
AIEPmora an NLP Knowledge Representation
and Retrieval Platform

A.I Maha Arachchi, Attanayake A.M.S.S.A.U.B, Phillips G.L.L and Vithanagama S.
Department of Computer Science and Engineering, University of Moratuwa, Sri Lanka.

techniques cannot be directly applied on an AIML KB. The
inference engines of modem automated chat bots are based on
pattern matching and regular expression and their answers are
somewhat limited to small set of patterns. In most cases when
an answer cannot be generated the system settle down to a
general answers like “what do you mean*' or “ah tell me
again”. The knowledge base is \ery rigid and cannot
accommodate ever changing information and user based.
Although AIML is a restrictive representation it does have its
advantages like fast response time and answering to general
expressions like “hi”, “whats the color of sky” or “how is the
day”.

The aim of AIEPmora project is to provide an easy to use
chat bot where a general user can query questions much like a
human. The system provides meaningful answers by searching
its knowledge bases. AIEPmora converges final results at
various steps to pin point an answer.

The system compromise of 4 main units. 1) Query engine.
2) Two structured knowledge bases 3) Unstructured
knowledge base with an indexer 4) NLP algorithm engine.
These components will be discussed in detail in the coming
sections.

AIEPmora relies on a simple text query for all the inputs
and displays the matching sentences in a simple text output.
This simple text input, output makes it easy to integrate with
widely available information retrieval platforms. This also
allows sound recognition and text readers to be directly
incorporated to create a human like conversation engine. A
conversation can be carried out in a human language and the
system gives meaningful answers. When an expression like
“hi” or “good morning” is raised the system answers much
like a human.

We thought hogging into a structural KB is a limiting factor
and add a plain text consuming engine where day today
knowledge can be easily included. A novel KB switch is
added to select among different type of KBs available. The
KB switch allows intelligently select structural and
unstructured KBs based on patterns it has learned previously.

/iforracf-This paper discusses AIEPmora;
processing system designed to maintain a conversation with a
human user. The architecture is much similar to an automated
chat bots with several overhauls to integrate vary ing knowledge
bases. The system is designed to consume plain text so that
knowledge can be added without worrying about its structure or
organization. It does not require link to be present in the text and
can manage various type of wh questions plus human like
expressions like “hi” , “good morning”. This paper presents a
high level architecture of AIEPmora and how its component
integrates to create a human like chat bot.

natural language

Index Terms—Chat Bots, Knowledge Representation,
Knowledge Retrieval, NLP

I. Introduction

'T'oday in the digital era, text has become the primary
JL medium of representing and transmitting information .

People’s lives are saturated with textual information and there
is an increasing demand to develop a method to help them
manage and make sense of information overload [1].

In corporate environment there is a massive amount of link
free information like emails, text files and documents trapped
in repositories which cannot be searched. Building a search
algorithm like that 'of internet search engine is difficult as link
ranking methods cannot be directly applied on link free
information.A classic example is frequently asked questions
[2] where you have a
knowledge without proper links. Corporate email client is
another source of information where both structure and inter
links are not available. Although enterprise search engine exist
they don’t provide chat bot like features and solely depends on
keyword search [3], [4], [5].

Currently existing humanoid chat bots like Alice Bot [6]
requires a well structured Knowledge Base (KB). Alice Bot
depends on an ontology structure called AIML (Artificial
Intelligence Markup Language) and can be used to represent
quite a complex knowledge. Converting of day today
information like emails to a well structured KB is a daunting
task or practically impossible. AIML depends on pattern
watching and most of statistical based NLP processing

good structural representation of

II. ARCHITECTURE

A high level architecture of the system is shown in Fig. 1.

7

3) Questions related to definitions are queried into
WordNet (Princeton University WordNet) [7]
WordNet is well structured to select definitions
finding object types. For instance finding the meaning
of the word “amalgamate” or resolving that a car is a
passenger vehicle and a passenger vehicle is a general
vehicle can be done using WordNet.

4) To answer human expressions that have no specific
meaning, an AIML [8] based query engine is utilized.
For instance to answer expressions like “ah’ “ouch”
“hoo hoo” can be done with AIML. It also helps in
answering some general questions like “Who is your
father?” or “How is the weather like?”

AIML is an XML based language to represent
Artificial Intelligence. AIML describes a class of data
objects called AIML objects and partially describes the
behavior of computer programs that process them.
Main components of an AIML document could be
identified as categories, patterns and templates.

