
Enhancement Module for MOINC High 

Performance Grid Computing Framework for
Web Services

R.I.A. Senadheera, D.P. Senarathne, C. K. Wimalasena and I. Perera 
Department of Computer Science and Engineering, University of Moratuwa, Sri Lanka.

lower efficiency of designing and constructing a small 
number of custom supercomputers.

The MOINC Server Manager Module adds 
enhanced volunteer computing features to the basic 
MOINC infrastructures, thus improving the community 
interaction. It extends default clustering and load 
balancing algorithms providing more advanced 
implementation considering client benchmarking and 
statistical information.

Abstract- Project
Infrastructure for Network Computing) is 
attempt to use processing power of idle computers 
when they are connected to a network to serve web 
service requests in 
architecture.
This research paper considers the various aspects of 
grid computing architecture, clustering and load 
balancing aspects which have been optimized for 
distributed request processing of web services. 
Furthermore many techniques that have been 
utilized for implementation of volunteer computing 
model on the framework have also been described. 
The paper also describes the design of the whole 
system which can be easily extended in order to 
further optimization. The ultimate objective is to 
come up with more generalized grid computing 
framework for future web services.

MOINC (Mora Open
an

distributed computing

Ii. Background

The term grid computing originated in the early 
1990s as a metaphor for making computer power as 
easy to access as an electric power grid. With the 
elapsing of several years volunteer computing were 
popularized beginning in 1997 by distributed.net and 
later in 1999 by SETI@home to harness the power of 
networked PCs worldwide, in order to solve CPU- 
intensive research problems.

I. Introduction

"Distributed" or "grid" computing in general is a 
special type of parallel computing that relies on 
computers connected to a network (private, public or 
the Internet) by a conventional network interface, such 
as Ethernet. •

The Mora Infrastructure for Grid Computing 
(MOINC) is a project came up with the objective of 
providing distributed processing infrastructure for web 
services. It is further capable of acquiring idling 
processing power of the computers (provided the 
MOINC client application running.) connected to its
network

primary advantage of the MOINC framework is 
that each node can be purchased as commodity 
hardware, which when combined can produce similar 
computing resources to a multiprocessor 
SuPercomputer in serving the web services, but at 
lower cost. This is due to the economies of scale of 
Producing commodity hardware, compared to the

A. The Concepts of Grid Computing and Distributed 
Computing

Distributed Computing is one of the branches which 
can be said to be a form of Grid Computing [1] [2]. 
Distributed computing presents the idea of scattering 
processing across system boundaries, without any 
limitation as imposed in a clustered computing. 
Providing a middle-layer for abstraction from lower 
layer heterogeneity, it imposes a virtual organization 
over the present physical system. This is almost what 
Grid computing is based on, except a small difference 
in the approach towards the term.

Distributed Computing environment creates an 
environment of tightly coupled facilities which are 
targeted towards a common goal, where as Grid is 

of an end-to-end architecture which 'also'more
facilitates enveloping a distributed computing 
environment.

Also, in a conventional distributed computing 
environment, the user has some or complete 
knowledge about the nodes and the underlying

77



web services; hence providing new 
opportunities to sell organization’s computing power.

businessarchitecture [3], Whereas this is not true for a Grid 
System, and the user is not required to know anything 
about the underlying topology or any individual nodes 
in particular. Distributed computing is about firing 
request on specific node(s), unlike Grid where 
interaction is with the system as a whole and not with 
any node(s) in particular.

5) Collaborative Volunteer Computing 
The same mechanisms that make volunteer 

computing within individual organization’s work, can 
be used to make volunteer computing between 
organizations as well. By volunteering their computing 
resources to each other, or to a common pool, 
organizations around the world can share their 
computing resources, making new forms of world-wide 
collaborative research possible.

B. The Volunteer Computing Model
Volunteer computing is a type of distributed 

computing in which computer owners donate their 
computing resources (such as processing power) to one 
or more "projects". It is distinct from grid computing, 
which involves sharing of managed computing 
resources within and between organizations.

By making it easier for people to volunteer their 
machines, volunteer computing not only allows us to 
form parallel computing networks more quickly and 
with more processors than possible before with 
traditional metacomputing systems, it also makes it 
possible for people who have not considered parallel 
processing at all before - due to lack of expertise, time, 
or resources - to start considering it [4]. In this way, 
volunteer computing, like the tradition of bayanihan, 
creates many new possibilities where there were none 
before.

