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techniques cannot be directly applied on an AIML KB. The 
inference engines of modem automated chat bots are based on 
pattern matching and regular expression and their answers are 
somewhat limited to small set of patterns. In most cases when 
an answer cannot be generated the system settle down to a 
general answers like “what do you mean*' or “ah tell me 
again”. The knowledge base is \ery rigid and cannot 
accommodate ever changing information and user based. 
Although AIML is a restrictive representation it does have its 
advantages like fast response time and answering to general 
expressions like “hi”, “whats the color of sky” or “how is the 
day”.

The aim of AIEPmora project is to provide an easy to use 
chat bot where a general user can query questions much like a 
human. The system provides meaningful answers by searching 
its knowledge bases. AIEPmora converges final results at 
various steps to pin point an answer.

The system compromise of 4 main units. 1) Query engine. 
2) Two structured knowledge bases 3) Unstructured 
knowledge base with an indexer 4) NLP algorithm engine. 
These components will be discussed in detail in the coming 
sections.

AIEPmora relies on a simple text query for all the inputs 
and displays the matching sentences in a simple text output. 
This simple text input, output makes it easy to integrate with 
widely available information retrieval platforms. This also 
allows sound recognition and text readers to be directly 
incorporated to create a human like conversation engine. A 
conversation can be carried out in a human language and the 
system gives meaningful answers. When an expression like 
“hi” or “good morning” is raised the system answers much 
like a human.

We thought hogging into a structural KB is a limiting factor 
and add a plain text consuming engine where day today 
knowledge can be easily included. A novel KB switch is 
added to select among different type of KBs available. The 
KB switch allows intelligently select structural and 
unstructured KBs based on patterns it has learned previously.

/iforracf-This paper discusses AIEPmora; 
processing system designed to maintain a conversation with a 
human user. The architecture is much similar to an automated 
chat bots with several overhauls to integrate vary ing knowledge 
bases. The system is designed to consume plain text so that 
knowledge can be added without worrying about its structure or 
organization. It does not require link to be present in the text and 
can manage various type of wh questions plus human like 
expressions like “hi” , “good morning”. This paper presents a 
high level architecture of AIEPmora and how its component 
integrates to create a human like chat bot.

natural language

Index Terms—Chat Bots, Knowledge Representation,
Knowledge Retrieval, NLP

I. Introduction

'T'oday in the digital era, text has become the primary 
JL medium of representing and transmitting information .

People’s lives are saturated with textual information and there 
is an increasing demand to develop a method to help them 
manage and make sense of information overload [1].

In corporate environment there is a massive amount of link 
free information like emails, text files and documents trapped 
in repositories which cannot be searched. Building a search 
algorithm like that 'of internet search engine is difficult as link 
ranking methods cannot be directly applied on link free 
information.A classic example is frequently asked questions 
[2] where you have a 
knowledge without proper links. Corporate email client is 
another source of information where both structure and inter 
links are not available. Although enterprise search engine exist 
they don’t provide chat bot like features and solely depends on 
keyword search [3], [4], [5].

Currently existing humanoid chat bots like Alice Bot [6] 
requires a well structured Knowledge Base (KB). Alice Bot 
depends on an ontology structure called AIML (Artificial 
Intelligence Markup Language) and can be used to represent 
quite a complex knowledge. Converting of day today 
information like emails to a well structured KB is a daunting 
task or practically impossible. AIML depends on pattern 
watching and most of statistical based NLP processing

good structural representation of

II. ARCHITECTURE

A high level architecture of the system is shown in Fig. 1.
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3) Questions related to definitions are queried into 
WordNet (Princeton University WordNet) [7] 
WordNet is well structured to select definitions 
finding object types. For instance finding the meaning 
of the word “amalgamate” or resolving that a car is a 
passenger vehicle and a passenger vehicle is a general 
vehicle can be done using WordNet.

4) To answer human expressions that have no specific 
meaning, an AIML [8] based query engine is utilized. 
For instance to answer expressions like “ah’ “ouch” 
“hoo hoo” can be done with AIML. It also helps in 
answering some general questions like “Who is your 
father?” or “How is the weather like?”

