Intelligent Sensor System for Humanitarian Demining

Visvakumar Aravinthan

This thesis was submitted to the department of Electrical Engineering of University of Moratuwa in partial fulfillment of the requirements for the Degree of Master in Science

Department of Electrical Engineering University of Moratuwa Sri Lanka

October 2004

Supervisor: Thrishantha Nanayakkara PhD

Co supervisors: Indra Dayawansa PhD & Delika Dias PhD

Declaration

The work submitted in this thesis is the result of my own investigations, except where stated.

It has not already been accepted in substance for any degree, and also is not being concurrently submitted for any other degrees

V. Aravinthan Candidate

Dr. DPT Nanayakkara Supervisor

Prof (Mrs) IJ Dayawansa Co Supervisor

Prof (Mrs) SAD Dias Co Supervisor

Dedication

To my Parents

Thillainadarajah Visvakumar and Arunthavarani Visvakumar

For their guidance, support and care shown towards me

"I've been very blessed. My parents always told me I could be anything I wanted.

When you grow up in a household like that, you learn to believe in yourself."

--Rick Schroeder

Abstract

In any post conflict country, landmines have become a major concern to civilians especially during the resettlement period. Biological Sensors and Metal Detectors are the most common detection technologies used commercially. One of the major drawbacks with the commercially available metal detectors is that they don't have very good discriminating power and in practice they give very high rate of false alarms. Generally the ratio between the detection of a landmine and getting a false alarm varies in the region of 1:100 to 1:1000 depending on the location.

The aim of this study is to introduce an Intelligent Discriminating System so that the false alarms would be reduced. Detailed study on Very Low Frequency (VLF) type Metal Detectors show that, the presence of a ferromagnetic object changes the phase of the signal induced in the receiving coil. This phase change heavily depends on the type of the alloy. This property is used to discriminate ferromagnetic alloys in the proposed methodology.

The field survey shows that the processing speed of the system should be fast and accurate. The aliased signal from the detector receiver coil is used in this study to reduce the processing time. The received signal is further processed using Discrete Wavelet Analysis. The First Level High Frequency Sub-band signal, with Meyer Wavelet, depends highly on the type of material, sweep frequency, and the depth of the material. This processed data is used to classify the object into different classes. Modified version of Adaptive Resonance Theory (ART-1) is used in the classifying process.

The results show that different metals could be classified with 5% significance, same material but different size could be classified with 10% significance and Alloys could be classified into user defined classes; this depends on the templates used in the ART-1. Further by changing the classification algorithm, the objects could be classified into user defined groups.

Acknowledgement

This work would not be possible without the initiation by Dr. Thrishantha Nanayakkara, who introduced me to the wonderful world of demining research by which the mankind could be benefited. His courage and the support made me to achieve my goal. Whenever I get into a problem or hardship, his encouragement made me to rise up and respond to the occasion. My sincere appreciation goes to Dr Nanayakkara for his valuable guidance.

It gives me a great pleasure to acknowledge Prof (Mrs) N Ratnayake (Former Director Postgraduate Studies) for the effort taken by her on awarding the ADB scholarship. Her personnel effort made me to concentrate on my research without financial struggle. I also thank the current Director, Postgraduate studies Dr. N Munasinge and his staff for the support and guidance given to me.

I wish to thank my co-supervisors Prof. (Mrs) Indra Dayawansa and Prof. (Mrs) Delika Dias for the advice, guidance and support given to me. Special thanks to Prof. (Mrs) Dayawansa for making arrangements to use the Telecommunication Laboratory for data acquisition purpose.

I take this opportunity to thank National Science Foundation, Sri Lanka and Asian Development Bank for their financial Support for the project. This has made this dream come true. Further I like to bring forward the following point, as this work is based on developing a new technology for the betterment of the human life and need of a technique for demining in a much faster rate is expressed. The proposed technique if implemented could be of great use. The implementation needs financial and moral support is from Governmental and Non-Governmental organisations which are involved in demining. If the technology is implemented locally, this would be a great boost for demining as well as for researchers, who aim at researches being carried out in Sri Lanka with locally available material and knowledge.