C. Web Services Architecture 
Web services are frequently just Web APIs that can 

be accessed over a network, such as the Internet, and 
executed on a remote system hosting the requested 
services.

1) Web Services and Service Oriented 
Architecture

In computing, service-oriented architecture (SOA) 
provides methods for systems development and 
integration where systems group functionality around 
business processes and package these as interoperable 
services. Further it can be considered as a group of 
services that communicate with each other.

1) True Volunteer Computing 
Systems such as SETI@home and distributed.net 

may be called true volunteer computing systems. That 
is, their participants are volunteers in the true sense of 
the word in that they are unknown to the administrators 
before they volunteer.

True volunteer computing model can be 
successfully used in scientific problems and 
challenging computational problems that people join 
just for fun and the pride of being part of a global 
effort. For instance, naturally interesting topic of 
SETI@home project (i.e. finding signs of extra­
terrestrial life) accounts for SETI@home’s great 
popularity.

tV.*:
LCC1

it.
L I'i/n/i ««•

.'U W-t tf 
«vln<l■

j

i
.V
iw.'riIj J4

r >S~'~\
fird -J .J

Fig. 1. Web services in a service-oriented 
architecture

2) Private Volunteer Computing
At the lowest level, volunteer computing principles 

can be used in private volunteer computing networks 
within organizations such as companies, universities, 
and laboratories to provide inexpensive 
supercomputing capabilities.

Thus volunteer computing can be used to pool 
together the computing power of under-utilized 
resources within the organizations to attain 
supercomputing power that would otherwise be 
unaffordable.

The project MOINC is also focused on this motive; 
using the idle computing power of a network to serve

Service-orientation aims at a loose coupling of 
services with operating systems, programming 
languages and other technologies which underline the 
applications. SOA separates functions into distinct 
units, or services, which developers make accessible 
over a network in order that users can combine and 
reuse them in the production of business applications

Furthermore, SOA concepts can be considered as 
built upon and evolving from older concepts of 
distributed computing.

j

j

78i



1) Web Services Clustering Environment
A computer cluster is a group of linked computers, 

working together closely so that in many respects they 
form a single computer. Application Servers such as 
Axis2 provides experimental clustering support to add 
scalability, failover and high availability to Web 
Services.

In clustering environment, load-balancing referred 
as distributing a workload evenly over multiple back 
end nodes. Typically the cluster will be configured 
with multiple redundant load-balancing front ends [6].

Grids are usually compute clusters, but more 
focused on throughput like a computing utility rather 
than running fewer, tightly-coupled jobs. Project 
MOINC uses axis2 clustering environment at its 
backend.

1) Benchmarking Web Services: To avoid such 
occurrences, MOINC Server Manager benchmarks the 
deployed web services before assigning them to service 
domains. For the initial implementation we have the 
computational intensiveness and load (the average 
number of requests) gening by each service relative to 
an average service deployed in the system.

In quantitative measures, the load on the system by 
a service can be obtained by its hit rate of it. Due to the 
additional overhead, we have rejected the concept of 
obtaining performance measures by processing a 
request of each service on a standard node. 
Experiments conducted indicated that the file size of a 
service artifact provides an acceptable correlation to its 
computational intensiveness. Hence, the weight for a 
web service artifact has been calculated as follows.

fiie SizeHitraze 
A vg Hif-ctf

In. Enhanced Implementation For Moinc 
Server Core

wSl = c +
■ Arp file Size - 100 — •

Where C is the system performance constant. 
Administrators are given with the capability of fine 
tanning the MOINC grid by changing it with a number 
between 0 - 100.

The MOINC Server Management Module is 
targeted in enhancing features of the MOINC platform. 
We have implemented several enhanced administrative 
and social networking features so that the framework 
can be used in private volunteer computing model. The 
module tracks each agent by a unique username which 
is used to register in the network via MOINC client 
interface. As agents contributed to the grid, statistics 
are collected on services requests and client’s 
contribution. Advanced algorithms implemented in the 
module use benchmarking and statistical values in 
clustering and load balancing.

Furthermore, a set of system performance statistical 
charts has been provided via a web interface in order to 
provide administrators with analytics.