5) A Chabot is useless unless it can answer a wide
variety of questions. Most of modem chat bots can’t
consume plain text. We see this as a limitation and
integrated a plain text consuming engine to AIEPmora.

Query
and

Q
’ r

KB
Switching
Engine

—1

WordAIML Quer;
EngineAIML Net

1-7J> • Index
* Engine

KB A, B ...Bulk
Text

Unified Outpul
Interface

To answer questions like “Who is the president of
United State in 1995?” or “What is the first Benz car
with 4000cc Engine?” or “Who is the father of Bill
Gates?” you need to have intensive knowledge base.
We assume that such knowledge cannot be limited to a
specific structure and can only be represented with
plain text. Beside all most of such information are
available in plain text format.

To carry out the research and to have large amount
of textual information we created an automated
crawler and downloaded over 0.2 million pages from
Wikipedia [9]. Most of NLP context analysis cannot be
directly applied on HTML mixed text so we created
some parsers and converted HTML into bulk text
removing unwanted tags. The bulk text gave us context
rich pure text. AIEPmora kept some important tags
like <H1> <H2> and so that during index scoring
it can define which documents ranks high. High scores
are given to large text sizes. A density parsing
algorithm is used to remove high html tag density
areas while preserving low html tag density areas
where bulk text resides as in Fig 2. During the process
some information (Especially those at boundaries) will
be lost due to density parsing. Once the text is
extracted it will be indexed using an advance indexer.

Answer
Extraction

Engine

4£)
Answer Generation Engine |

11

Fig. 1.

1) Usual chat bots maintain only one type of KB. This
results in several limitations as some questions can not
to be answered through an all in one general KB. For
instance a dictionary is suitable to answer questions
like “What is the meaning of fortification?” but may
not be the ideal KB for a questions like “Who is the
president of united state in 1995”.
answers should be extracted from resources like
internet and there should be a mechanism to switch
between different KBs. KB switching engine runs
several algorithms to analyze the input query alone
with some context analysis to identify and select the
best KB to answer the question. It relies on a learning
mechanism to identify query patterns and switch KB
according to previously learned patterns. The internal
algorithms and working of KB switching engine is
discussed separately in another paper [1].

2) Each KB is plugged using a general interface so that
KB switching engine can select KBs irrespective of
their structure or organization.

Sometimes

8

(dash line).

£

Doc 3

N/■ii[ji==s=s
Doc 2

Doc 1

Fig. 3.
High text
density low
tag density
areas

Low text
density high
tag density
areas

All the vector representations of the documents are
normalized, so that documents with high textual
content won’t always get high scores. Similarly search
query vectors are normalized so that search queries
with higher number of words are comparable with
those with less.

Once the vectors are created the Cosine between the
search query vector and document vector is calculated
(Fig. 4). The one with the lowest Cosine gets the
highest score.

Fig. 2.

6) Information which is not searchable or retrievable has
no apparent usage. Indexing is the process of
maintaining some meta-data, of a large bulk of
information, so that when it is necessary to search for
some particular information it is possible to quickly
navigate and locate the information needed. Document
is the unit of storage inside index and it will be stored
with several Meta data like title, securityjnfo,
keywords and file_path, modified_date etc. Note that
document will not be stored as it is [10].

Search Vector

1
0.8

u 0.6
g 0.4For instance you can search “keywords: Bill Clinton”

so that documents with Bill Clinton in the keywords
Field will be returned. Fields allow capturing the
context of the document in the way suitable for that
document. For instance document of an email message
will have Fields like from, to, received date etc.

V#0.2
0

0 0.5 1
Doc 1

Fig. 4.

III. Index Search procedure Cos(6) = (1)M * \v2\
Each document is represented as a vector in an n
dimensional vector space [llJAVhen a search query
comes another search vector is created and is
positioned on the vector space. Documents closer to
the search query vector get a high score during ranking
and are returned as the search results. For the purpose
of visualization let us consider a situation where there

only 3 documents in the index. (In reality there
be N document in the index which we can t easily
visualize when N>3). Each axis in Fig. 3 corresponds

. .. document. The graph shows two search queries;
one in green color (solid line) and the other in r

For calculation of | | or |u2l Euclidean distance is
used. Clearly in the example, cos/? < cos a ,There for
the corresponding search vector scores Doc 1 being more
relevant to the search than Doc 2. Although the theory
works as above, in real implementation the scoring
mechanism is developed to prevent noise, and to add
search time and index time term boosting.canare