AIML is an XML based language to represent 
Artificial Intelligence. AIML describes a class of data 
objects called AIML objects and partially describes the 
behavior of computer programs that process them. 
Main components of an AIML document could be 
identified as categories, patterns and templates.

5) A Chabot is useless unless it can answer a wide 
variety of questions. Most of modem chat bots can’t 
consume plain text. We see this as a limitation and 
integrated a plain text consuming engine to AIEPmora.
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To answer questions like “Who is the president of 
United State in 1995?” or “What is the first Benz car 
with 4000cc Engine?” or “Who is the father of Bill 
Gates?” you need to have intensive knowledge base. 
We assume that such knowledge cannot be limited to a 
specific structure and can only be represented with 
plain text. Beside all most of such information are 
available in plain text format.

To carry out the research and to have large amount 
of textual information we created an automated 
crawler and downloaded over 0.2 million pages from 
Wikipedia [9]. Most of NLP context analysis cannot be 
directly applied on HTML mixed text so we created 
some parsers and converted HTML into bulk text 
removing unwanted tags. The bulk text gave us context 
rich pure text. AIEPmora kept some important tags 
like <H1> <H2> and <b> so that during index scoring 
it can define which documents ranks high. High scores 
are given to large text sizes. A density parsing 
algorithm is used to remove high html tag density 
areas while preserving low html tag density areas 
where bulk text resides as in Fig 2. During the process 
some information (Especially those at boundaries) will 
be lost due to density parsing. Once the text is 
extracted it will be indexed using an advance indexer.

Answer
Extraction

Engine

4£)
Answer Generation Engine |

11

Fig. 1.

1) Usual chat bots maintain only one type of KB. This 
results in several limitations as some questions can not 
to be answered through an all in one general KB. For 
instance a dictionary is suitable to answer questions 
like “What is the meaning of fortification?” but may 
not be the ideal KB for a questions like “Who is the 
president of united state in 1995”. 
answers should be extracted from resources like 
internet and there should be a mechanism to switch 
between different KBs. KB switching engine runs 
several algorithms to analyze the input query alone 
with some context analysis to identify and select the 
best KB to answer the question. It relies on a learning 
mechanism to identify query patterns and switch KB 
according to previously learned patterns. The internal 
algorithms and working of KB switching engine is 
discussed separately in another paper [1].

2) Each KB is plugged using a general interface so that 
KB switching engine can select KBs irrespective of 
their structure or organization.

Sometimes
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All the vector representations of the documents are 
normalized, so that documents with high textual 
content won’t always get high scores. Similarly search 
query vectors are normalized so that search queries 
with higher number of words are comparable with 
those with less.

Once the vectors are created the Cosine between the 
search query vector and document vector is calculated 
(Fig. 4). The one with the lowest Cosine gets the 
highest score.

Fig. 2.

6) Information which is not searchable or retrievable has 
no apparent usage. Indexing is the process of 
maintaining some meta-data, of a large bulk of 
information, so that when it is necessary to search for 
some particular information it is possible to quickly 
navigate and locate the information needed. Document 
is the unit of storage inside index and it will be stored 
with several Meta data like title, securityjnfo,
keywords and file_path, modified_date etc. Note that
document will not be stored as it is [10].

Search Vector

1
0.8

u 0.6
g 0.4For instance you can search “keywords: Bill Clinton” 

so that documents with Bill Clinton in the keywords 
Field will be returned. Fields allow capturing the 
context of the document in the way suitable for that 
document. For instance document of an email message 
will have Fields like from, to, received date etc.

V#0.2
0
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Doc 1

Fig. 4.