A. Web Service Grouping
MOINC Server Management Module contains and 

advance implementation
ClusteringDomainManager API replacing its 
default implementation in MOINC Server Core.

The MOINC platform uses round robin algorithm to 
group deployed web services into clustering domains. 
In the server startup, it examines the deployed web 
servers from the repository and assigns each service 
into default domains in round robin manner. This 
miplementation does not concern the performance 
requirements of each web services. Hence, domains 
which contain computational intensive services with 

igher hit rates may get nodes with relatively low 
Performance capacities and lower idle time; assigned 
*nto it. This may cause negative effect on overall 
^stem’s performance and reliability.

2) Grouping Sen*ices: The implementation of the 
service grouping algorithm uses six serv ice domains by 
default. Each domain is assigned with a service weight 
range from total distribution (minimum weight - 
maximum service weight) of service weights in an 
instance.

The total distribution of serv ice weights are divided 
into two ranges initially as follows.

Range 1: Minimum weight - Average weight (of a 
service)

Range 2: Average weight - Maximum weight
Each of these two ranges have been divided into 

three equal ranges thereafter and assigned to the six 
service domains.

When services are assigned, the algorithm 
calculates ranges for domains. Services are then 
assigned to the appropriate domain whose range the 
service’s weight fall into.

of

3) Assignment of Nodes into Service Domains: When a 
node joins to grid, the MOINC Server assigns it to a 
service domain. As per default implementation of the 
server, a round robin algorithm handles this task. There 

several concerns with this approach because itwere
didn’t accounts any of the following factors.
1. Node Performance - In a volunteer network, 
computers are not homogeneous. There will be nodes 
with different hardware configuration and different 
Operating systems with different computational

79



management Module when the module is present in the 
server. When a node joined to the grid, the calculated 
weight is passed to LoadBalanceContext via 
Server API so that it will be used in load balancing.

capacities. In a high performance grid, more load 
should be handled by these high end machines.

2. Node availability - Several previous researches 
indicated that the node availability varies due to 
various reasons. In a peer to peer system, most of the 
times nodes join to the network for download 
purposes, and vanishes ones they are done. In MOINC, 
node availability directly relates to the system 
availability and scalability.

3. Bottleneck bandwidth - Bottleneck bandwidth is 
the maximum end-to-end data transfer rate that can be 
achieved. It depends on the link with minimum 
bandwidth, in between the end-to-end hosts. Even 
though it is a high-end machine, performing full time 
of the day, with a very low bottleneck bandwidth, it 
will have an adverse effect on the overall system’s 
performance.

In accordance with service grouping mechanism, 
MOINC Server Manager assigns nodes into service 
domains based on a weight calculated. The parameters 
were chosen to calculate this weight in relation with 
parameters used in service weights calculation. Hence, 
performance related parameter is obtained by 
benchmarking each node.

n relation with the total load to a service, node’s 
availability also has been used as a parameter in weight 
calculation. The quantitative measure was obtained 
through the statistics (total contribution time in hours) 
gathered by MOINC Server Management Module.

The following equation demonstrates the 
calculation of weight for a node.

C. Credit Calculation
Similar to other volunteer grid computing systems 

such as BOINC, MOINC Server Management Module 
provides credits to its contributors based on their 
contribution levels to the grid. When a client detached 
from the grid, the MOINC agent sends service request 
processing details to the server via Thisara framework 
[8]. Upon receiving this message, credits are calculated 
and updated for the relevant user.

1) Calculation of Recent Average Credit: The 
Recent Average Credit is updated when Credit is 
added. Recent Average Credit is computed by taking 
the Total Credit and reducing it by half every week 
before adding the current Granted Credit. Since the 
credit is added as it is granted, the formula takes into 
account the time difference between now and the last 
time that Credit was granted. If no Credit is granted for 
a week, the Recent Average Credit is reduced by half 
anyway.

Each time new Credit granted, the following 
function is used to update the Recent Average Credit of 
the participant.

RACinew) = RAC (old) x at 4- (1 — at) x Credit

Where d(t) is the decay function, and t is the time 
(in seconds). The Recent Average Credit calculation is 
run independently for each computer or participant. 
Hence having an old computer that is no longer 
producing credits does not reduce the Recent Average 
Credit, but rather will increase it from what it would 
have been without the old computer. This increment 
will shrink until it is indistinguishable from 0.