Score for query q and for document
d = (OverLap(q.d) * QueryNormalizeFactor(q)) ♦
(Zvcerm 16 query q(fE{t, d) * IDF(t)2 * i?OOSt(t) *

to a

9

Microsoft)/TB(t,d))) (2)
2) Boosting

This allows certain terms to be boosted during search. For
instance if you want to boost the term Colombo by 10 times in
the search “Colombo Sri Lanka” you can search with a
ColomboA10 Sri Lanka

Term Descriptions
queryNum of over lap terms in q and d

(3)OverLap(q.d) = Total number of terms in q
3) Proximity Search

Allow to check whether certain words appear inThe value depends on how many search query terms are found in the
document. If the document contains a large number of query terms the
function returns a high value. On the other hand if the document contains a
few query terms the function returns a low value.

some
proximity to the other. “Network sustaining”~5 (Will search
for documents where sustaining occurs within 5 words
(eliminating stop words) after Network)

4) Wildcard search
You can use the wild card * to refer any matching string.

Net* (Will match documents containing the letters Net (in
order) followed by any number of characters)

l
(4)QueryNormalizeFactor(q) = -^===

SSW = Boost(q) 2 x (/DF(t) * Boost(t))2 (5)
IV. Answer ExtractorV term t equery q

Normalize the search query allowing all search queries to be comparable.
SSW is Sum of Squared Weights.____________________________ _ Answer extraction is the process of extracting answers from

several candidate sentences return after searching knowledge
bases [10]. An outline of the main extraction algorithm is
given below.

Boost(x)

Returns a real number associated with term/field/ document x. Each
term/field/document is associated with a factor which can be used as a
multiplication factor. This allows certain terms to be artificially boosted and
give more weights during scoring.__________________________________

Input: user question
Output: sentence containing the answer to the question

Total number of documents extract_answer(question)(6)IDF(t) = 1 + loge Number of documents
containing term t string [] words_in_question;

string [] tags_for_words;
string [] selected_words;
string [] answers;

Inverse Document Frequency. This helps in giving high marks to rare terms.
If only a few documents contain a rare term t, then term t gets a high value.
If lots of documents contain the term t, term t gets a low value.__________

INumber of times term t
appears in document d (7)TF(t,d) = question <- convert_to_lowercase(question);

words_in_question <- split_the_question(question);
tags_for_words tag_the_words (words_in_question);

This allows document d with a high number of term t to have a high score.

if(tag of a word in the question is important)
selected_words word //here, which part of speech

// does that word belong to is considered
if (a word in the selected_words is a name)

remove that word from the selected_words;
add it to removed_words;

lTB(t,d)

= Boosted) * fly field f Ind containing term C B00St(Jr')

J Number of term t in the fields
Index time Term Boosting. This allows different terms, fields or documents
to be boosted during indexing time.

selected_words <- stem(sclected_words);

for each word in selected_words
synonyms <- get_the_synonyms(word);

The indexer supports common search techniques
implemented using query syntax. The query syntax can handle
Boolean operations, Boosting, Proximity Search, and
Wildcard search.

1) Boolean Search (AND, NOT, OR)
For instance searching for Bill AND Microsoft (Will return
documents containing both words Bill and Microsoft) Bill OR
Microsoft (Will return documents with Bill or

for each word’s synonyms
if(a sentence contains a word from the

synonyms)
answers 4r sentence;

resol ve_pronouns(answers);
}

10

in the format,
A. Ambiguity Resolution and Predicate Engine

The predicate engine depends on set of context sensitive
causes and single output.

“He enrolled at Harvard College in the fall of 1973
intending to get a pre-law degree, but did not have a definite
study plan”

The pronoun ‘he’ in the above sentence actually refers to
Bill Gates. But there is no way for the indexer to resolve this.
The original proper noun referred by the pronoun depends on
previous sentences and how the pronoun is occurred in the
document. First candidate sentences are checked for pronouns
using POS tags of the words. Pronouns have the tag “PRP”
and “PRPS”. “PRP” stands for pronouns like he, she. it. they
and “PRPS” stands for pronouns like his, her, their. If the
sentence contains pronouns, sentences before the candidate
sentence and the words in the same sentence before the
pronoun are considered. In our approach, we try to resolve the
pronouns he, his, she and her. Previous sentences and the
preceding section of the candidate sentence are checked for
any names. When a name is found (names have the tag NNP
and NNS), it is tried to resolve as a male or female name. This
is done using a trained predicate engine trained to identify the
gender.
The output of the indexer can contain several sentences with
matching proper nouns. To get more convergent result proper
nouns are removed using a predicate engine. Predicate engine
automatically analyzes word context and determines which
words have more probability to be proper nouns. To train the
engine set of cases are given along with their preferred
outcomes. For example if we are interested in finding names
of people the engine can be trained as follows.