III. Index Search procedure Cos(6 ) = (1)M * \v2\
Each document is represented as a vector in an n 
dimensional vector space [llJAVhen a search query 
comes another search vector is created and is 
positioned on the vector space. Documents closer to 
the search query vector get a high score during ranking 
and are returned as the search results. For the purpose 
of visualization let us consider a situation where there 

only 3 documents in the index. (In reality there 
be N document in the index which we can t easily 
visualize when N>3). Each axis in Fig. 3 corresponds 

. .. document. The graph shows two search queries; 
one in green color (solid line) and the other in r

For calculation of | | or |u2l Euclidean distance is
used. Clearly in the example, cos/? < cos a ,There for 
the corresponding search vector scores Doc 1 being more 
relevant to the search than Doc 2. Although the theory 
works as above, in real implementation the scoring 
mechanism is developed to prevent noise, and to add 
search time and index time term boosting.canare

Score for query q and for document 
d = (OverLap(q.d) * QueryNormalizeFactor(q) ) ♦ 
(Zvcerm 16 query q(fE{t, d) * IDF(t)2 * i?OOSt(t) *

to a
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Microsoft)/TB(t,d))) (2)
2) Boosting

This allows certain terms to be boosted during search. For 
instance if you want to boost the term Colombo by 10 times in 
the search “Colombo Sri Lanka” you can search with a 
ColomboA10 Sri Lanka

Term Descriptions
queryNum of over lap terms in q and d

(3)OverLap(q.d) = Total number of terms in q
3) Proximity Search

Allow to check whether certain words appear inThe value depends on how many search query terms are found in the 
document. If the document contains a large number of query terms the 
function returns a high value. On the other hand if the document contains a 
few query terms the function returns a low value.

some
proximity to the other. “Network sustaining”~5 (Will search 
for documents where sustaining occurs within 5 words 
(eliminating stop words) after Network)

4) Wildcard search
You can use the wild card * to refer any matching string. 

Net* (Will match documents containing the letters Net (in 
order) followed by any number of characters)

l
(4)QueryNormalizeFactor(q) = -^===

SSW = Boost(q) 2 x (/DF(t) * Boost(t))2 (5)
IV. Answer ExtractorV term t equery q

Normalize the search query allowing all search queries to be comparable. 
SSW is Sum of Squared Weights.____________________________ _ Answer extraction is the process of extracting answers from 

several candidate sentences return after searching knowledge 
bases [10]. An outline of the main extraction algorithm is 
given below.

Boost(x)

Returns a real number associated with term/field/ document x. Each 
term/field/document is associated with a factor which can be used as a 
multiplication factor. This allows certain terms to be artificially boosted and 
give more weights during scoring.__________________________________

Input: user question
Output: sentence containing the answer to the question

Total number of documents extract_answer(question)(6)IDF(t) = 1 + loge Number of documents 
containing term t string [ ] words_in_question; 

string [ ] tags_for_words; 
string [ ] selected_words; 
string [ ] answers;

Inverse Document Frequency. This helps in giving high marks to rare terms. 
If only a few documents contain a rare term t, then term t gets a high value. 
If lots of documents contain the term t, term t gets a low value.__________

INumber of times term t 
appears in document d (7)TF(t,d) = question <- convert_to_lowercase(question); 

words_in_question <- split_the_question(question); 
tags_for_words tag_the_words (words_in_question);

This allows document d with a high number of term t to have a high score.

if(tag of a word in the question is important) 
selected_words word //here, which part of speech 

// does that word belong to is considered 
if (a word in the selected_words is a name)

remove that word from the selected_words; 
add it to removed_words;

lTB(t,d)

= Boosted) * fly field f Ind containing term C B00St(Jr')

J Number of term t in the fields 
Index time Term Boosting. This allows different terms, fields or documents 
to be boosted during indexing time.

selected_words <- stem(sclected_words);

for each word in selected_words
synonyms <- get_the_synonyms(word);

The indexer supports common search techniques 
implemented using query syntax. The query syntax can handle 
Boolean operations, Boosting, Proximity Search, and 
Wildcard search.

1) Boolean Search (AND, NOT, OR)
For instance searching for Bill AND Microsoft (Will return 
documents containing both words Bill and Microsoft) Bill OR 
Microsoft (Will return documents with Bill or

for each word’s synonyms
if(a sentence contains a word from the

synonyms)
answers 4r sentence;

resol ve_pronouns(answers);
}
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in the format,
A. Ambiguity Resolution and Predicate Engine

The predicate engine depends on set of context sensitive 
causes and single output.