H'v; = Benchmark x (100 - C) + Contrib x C

Where C is the same constant as in the service 
weight calculation.

The assignment process of nodes to service domains 
is similar as in service grouping. Node weight ranges 
are calculated for service domains in the same way as 
in the service weights are calculated. Then the node is 
assigned to the appropriate domain based on weight 
range. 1DOPO

00.00
60,00B. Load Balancing

The primary purpose of load balancing is to spread 
web service requests between nodes in the grid, in 
order to get optimal resource utilization, maximize 
throughput, and minimize response time.

The MOINC Server core implements weighted 
round robin load balancing algorithm with Apache 
Synapse at its backend. By default, all the weights are 
taken as constants so that the total load is distributed 
equally to all nodes.

As per the inversion of control concept, the control 
of the load balancing is taken by MOINC Server

70,00 z.00.00 z60.00

740 SO 130.00

—Sb20.00
710.00

ooo
V

Fig. 2. Simulated development of the Recent 
Average Credit for a Pentium 3 700MHz machine 

running 24/7

80

M %



!

p. Customization of Web Service Repository - WS02
Registry

WS02 Registry [9] is an enterprise-ready open 
source product for governing SOA deployments. The 

source WS02 Registry features a structuredopen
registry and repository; Web-based interface; and Web 
2.0 community features such as tags, rating and 
comments. Project MOINC uses customized version of 
WS02 Registry as its service repository because of its 
above mentioned features enable MOINC system 
administrators to store, catalog, index and manage 
metadata in a simple, scalable and easy-to-use wiki­
style model. Further, the following reasons were also 
taken into consideration in choosing WS02 Registry.

Fig. 3. WS02 Registry- architecture
—Its robust, configurable security includes the 

ability to fit in with an existing directory using LDAP 
or Acegi, or manage users internally. Fine-grained 
access control is provided for resources and actions.

—Searchable audit logs exist for all activity in the 
Registry.

-The ultra light and highly configurable WS02 
Registry Java client API enabling easy integration with 
code that does not already use HTTP to obtain 
configuration or other metadata.

-Flexible and powerful search options include the 
ability to search based on tags or advanced criteria.

1) Changes to Registry Source Code: WS02 
Registry was customized according to project 
requirement as a part of MOINC implementation. We 
have extended registry’s activity logs in order to track 
MOINC users’ contribution levels and earned credits 
information.

The Server Manager Module maintains its all data 
in the registry database without changing existing 
registry database schema. The profile details of 
MOINC users and benchmarking data have been kept 
as registry user properties. The required changes were 
done to the registry code in order to bring this 
information to the web interface.

2) Extended Registry Web Application: We have 
extended WS02 Registry Web application into a 
community portal by adding it more community 
features such 
forum project of JForum 
Wlth Registry for this. Since the two different 
architectures, JForum had to be loaded to Registry web 
interface through html iFrames.

Furthermore administrative interfaces are extended 
vvith various graphs of system performance statistics.

3) Synchronization of User Authentication: The user 
authentication mechanisms of MOINC Server Console, 
WS02 Registry and integrated JForum have been 
synchronized using Single Sign On technology.

Single sign-on (SSO) is a method of access control 
that enables a user to log in once and gain access to the 
resources of multiple software systems without being 
prompted to log in again. Single sign-off is the reverse 
process whereby a single action of signing out 
terminates access to multiple software systems.

As different applications and resources support 
different authentication mechanisms, single sign-on 
has to internally translate to and store different 
credentials compared to what is used for initial 
authentication.

Iv. Benchmarking Nodes

In computing, a benchmark is the act of running a 
computer program, a set of programs, or other 
operations, in order to assess the relative performance 
of an object, normally by running a number of standard 
tests and trials against it.

A. The Criteria of Benchmark
Systems such as BOINC uses a combination of 

Whetstone and Dhrystone, which returns a value that 
represents a combination of floating point operations 
and integer calculation done per second, by the 
processor; in benchmarking its nodes.