My sincere appreciation to the members of the progress review committee, Prof. Sriyananda (Chairman), Prof Dayawansa, Dr. Perera and Dr. Udawatta, for their comments and guidance which drove me a step further.

I am greatful to Head of Department Dr. Perera and former Head of Department Prof. Lucas for their guidance and special thanks to the technical staff Mr. Leelasiri, Mr Vasantha, Mr. Janaka and Mr. Ashoka for the support given by them to carry out the experiments.

I extend my sincere gratitude to UNDP (Mine Action Unit), Sri Lanka Army, Humanitarian Demining Unit, RONCO and HELO Trust for sharing their expert knowledge and arranging field visits and surveys. This helped me get the first hand knowledge and do my very best towards mankind.

My special thanks to Mr Sivaharan Senior Lecturer, Department of Materials Engineering and the Technical Officer for providing the samples and helping to get the sample composition.

I take this opportunity to thank my friends Aravinthan and Kumarathasan with whom I enjoyed exchanging technical and non technical issues. It was fun working with them. I take this opportunity to wish them the very best in their professional and personnel endeavours.

Last but not least, I wish to express my deepest gratitude to my parents for their unconditional love and support. Thank you for keeping me afloat when I was down and thank you, by always being there when I needed you.

Visvakumar Aravinthan 15th November 2004

Table of Contents

		Page
1.	Introduction	1
	1.1. Landmines	1
	1.2. Sri Lankan Scenario	3
	1.3. Current Work in Demining and Drawbacks	6
	1.4. Scope of Study	8
2.	Metal Detectors	10
	2.1. Introduction	10
	2.2. Detection Techniques in Demining	10
	2.3. Basic Principle of Metal Detectors	11
	2.3.1. Continuous Wave Metal Detectors	12
	2.3.1.1.Single Coil Continuous Wave Metal Detectors	13
	2.3.1.2. Dual Coil Continuous Wave Metal Detectors	14
	2.3.2. Pulse Induction Metal Detectors	16
	2.4. Limitations of Metal Detectors in Demining	18
	2.5. Future Improvements – R&D	19
	2.6. Summary	20
3.	Data Acquisition	21
	3.1. Introduction	21
	3.2. Data Acquisition Techniques	22
	3.2.1. Analogue to Digital Conversion	22
	3.2.2. Nyquist Sampling Rate	23
	3.3. Data Acquisition	24
	3.4. Aliasing for Constructive Purpose	25
	3.5. Acquired Data	26
	3.6. Summary	27

4.	Signal Processing	28
	4.1. Introduction	28
	4.2. furrier Transforms	
	4.2.1. Discrete Furrier Transforms	29
	4.2.2. Fast Furrier Transforms	30
	4.3. Wavelet analysis	31
	4.3.1. Continuous Wavelet Analysis	33
	4.3.1.1.Scaling and Shifting	33
	4.3.2. Discrete Wavelet Analysis	35
	4.3.2.1.Classification of Wavelets	36
	4.3.2.2.Common Wavelets in Use	37
	4.4. Processed Data	39
	4.5. Summary	41

_	C' 1	
5.	Signal	Classification

5.1. Introduction 42 5.2. Signature Generation 42 5.2.1. Band Creation 44 5.2.2. Word Creation 45 5.2.3. Signature Creation 46 5.3. Template Creation 47 5.4. Template Matching 48 5.4.1. Adaptive Resonance Theory 49 5.4.2. Implementation of ART 54 5.5. Summary 56

42

6.	Results & Discussion	58
	6.1. Introduction	58
	6.2. Results	58
	6.3. Statistical Analysis	62
	6.3.1. t-Test	64
	6.4. Discussion and Future Work	68
7.	Conclusion	71
Re	eference	73
Aı	nnexure A	A1
Aı	nnexure B	B1