“He enrolled at Harvard College in the fall of 1973 
intending to get a pre-law degree, but did not have a definite 
study plan”

The pronoun ‘he’ in the above sentence actually refers to 
Bill Gates. But there is no way for the indexer to resolve this. 
The original proper noun referred by the pronoun depends on 
previous sentences and how the pronoun is occurred in the 
document. First candidate sentences are checked for pronouns 
using POS tags of the words. Pronouns have the tag “PRP” 
and “PRPS”. “PRP” stands for pronouns like he, she. it. they 
and “PRPS” stands for pronouns like his, her, their. If the 
sentence contains pronouns, sentences before the candidate 
sentence and the words in the same sentence before the 
pronoun are considered. In our approach, we try to resolve the 
pronouns he, his, she and her. Previous sentences and the 
preceding section of the candidate sentence are checked for 
any names. When a name is found (names have the tag NNP 
and NNS), it is tried to resolve as a male or female name. This 
is done using a trained predicate engine trained to identify the 
gender.
The output of the indexer can contain several sentences with 
matching proper nouns. To get more convergent result proper 
nouns are removed using a predicate engine. Predicate engine 
automatically analyzes word context and determines which 
words have more probability to be proper nouns. To train the 
engine set of cases are given along with their preferred 
outcomes. For example if we are interested in finding names 
of people the engine can be trained as follows.

Cause 1, Cause 2, Cause 3 ... -* Output A

Once trained, the engine can give statistically meaningful 
output for occurrence of several context sensitive causes not 
trained before. The algorithm utilizes Bayesian mathematics 
to analyze context. The predicate engine can be use to find 
whether a given word is a “Name” or a “Location”. It 
also be used to find whether a given word is a name of a boy 
or a girl.

can

B. Word Stemming and reverse Stemming

The queried questions can have words like “worried”, 
“married”, “cooked”, ’’gone” etc, but matching documents 
may represent them with words like “worry”, “marry”, 
“cook”, ’’cooking”, “go” etc. To stem the words and match 
the relevant occurrences Porter Stemming algorithm is 
utilized [12].

During sentence extraction you sometimes need to reverse 
stem the word. For example the search query may have a 
word like “go”, but the document may contains words like 
“gone” or “went”. English Language has spelling patterns 
which can be readily utilized to reverse stem the words. For 
example consider the sentence

daniel cjay Jackson NAME_YES
matthew havdon -* NAME_YES
kyle mills “*SHE
bull dog -* NAMENO
fat bully-* NAME NO
my father-* NAME_NO
John Mike-* HE

“ Where did Abraham Lincoln study? ”

Knowing that “did” is a past tense can be utilized to find 
the reverse stem of the word “study” and look for words like 
“studied” and “studying”. Before applying reverse stemming 
on words they should be first qualified to be a verb from POS 
tagging.

C. Synonyms Matching
Consider the query “how many pilots died in the 2005 space 

shuttle crash?”. Here the relevant document may not have a 
word called pilot. Instead it may contain some words such as 
aviator, aeronaut, airman, flier or flyer. This shows the 
importance of using synonyms for the search. As matching 
synonyms can give so many output documents synonym 
match is not done in indexer level. It’s done only at final 
stages of answer extraction.

Pronoun Resolution
A problem can arise when the expected answer contains 

pronouns which refer to the main subject described in the 
question. To understand this problem we shall consider the 
following user question,

User: Where did Bill Gates study?
The answer for this question can be hidden in the document

when you want to resolve whether the word set “daniel cjay 
bull” is a name or something else the engine automatically 
calculate relevant context giving a probability value from 0 to
1.

V. Answer Generation

The responsibility of the Answer Generator is to identify the 
exact answer from those sentences selected and generate the 
answer in Natural Language. From the set of trained question 
patterns, the answer generator tries to match the user question 
with the trained questions template. If there is a matching 
template the answer generator generates an answer based on 
the POS tags of the answer pattern and the sentence containing 
the answer.