When MOINC grid computing environment is 
considered, it is important to reduce request serving 
time to its minimum while maintaining high 
availability factor. Hence nodes are benchmarked 
based on its computational capacity and availability in 
the network.

as user forums. An open source java 
successfully integratedwas

81



V. ConclusionIn volunteer computing model, it is further required 
to maintain the user uninterrupted while grabbing idle 
computing power. Hence, in each time a node joins to 
the cluster, benchmarking value is obtained by the 
Server Manager Module via Thisara communication 
framework.

MOINC uses UNPACK (100) algorithm to 
benchmark its nodes.

It can be clearly seen the enhanced implementation 
for MOINC Server brings MOINC platform towards 
the volunteer computing model.

It is also concluded that the advanced service 
grouping and load balancing algorithms improve the 
overall systems’ performance and reliability.

AcknowledgmentB. Java Implementation of UNPACK (100)
The LINPACK Benchmarks are a measure of a 

system's floating point computing power. It measure 
how fast a computer solves a dense N by N system of 
linear equations Ax = b, which is a common task in 
engineering. The solution is obtained by Gaussian 
elimination with partial pivoting, with floating point 
operations given by the following equation. The result 
is reported in millions of floating point operations per 
second (MFLOP/s) [10].

The authors wish to acknowledge the active support 
and advises given by Dr. Sanjeewa Weerawarana and 
Mr. Indika Perera. Their constant guidance has enabled 
the successful completion of this research project.

References

[1] Foster, Ian; Carl Kesselman, The Grid: Blueprint 
for a New Computing Infrastructure, Morgan 
Kaufmann Publishers. ISBN 1-55860-475-8.
[2] Berstis, Viktors. "Fundamentals of Grid 
Computing". IBM [Online] Available: 
http://www.redbooks.ibm.com/abstracts/redp3613.html
[Visited: July 16th, 2008].
[3] Nadiminti, Dias de Assunpao, Buyya. "Distributed 
Systems and Recent Innovations: Challenges and 
Benefits".
[4] Luis F. G. Sarmenta, Volunteer Computing, S.M. 
Electrical Engineering and Computer Science, 
Massachusetts Institute of Technology.
[5] Bell, Michael (2008). "Service-Oriented Modeling: 
Service Analysis, Design, and Architecture". Wiley & 
Sons.
[6] Liang Fang, Aleksander Slominski, and Dennis 
Gannon, Web Services Security and Load Balancing in 
Grid Environment, Computer Science Dept, Indiana 
University
Bloomington.
[7] Project BOINC: Open-source software for 
volunteer computing and grid computing [Online] 
Available: http://boinc.berkelev.edu [Visited: July 
24th, 2008]
[8] Thisara Communication Framework [online] 
Available:
[Visited: June 20th 2008]
[9] WS02 registry Project [Online] Available: 
http://vvso2.on2/proiects/registry [Visited: Dec 5th, 
2008]
[10] Jack Dongarra, Reed Wade, and Paul McMahan, 
Linpack Benchmark - Java Version [Online] Available: 
http://www.netlib.org/benchmark/linpackiava [Visited: 
Sep 22nd, 2008]

2
= (-x N3)+ (2 xN2)FLOPs

This performance does not reflect the overall 
performance of a given system, as no single number 
ever can. It does, however, reflect the performance of a 
dedicated system for solving a dense system of linear 
equations. Since the problem is very regular, the 
performance achieved is quite high, and the 
performance numbers give a good correction of peak 
performance.

C. Extensible and Secure Architecture
Binaries of Java implementation of MOINC 

Benchmarking API is shipped with MOINC Client 
application. The MOINC architecture is properly 
designed so that system administrators can use their 
own benchmarking mechanism without changing the 
framework’s code.

In the client application, the implementation of the 
benchmark algorithm is specified via its configuration. 
Hence one can change its returning benchmark value 
by replacing with another implementation. To avoid 
the possible security vulnerabilities, MOINC Server 
Manager Module validate benchmark values against 
the genuine benchmark algorithm placed in server side, 
by comparing two hash values generated from each 
artifact. MOINC Client generates a hash value of the 
configured benchmarking artifact and sends it along 
with the benchmark via Thisara communication 
framework.

http://www.moinc nrg/indexf 1 Ol.htrn

!

i

82

http://www.redbooks.ibm.com/abstracts/redp3613.html
http://boinc.berkelev.edu
http://vvso2.on2/proiects/registry
http://ww
http://www.moinc