List of Tables & Charts

Table 1.1: People Affected By Landmines in Sri Lanka	Page 4
Table 2.1: Demining Techniques	11
Table 3.1: Metal Samples	26
Table 5.1: Words Tested for Type (2)	45
Table 5.2: Words Tested in the Study	45
Table 5.3: Template Created for the sample 768	48
Table 6.1: Results for the Copper Alloy Sample	58
Table 6.2: Results for the Low Alloy Steel (DF-2) Sample	59
Table 6.3: Results for the Low Carbon Steel (768) Sample	59
Table 6.4: Results for the Jumper Steel (JS) Sample	60
Table 6.5: Results for the 2 cm Mild Steel (MS_2) Sample	60
Table 6.6: Results for the 5cm Mild Steel (MS_5J) Sample	60
Table 6.7: Results for the 5cm Mild Steel (MS_5J) Sample, Metal Detector was placed just above the sample	61
Table 6.8: Results for the 5cm Mild Steel (MS_52) Sample,Metal Detector was placed just above sand leveland the object was buried 2 cm in the sand	61
Table 6.9: Results of t-test carried out for the samples with 5% significance	66
Table 6.10: Results of t-test carried out for the samples with 10% significant	ce 66
Table 6.11: Maximum level significance of t-test carried out for the samples	67
Table 6.12: Maximum level significance of t-test carried out for the samples	67
Chart 1.3: Casualty Breakdown In Sri Lanka, By Age and Sex	4

List of Figures

Figure 1.1: Typical Landmine	Page 2
Figure 1.2: Landmines Used In Sri Lanka	3
Figure1.3: A HDU Deminer with Two Types of Rake	7
Figure 2.1: EMI System	12
Figure 2.2: Simplified Diagram of Single Coil Detector – Type 1	13
Figure 2.3: Simplified Diagram of Single Coil Detector – Type 2	14
Figure 2.4: Simplified Diagram of Dual Coil Detector	15
Figure 2.5: Voltage – Time diagram of Coils	16
Figure 2.6: Coil Waveforms	17
Figure 2.7: Decay of the Induced Pulse	17
Figure 3.1: A/D Conversion	22
Figure 3.2: Aliased Signal	23
Figure 3.3: Constructed Wave of Frequency $f = f_{max}$	24
Figure 3.4: Signal Output from NIDAQ	24
Figure 3.5: Experiment Setup	26
Figure 4.1: Change in Frequency of Metal Detector Signal	29
Figure 4.2: Typical Wavelet	32
Figure 4.3: Time – Scale Representation using Wavelet	32
Figure4.4: Scaling of Wavelets	33
Figure 4.5: Shifting Wavelet	34
Figure 4.6: Discrete Wavelet Tree	35
Figure 4.7: Wavelet Families	37
Figure 4.8: Output from Daubechies Mother Wavelet	39

Figure 4.9: Mayer Wavelet Output	40
Figure 4.10: Shapes of Wavelet Results for Different Materials	41
Figure 5.1: DWT Output	43
Figure 5.2: Actual Data from DWT	43
Figure 5.3: Digital Signature Array	43
Figure 5.4: Bands of a Signature	44
Figure 5.5: Tested Digital Bands	44
Figure 5.6: Continuous Output	46
Figure 5.7: Template Matching	48
Figure 5.8: Basic Competitive Neural Network	49
Figure 5.9: ART Architecture	51
Figure 5.10: ART Search Cycle	51
Figure 5.11: Implemented ART Algorithm	55
Figure 5.12: Simplified ART Network	57

List of Abbreviations

HDU	-	Humanitarian Demining Unit
EMI	-	Electro Magnetic Induction
GPR	-	Ground Penetrating Radar
ART	-	Adaptive Resonance Theory
Tx	-	Transmitting
Rx	-	Receiving
BFO	-	Beat Frequency Oscillator
VLF	-	Very Low Frequency
PI	-	Pulse Induction
R&D	-	Research and Development
UXO	-	Unexploded Ordnance
A/D	-	Analogue to Digital
NIDAQ	-	National Instruments Data Acquisition
MS_2	-	2 cm Mild Steel Sample
MS_5J	-	5 cm Mild Steel Sample
MS_52	-	5 cm Mild Steel Sample at 2 cm depth
JS	-	Jumper Steel Sample
768	-	Medium Carbon Steel
DF2	-	Low Carbon Alloy
Cu	-	Copper Alloy Sample
DFT	-	Discrete Furrier Transform
FFT	-	Fast Furrier Transform
CWT	-	Continuos Wavelet Analysis
DWT	-	Discrete Wavelet Analysis
STM	-	Short Term Memory
LTM	-	Long Term Memory