Cause 1, Cause 2, Cause 3 ... -* Output A

Once trained, the engine can give statistically meaningful
output for occurrence of several context sensitive causes not
trained before. The algorithm utilizes Bayesian mathematics
to analyze context. The predicate engine can be use to find
whether a given word is a “Name” or a “Location”. It
also be used to find whether a given word is a name of a boy
or a girl.

can

B. Word Stemming and reverse Stemming

The queried questions can have words like “worried”,
“married”, “cooked”, ’’gone” etc, but matching documents
may represent them with words like “worry”, “marry”,
“cook”, ’’cooking”, “go” etc. To stem the words and match
the relevant occurrences Porter Stemming algorithm is
utilized [12].

During sentence extraction you sometimes need to reverse
stem the word. For example the search query may have a
word like “go”, but the document may contains words like
“gone” or “went”. English Language has spelling patterns
which can be readily utilized to reverse stem the words. For
example consider the sentence

daniel cjay Jackson NAME_YES
matthew havdon -* NAME_YES
kyle mills “*SHE
bull dog -* NAMENO
fat bully-* NAME NO
my father-* NAME_NO
John Mike-* HE

“ Where did Abraham Lincoln study? ”

Knowing that “did” is a past tense can be utilized to find
the reverse stem of the word “study” and look for words like
“studied” and “studying”. Before applying reverse stemming
on words they should be first qualified to be a verb from POS
tagging.

C. Synonyms Matching
Consider the query “how many pilots died in the 2005 space

shuttle crash?”. Here the relevant document may not have a
word called pilot. Instead it may contain some words such as
aviator, aeronaut, airman, flier or flyer. This shows the
importance of using synonyms for the search. As matching
synonyms can give so many output documents synonym
match is not done in indexer level. It’s done only at final
stages of answer extraction.

Pronoun Resolution
A problem can arise when the expected answer contains

pronouns which refer to the main subject described in the
question. To understand this problem we shall consider the
following user question,

User: Where did Bill Gates study?
The answer for this question can be hidden in the document

when you want to resolve whether the word set “daniel cjay
bull” is a name or something else the engine automatically
calculate relevant context giving a probability value from 0 to
1.

V. Answer Generation

The responsibility of the Answer Generator is to identify the
exact answer from those sentences selected and generate the
answer in Natural Language. From the set of trained question
patterns, the answer generator tries to match the user question
with the trained questions template. If there is a matching
template the answer generator generates an answer based on
the POS tags of the answer pattern and the sentence containing
the answer.

Pattern teaching is done by inserting a question and an
in natural language. The pattern for the question andanswer

11

normalized token of the question. When comparing
synonyms are taken from the WordNet are also used to

the answer is first normalized. This normalization is done in
two ways. First it is done for POS tags and then for word
tokens.

nouns,
avoid

ambiguity. “Albert” is similar to “Albert Einstein” since it js a
name, and name can have multiple words. It is found in the
4th token. Tokens “is” and “was” will be compared after
stemming since they are verbs. Last one “Hermann Einstein”
will not be searched since the reference integer array has the
value 0 for the respective token.

Therefore these tokens are selected for the answer. For
generating the answer in natural language there is an
additional string array kept in the pattern teaching process. All
the tokens are added to this string array, but all tokens which
are selected to be normalized, would be replaced by the value
“null”. For the above teaching pattern (The mother of Maggie
is *) the string array is “The”, “null”, “of’, “null”, “null”

Normalization is done because similar pattern of sentences
should be recognized as the same. Consider a name of a
person. It can be a one word name like “Einstein” or it can be
a multi word name, like “Albert Einstein”. Since all these
words refer to a name of a person, it should be normalized
giving only one tag and a token. Similarly, this process should
be applied for other word sets too. As an example “big Bill”
and “big bad Bill” are considered as similar patterns. Words
like “and”, “a”, “an” etc should be omitted in normalization
process, since they do not make a sufficient difference in the
meaning of the sentences.

Consider the following question and answer as a teaching
pattern:

“Who is mother of Maggie?”, “The mother of Maggie is *”
(* marks the exact answer expected).

