DEVELOPMENT OF AN INDEX FOR PROJECT EVALUATION OF COMMUNITY WATER SYSTEMS IN SRI LANKA

BY

A.D.K.K. VVijayagunawardana

Supervised by

Dr. A.A.D.A.J Perera

The Dissertation was submitted to the Department of Civil Engineering of the University of Moratuwa in partial fulfillment of the requirement for the Degree of Master of Science in Construction Project Management.

DEPARTMENT OF CIVIL ENGINEERING
UNIVERSITY OF MORATUWA
MORATUWA SRI LANKA

2010

94862

Abstract

Community Water Systems (CWS) perform a vital role in providing safe drinking water to the rural populations in the whole world. In Sri Lanka, National Water Supply & Drainage Board (NWSDB) holds the monopoly for supplying safe drinking water to the whole nation. Presently it has covered more than 75% of the urban population but a mere 14% from the country's rural population where as 78.5% of the total population is rural. The NWSDB targets to cover 75% rural population by the year 2025.

Along with this tremendous scope for growth, CWS face significant resisting forces due to increasing difficulty in finding reliable water sources that require less improvement costs, stricter water quality regulations, decreasing financing and investment capabilities, increasing public scrutiny and increasing infrastructure replacement costs.

Despite for both these tremendous scope and significant resistance, there is no real measure or some kind of standard to assess the performance of these CWS. This has greatly hindered the development and improvement of CWSs. To cater the tremendous need that this absence has created for a standard performance evaluation tool, this research was intended towards the development of a 'Composite Performance Index Value' (CPIV). Thee concept is based on an index, as the Performance Indicators are widely known for its importance and effectiveness in the process of evaluating achievement or progress. They have become important management tool by giving directions to managerial policy and decision making. This report presents the results of the research project to develop CPIV, which has been developed as a holistic evaluation tool to measure the performance of CWS.

The study was carried out using the Delphi method which is a structured process of collecting and refining knowledge from a group of experts through survey instruments. Tire survey instruments used in this study were questionnaires and interviews. Cross impact analysis was adopted to measure the correlation between

variables in analyzing the recommended Performance Indicators across several factors. Factor analysis was also used through weighting assignment in data analysis

The CPIV has produced an assessment for eleven key performance areas of a CWS which includes variables in access, use, environment, finance, and management and user capabilities. Thus this index integrates the physical, social, economic and environmental aspects that link water and management issues. Hence the index will be an inter-disciplinary tool that combines and presents a cluster of data that are directly and indirectly related to water system and management into a single number, thus simplifying the complexity of various issues that Community Water Managers presently encounter in evaluating the performance of CWS.

The index value will also serve as a tool for identifying prioritization of needs for Intervention and provides ground for decision-makers to act impartially by allowing them to justify their choices, based on a rational and transparent framework. Also the development of the index provides an opportunity to express the needs, expectations and achievements of CWS in a more standardized manner that can be put into the comparable evaluation model.

Declaration

I certify that this dissertation does not incorporate, without acknowledgement, any material previously submitted for a degree or diploma in any university and to the best of my knowledge and belief, it does not contain any material previously published or written by another person except where due reference is made in the text.

Signature of Candidate: Date: 3.4. / 3.4. / 3.51.2...

S.K.M Senarath

Department of Civil Engineering,

University of Moratuwa.

I certify that the above declaration is true and correct to the best of my knowledge

UOM Verified Signature

Signature of Supervisor:

Dr. L.L Ekanayaka,

Department of Civil Engineering,

University of Moratuwa.

Acknowledgement

I take this opportunity to thank supervisor Dr. L.L Ekanayaka, Department of Civil Engineering, University of Moratuwa for his kind support and direction given to me throughout the project. And also I would like to express my sincere gratitude to Dr. A.A.D.A.J Perara, Dr R U Halwatura guidance, continuous encouragement and kindness extended to me throughout the M.Sc. programme.

Also I am much grateful to the course coordinator, of the Msc program and all the staff members of Construction Engineering & Management Division, Department of Civil Engineering, and University of Moratuwa for their support and guidance on this project. Also I am thankful to all the respondents who helped me in collecting data during their very busy working time and officer in charge of institutions who gave their support me. Especially for officers at sustainable energy authority, central environmental authority and Ceylon centricity board gave me great help.

Electronic Theses & Dissertations www.lib.mrt.ac.lk

SKM Senarath.

