r and no of years n
BOD	Bio-chemical Oxygen Demand
BPR	Biological Phosphorus Removal
CEA	Central Environmental Authority
COD	Chemical Oxygen Demand
DO	Dissolved Oxygen
I	Capital investment cost
MLSS	Mixed Liquor Suspended Solids
MLVSS	Mixed liquor volatile suspended solids
SRT	Solids Retention Time
So	Influent parameter
Se	Effluent parameter
TSS	Total suspended Solids
STP	Sewage Treatment Plant
TKN	Total Kjeldahl Nitrogen
VSS	Volatile Suspended Solids
Х	Total AEC of capital cost
Υ	Total annual operational and maintenance cost

xii