Pattern teaching is done by inserting a question and an 
in natural language. The pattern for the question andanswer
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normalized token of the question. When comparing 
synonyms are taken from the WordNet are also used to

the answer is first normalized. This normalization is done in 
two ways. First it is done for POS tags and then for word 
tokens.

nouns, 
avoid

ambiguity. “Albert” is similar to “Albert Einstein” since it js a 
name, and name can have multiple words. It is found in the 
4th token. Tokens “is” and “was” will be compared after 
stemming since they are verbs. Last one “Hermann Einstein” 
will not be searched since the reference integer array has the 
value 0 for the respective token.

Therefore these tokens are selected for the answer. For 
generating the answer in natural language there is an 
additional string array kept in the pattern teaching process. All 
the tokens are added to this string array, but all tokens which 
are selected to be normalized, would be replaced by the value 
“null”. For the above teaching pattern (The mother of Maggie 
is *) the string array is “The”, “null”, “of’, “null”, “null”

Normalization is done because similar pattern of sentences 
should be recognized as the same. Consider a name of a 
person. It can be a one word name like “Einstein” or it can be 
a multi word name, like “Albert Einstein”. Since all these 
words refer to a name of a person, it should be normalized 
giving only one tag and a token. Similarly, this process should 
be applied for other word sets too. As an example “big Bill” 
and “big bad Bill” are considered as similar patterns. Words 
like “and”, “a”, “an” etc should be omitted in normalization 
process, since they do not make a sufficient difference in the 
meaning of the sentences.

Consider the following question and answer as a teaching 
pattern:

“Who is mother of Maggie?”, “The mother of Maggie is *” 
(* marks the exact answer expected).

“null”.
In natural language answer generating, the null values in 

this array would be replaced by the tokens selected for the 
answer. For the above example, it should be “The”, “father”, 
“of’, “Albert”, “was”, “Hermann Einstein” after the 
replacement is done.

It is then converted to a string as follows,
After normalizing, the normalized POS tags are “WP VBZ 

NN NNP” and “NN NNP VBZ SYM”.

“The father of Albert was Hermann Einstein”.Since the question is of type “Who”, the answer should be a 
name. Therefore the token “SYM “should be replaced with the 
tag “NNP”. This yields two patterns for this answer.

The normalized tokens are “Who, is, mother, Maggie” and 
“mother, Maggie, is,

After identifying the answer, it is generated in Natural 
Language. These are some examples of how it is done.

Where do you live? In Paris. When will Ben have lunch? At 
lpm.After normalizing, the reference to the similar words of the 

answer in the question are marked using an Integer array. For 
the above example, the words “mother”, Maggie” and “is” can 
be found in the question. The reference (the number of the 
token of the similar word in the question) is marked using an 
integer array of “3, 4, 2, null”. Since the first token is taken as
1, “null” is marked as 0. Thus the integer array should be “3,
2, 1,0”.

When searching for an answer for a particular question, the 
Answer Generator first selects similar normalized POS tag 
patterns in the taught patterns. Then it searches for answer 
patterns in the selected sentences in the document for each 
taught question patterns selected. When it finds a similar 
pattern, it checks whether the references for the words in the 
question are correct.

Consider the example question “Who is the father of Albert 
Einstein?”.

After normalizing it would be “WP VBZ NN NNP” and 
tokens “Who”, “is”, “father”, “Albert Einstein”.

Since the tags are similar to above teaching pattern it would 
be selected too.

Imagine the answer within the documents is, “The father of 
Albert was Hermann Einstein”.

After normalizing it would be “NN NNP VBZ NNP” and 
tokens “father”, “Albert”, “was” and “Hermann Einstein”.

Since it is similar to answer pattern in the above teaching 
example, those tokens will be selected and checked for 
references. “Father” can be found in the 3rd token of the

Who did she meet? She met Ram.

Why hasn't Tara done it? Because she can't.

To increase the performance, whenever a sentence is found 
having a score above certain level, it is proceeded to generate 
an answer. If the answer can be generated from it, the search 
can be stopped without consuming much time. If the system 
can’t generate the answer from the sentences, it will output the 
sentence with the highest score, directly extracted by the 
answer extractor.
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