TABLE OF CONTENT

Declarat	ion	ii					
Abstract	•••••	iii					
Acknowl	edgemen	tiv					
Chapter	Chapter 1. Introduction1						
1.1.	Backgro	und1					
1.2.	Research Problem4						
1.3.	Research Objectives						
1.4.	Research Design and Methodology5						
1.5.	Scope and Limitation						
1.6.	Main Findings5						
1.7.	Outline o	of the Thesis					
Chapter2	2. Litera	nture review Theses & Dissertations 8					
2.1.	www.lib.mrt.ac.lk Introduction						
2.2.	Definition of Small Hydropower8						
2.3.	Global hydro power9						
	2.3.1.	General9					
	2.3.2.	Present Situation and Future Potential					
	2.3.3.	Small Hydro Development in India					
2.4.	National	Energy Supply in Sri Lanka16					
2.5.	Electricity Demand in Sri Lanka						
2.6.	Hydro Po	ower in Sri Lanka18					
		ower and It's Versatility22					
	2.7.1.	Hydro-diversity22					
	2.7.2.	Fostering Energy Security					
	2.7.3.	The Changing Role of Hydropower					
2.8.	National Energy Policy23						
2.9.	The Ceylon Electricity Board						
2.10.	Sri Lanka	a Sustainable Energy Authority26					

2.11.	Public Utilities Commission of Sri Lanka	27
2.12.	Sri Lanka Electricity Act, No. 20 of 2009	28
2.13.	Private Sector Participation in Small Hydro Power Development	t in Sri
Lanka	ı	28
2.14.	Government's Move towards Renewable Energy	31
2.15.	Clean Development Mechanism	34
2.16.	Rural Electrification	35
2.17.	RERED Project	35
2.18.	Effects & Impacts of Off-Grid Power Projects	36
2.19.	Limitation of Small Hydro Power	37
2.20.	Summary	37
Chapte	3. Research Methodology	39
3.1.	Research Approach	39
3.2.	Identification of Influencing Factors	40
3.3.	Unstructured Interview Step 1	42
3.4.	Questionnaire Step 2 Sity of Moratuwa, Sri Lanka.	45
3.5.	Flectronic Theses & Dissertations Sample Selection www.iib.mrt.ac.ik	47
3.6.	Collection of Data	48
3.7.	Analysis of Data	49
Chapter	4. Analysis and Discussion of Results	51
4.1.	Respondent's Profile	51
4.2.	Estimation of National Small Hydro Power Potential	52
4.3.	Evaluation of Hydro Power Projects Influencing Factors	56
4.4.	Evaluation of Respondents Comments	61
Chapte	5. Conclusion and Recommendation	63
5.1.	Summary	63
5.2.	Conclusion	64
5.3.	Limitations	66
5.4.	Recommendation/ Guideline	66
5.5.	Recommendations for Future Research	67

LIST OF FIGURES

Figure 2-1 Components of World Electricity Supply	10
Figure 2-2 Micro Hydropower Plant in Sri Lanka	14
Figure 2-3 World Hydro Power Development by Region	14
Figure 2-4 Actual Electricity Demand and Estimated Demand	17
Figure 2-5 Small Hydro Power Plant	21
Figure 2-6 Government Institution Regulating Electricity Sector	25
Figure 2-7 Unharnessed Hydro Power Location at Muwagamuwa in Ratnapura	30
Figure 2-8 Grid Connected Small Hydro Power Plant of 0.9MW at in Kolonna .	30
Figure 2-9 SHP Development in Sri Lanka	32
Figure 3-1 Establishment of Influencing Factors	41
Figure 3-2 Small Hydro Power Implementation Process	43
Figure 4-1 Experience of The respondents in The Hydro Power Field	51
Figure 4-2 Respondents Involvement in the Hydro Power Field	52

LIST OF TABLES

Table 2-1 Global Hydropower Status of Development at End of 2005	11
Table 2-2 Power Plant Installed Capacity by Source and Ownership in Sri Lan	
Table 2-3 Energy Mix of Sri Lanka	
Table 2-4 Expenditure on Private Power Purchase in 2008	
Table 2-5 Hydro Power Status in Sri Lanka	
Table 2-6 Renewable Energy Development in Sri Lanka	
Table 3-1 Sample Questionnaire	
Table 4-3 Small Hydro Power Status as per CEB	
Table 4-4 Small Hydro Power Status as per SEA	
Table 4-5 Sample Respondent's Input Sheet and Corrected Values	

Annex

Annex 1 : Questionnaire Form 1

Annex 2 : Questionnaire Form 2

ABBREVIATIONS AND ACRONYMS

CDM Clean Development Mechanism

CEA Central Environmental Authority

CEB Ceylon electricity board

CEI Chief Electrical Inspector

GNP Gross National Product

GHG Green House Gases

GOSL Government of Sri Lanka

HH House Holds

MOPE Ministry Of Power and Energy Sri Lanka

NCRE Unive Nonconventional Renewable Energy 2.

NCREP Non-Conventional Renewable Energy Plan

PUCSL Public Utility Commission of Sri Lanka

RE Renewable Energy

RERED Renewable Energy for Rural Economic Development

SHP Small Hydro Power

SHS Solar House Hold System

SEA Sustainable Energy Authority