“null”.
In natural language answer generating, the null values in

this array would be replaced by the tokens selected for the
answer. For the above example, it should be “The”, “father”,
“of’, “Albert”, “was”, “Hermann Einstein” after the
replacement is done.

It is then converted to a string as follows,
After normalizing, the normalized POS tags are “WP VBZ

NN NNP” and “NN NNP VBZ SYM”.

“The father of Albert was Hermann Einstein”.Since the question is of type “Who”, the answer should be a
name. Therefore the token “SYM “should be replaced with the
tag “NNP”. This yields two patterns for this answer.

The normalized tokens are “Who, is, mother, Maggie” and
“mother, Maggie, is,

After identifying the answer, it is generated in Natural
Language. These are some examples of how it is done.

Where do you live? In Paris. When will Ben have lunch? At
lpm.After normalizing, the reference to the similar words of the

answer in the question are marked using an Integer array. For
the above example, the words “mother”, Maggie” and “is” can
be found in the question. The reference (the number of the
token of the similar word in the question) is marked using an
integer array of “3, 4, 2, null”. Since the first token is taken as
1, “null” is marked as 0. Thus the integer array should be “3,
2, 1,0”.

When searching for an answer for a particular question, the
Answer Generator first selects similar normalized POS tag
patterns in the taught patterns. Then it searches for answer
patterns in the selected sentences in the document for each
taught question patterns selected. When it finds a similar
pattern, it checks whether the references for the words in the
question are correct.

Consider the example question “Who is the father of Albert
Einstein?”.

After normalizing it would be “WP VBZ NN NNP” and
tokens “Who”, “is”, “father”, “Albert Einstein”.

Since the tags are similar to above teaching pattern it would
be selected too.

Imagine the answer within the documents is, “The father of
Albert was Hermann Einstein”.

After normalizing it would be “NN NNP VBZ NNP” and
tokens “father”, “Albert”, “was” and “Hermann Einstein”.

Since it is similar to answer pattern in the above teaching
example, those tokens will be selected and checked for
references. “Father” can be found in the 3rd token of the

Who did she meet? She met Ram.

Why hasn't Tara done it? Because she can't.

To increase the performance, whenever a sentence is found
having a score above certain level, it is proceeded to generate
an answer. If the answer can be generated from it, the search
can be stopped without consuming much time. If the system
can’t generate the answer from the sentences, it will output the
sentence with the highest score, directly extracted by the
answer extractor.

ACKNOWLEDGMENT

AIEPmora team would like to thank Dr. Shehan Perera and
Dr. Ravindra Koggalage,who supervised the AIEPmora
project. Special thanks to- our department head Mrs. Mrs.
Vishaka Nanayakkara and all the staff members of CSB
department of university of Moratuwa..

References

[1] Lui H. ,Singh P, “ConceptNet - a practical
reasoning tool-kit”, BT Technology journa •commonsense

12

October 2004
[2] Zebra , Available: http://www.indexdata.dk/zebra/
[3] Zebra, Available: http://www.indexdata.dk/zebra/
[4] Wumpus, Available: http://www.wumpus-search.org/
[5] Terrier, Available: http://ir.dcs.gla.ac.uk/terrier/
[6] Alicebot, Available: http://www.alicebot.org
[7] G. A. Miller, et al. (1990). “Introduction to WordNet:
An On-line Lexical Database”. Int J Lexicography 3(4):
pp.235-244.
[8] Wallace R., Bush N. (2001) “AIML Specification 1.0.1”:
[Online] Available: http://www.alicebot.org/TR/2001/WD-
aiml /

[9] G. A. Miller, et al. (1990). “Introduction to WordNet:
An On-line Lexical Database”. Int J Lexicography 3(4):
pp.235-244.
[10] Singhal A.(2001). “Modem Information Retrieval: A
Brief Overview”. Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering 24(4):35-43.
[11] Salton, G., McGill, M. J. 1983 “Introduction to modem
information retrieval”. McGraw-Hill
[12] C.J. van Rijsbergen, S.E. Robertson and M.F. Porter,
1980. New models in probabilistic information retrieval.
London: British Library. (British Library Research and
Development Report, no. 5587).

13

http://www.indexdata.dk/zebra/
http://www.indexdata.dk/zebra/
http://www.wumpus-search.org/
http://ir.dcs.gla.ac.uk/terrier/
http://www.alicebot.org
http://www.alicebot.org/TR/2001/WD-aiml
http://www.alicebot.org/TR/2001/WD-aiml

